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Bound on Screening Corrections in Beta Decay
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A determinantal method is employed to provide a rigorous bound on the screening corrections in beta de-
cay in the nonrelativistic approximation. Our results sufBce to demonstrate that a previous numerical calcu-
lation of these corrections is inaccurate.

1. INTRODUCTION

' N the preceding paper, ' I . Durand, III, has discussed
~ - some discrepancies which exist among the published
values of the atomic screening correction to beta, -decay
spectra, and has derived the value of this correction for
an exactly soluble model of the screened Coulomb po-
tential. Here we shall provide a rigorous upper bound on
the screening correction in the nonrelativistic approxi-
mation. We shall employ in our discussion a Fredholm
determinant method which has been used recently to
analyze analyticity properties in potential scattering
theory. It is hoped that some of the techniques and inter-
mediate results of our work may prove useful in con-
texts other than that considered here.

Ke shall assume that the screened Coulomb potential
in which the emitted beta-decay electron moves may be
represented by a superposition of Yukawa potentials,

The nonrelativistic screened Fermi function, F„ is
the absolute square of the electron wave function
evaluated at the origin divided by the correspondingly
normalized quantity for a free electron. In terms of the
radial 5-state wave function, normalized by the asymp-
totic boundary condition

up(r) —+ e'pp sin(kr+bp), r —&~,
we have

F.= llm
~
up(r)/kr

~

',

It is the ratio of the screened to the pure Coulomb
value of this function which we shall bound.

In Ref. 2 it is shown that the limit which we need
is related to the Jost function f~(k) by

—
u((r)

ft(k)
—' = lim

r~P (kr) &+1

I'(r) =(1/r) d~~(I )e "". (1) and that the Jost function may be written as a Fredholm
determinant,

At great distances this potential must closely approxi-
mate the pure Coulomb potential of the residual singly
charged ion. We shall make the not unphysical require-
ment that this part of the potential has a large, but
finite, range characterized by p, p '. This affects only the
intermediate steps of our calculation, and the limit
pp~ 0 may be taken without difficulty in our result.
At small distances the potential must approach the
Coulomb potential of the residual nucleus,

V (r) =Zn/r+ const+0 (r'),

with Ze a positive or negative quantity according to
whether we consider positron or electron decay. This
condition requires that

d' l(1+1)—+k' g~(k; r,r') =2mb(r —r'),
dr' r'

(6)

and has outgoing wave boundary conditions at infinity,
or equivalently, is analytic in the upper half k plane.
We shall initially work with an arbitrary value of the
angular momentum since it entails no complication and
gives general results which may prove useful in other
contexts.

2. THE COULOMB "JOST FUNCTION"

f~(k) =D«L1 —B~(k) I'3.

Here g~(k) is the radial Green s function which satis6es

We begin our development by obtaining a "Jost
function" for a pure Coulomb potential. This task will
illustrate well the techniques we employ and will pro-
vide us with some results that will be needed later.
Since the determinant is invariant under similarity
transforms, tions, we may replace the kernel g~(k) (Za/r)

dpo (IJ,) =Zn

It should be observed that the potential cannot con-
tain a term linear in r; for such a term implies that the
charge density of the screening atomic electrons di-
verges as r ' at the nucleus, which is not true. Accord-
ingly, the spectral weight (p)omust change sign a
least once.

' L. Durand, III, preceding paper, Phys. Rev. 135, B310
(1964).

~ L. Brown, D. I. Fivel, B. W. Lee, and R. F. Sawyer, Ann.
Phys. (N. V.) 23, 187 (1963). There are, unfortunately, a large
number of misprints in this paper. The Jost and Green's functions,
f&(k) and g&(k), used in the present paper are denoted by f&(+&(k)
and G~(+)(k) in this reference.
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occurring in it by the symmetrical form

Znr '/'g&(k)r '/'=r '/'[g&(k)(Zn/r))r'/'.

It is advantageous to make use of a further similarity
transformation

1/2g (k) y i /2) ~ e yrp[y i /2g (k—)y
—i /2)e prp

where p is the momentum operator with the con-
figuration-space representation p((1/i) (d/dr) when act-
ing to the right or P = —(1/i) (dr/dr) when acting to the
left. On referring to the differential equation (6) satisfied
by the configuration-space representation of the Green's
function, we easily conclude on dimensional grounds
that it is of the form m/k multiplying a function of the
dimensionless variables kr and kr'. Accordingly, by
varying p one may readily verify that

e ""pgi(k; r,r')ep"p=e'"g/(k e'pr, e'pr')

= e"pgi(e'"k; r,r'),

The regular solution of this differential equation is
simply related to the familiar bound-state solution of
the Coulomb problem, and we have

where L„2/+'(2 kr) is a Laguerre polynomial. These
functions form a complete orthonormal set with the
inner product

(~(ik) ~N gk))= dr&„&(k; r)g„., &(k; r) = 8„,„. (12)

A general Fredholm determinant may be written in
the form

—1/2

y» y„,,(k; r) = (2kr)'+'
(2i+ 1+n)!

&& e / ~l.„"+'(2kr), (11)

e &"p[r '"g/(k)r "')e&"p=e'&[r '"g (e'&k)r '/'7.

We shall take q =or/2, for in this case we have

Zn[r '/'g/(k)r '/') —+ —iZnE/(ik),

where the Coulomb kernel

E/(ik) = —r '"g/(ik)r '"
is a symmetrical, and in fact, a real, positive-definite
operator.

The positive imaginary argument ik corresponds to
negative energy and the bound-state region of the
Coulomb problem. At certain critical values of the
potential strength, (Zn)'(0, bound states will occur for
any given negative energy —k'/2m. This implies that
the integral form of the radial Schrodinger equation
possesses homogeneous solutions for these critical po-
tential strengths, or that its associated Fredholm de-
terminant vanishes,

Det[1+ (Zn)'E/(ik)) =0.

Thus, the eigenvalues of E/(ik) are the reciprocals of
the set —(Zn)', and we may inimediately conclude from
the Balmer formula that they are given by

Ei(ik)'= (m/k) (n'+i+1) '
y/

—0, 1 (9)

The corresponding eigenvectors satisfy

Det[1—XA7= exp{Tr in[1—XA))

=exp{—P (X'/s) TrA'),
a=1

(13)

Tr[E/(ik))'= (m/k)' g (y/+3+1) '
n=O

for sufficiently small values of the parameter X. Thus
the determinantal definition (5) of the Jost function
cannot be used for the case of a pure Coulomb potential,
for here the first trace occurring in the expansion
diverges. We shall remedy this situation by working
with a modified determinant in which this trace is
removed,

Det'[1 —XA) = e'r'~ Det[1—XA).

The evaluation of this modified determinant for the
Coulomb case is easily accomplished by using the se-
quence of similarity transformations which brought the
original kernel into the form —iZnE/(ik) and then com-
puting the sum of traces which occurs in exponential of
the modified version of (13). This sum converges only
for small values of Zo., but we shall obtain a result
which clearly expresses its analytic continuation for
arbitrary values of this parameter. According to the
eigenvalue spectrum (9), the required traces are simply

or
E,(ik)y„,(k) = (m/k) (~+i+1)-y„,(k), (10a)

m~' (—1)'——
i

lnI'(3+1).
k ) (s—1)! Bl)

(n+ 3+1)(k/my) [r'/2P„ /(k; r))
= —g/(ik) '[r'"4-, i(k; r))
= —(1/2m) {d'/dr' —i ((+1)/r' —k')

&&[ 4'yi(k' r)).

The identification of the sum with the sth derivative of
the logarithm of the gamma function follows from the
observation that both possess the same singularities
and both vanish as l —+~. We thus find
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Det'[1 —g, (k)(Zn/r))

co 'LZnrrt 1 t
cl

= exp —P —
f

— lnI'(i+ 1)
s—s k sl (Bl

1 d' l(l+1)

21n dr2

ZQ
k2

XGp(k; r,r') = 8(r—r'), (20)

. ZAN
=exp —lnF / -]. i

with an outgoing wave boundary condition. It proves
useful to write

+lnl'(l+1)+ il (i+1) TrGp(k) V= dpa (tt) et(tt, k),

where

il (s) = (d/ds) 1np (s) .
where, on using the previous sequence of similarity

(15) transforrnations, we have

This leads us to define a Coulomb Jost function by

filo'(k) = exp{ irhl (l+—1)}Det'[1 —gi(k)Zn/r)

r(i+1)

Et(ik)
Qt(tt, k) = i Tr — e '"".

1+ iZnEt(ik)
(22)

On making further use of this sequence of similarity
transformation we obtain

I'(l+ 1+irt)

where st= (Znnz/k) is the usual Coulomb parameter.

3. FACTORIZATION OF THE JOST FUNCTION

Z, (k) =Det'[1 —S,(k)],

—iEI(ik)
I3 (k) = (irV(ir) —Z ),

1+iZnKI(ik)

(23)

(24)

Tr[1—
CIt (k) (Zn/r)) '[gt (k) (Zn/r) )'+ istic(l+ 1)

We turn now to a discussion of the ratio of the
and also, recalling the eigenvalue spectrum (9),

screened )ost function to the Coulomb )ost function
which we have just defined

f,(k) Det[1—g, (k) V]

f ' &I(kc) exp{—iritl'(i+1)} Det'[1 —ttt(k)(Zn/r))

After rewriting the modified determinant in terms of a
normal determinant and making use of the fact that the
ratio of determinants is a determinant of the ratio of
the operators that they contain, we find

ft(k) = ft'c& (k) exp{—Tr[1—gt(k) (Zn/r)] 'gt(k) V}
Xexp {Tr[1—b t(k) (Zn/r)) '[gt (k) (Zn/r)]'

+i~Il (l+1)}~I(k), (»)
where

Rt(k) =Det'{1—[1—gt(k) (Zn/r))
—'

Xg, (k)[V—(Z /r)]}. (18)

Although the formal procedure outlined to obtain this
relation is not justified since the first trace of the
Coulomb kernel diverges, the relation itself is true; for
it merely expresses a combinatorial relationship among
well-defi. ned traces.

We may express the trace which occurs first in Eq.
(17) as

oo

n' 2— +in4(l+1).=o st+i+1+iii st+i+1
= istic(l+ 1+iii)

The last equality follows from a consideration of the
singularities and asymptotic behaviour in the variable
l of the structure which precedes it.

It is perhaps well to pause here and collect our results

by writing

fi(k) =fi'" (k)
Xexp{—TrGp(k) V+irtp(l+1+irt)}XI(k). (26)

4. BOUNDS ON R((tt)

The upper bound on the modified determinant

et [1—g)
f

(eitll
in which

f
fB f

f'= TrBBt, (27)

is fairly well known, ' 4 A lower bound on this quantity
can be obtained with the aid of the inequalities

T [I—
O (k)(Z /))-'b (k)V

=Tr[g, (k)-t —(Zn/. ))-iV
== TrGp(k) V „ (19) which follow from the Schwartz inequality. For the

where Gtv(k) is a Green's function which includes the
effect of the Coulomb potential. It satisfies the differen-

tial equation

J. Schwinger, Phys. Rev. 93, 615 (1954).
F. Smithies, Integral Equations (Cambridge University Press,

Cambridge, 1958),
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first inequality implies that for s& 2

and the repeated use of the second yields

Recalling the definition (22), we see that we may write
this function as

8
bi(p, k) =Re- {01(k1,k) —(t1 (O,k) )z.=p. (33)

c)(Zn)

Hence it follows from the expansion (13) that

ID«'L1 —&jl &exp{—2 (1/~) I»&'I)
8=2

&-p{-r, (1/)If~if )
8=2

p{l (1—If~If)+ ll~ll),

so long as IIBII &1. We may thus bound the remainder
function occurring in the decomposition of the Jost
function given in the preceding section by

The evaluation of the function (2', 1(p,k) therefore yields
both the Born term TrG1P(k) V and bounds on the re-
mainder function R 1(k).

S. CALCULATION OF THE COULOMB-BORN
APPROXIMATION

We employ the Coulomb basis discussed in Sec. 2. to
secure

00 I
(2',1(p,k) = —Z(m/k) p

n pn=+ )+1+irl

X (22(lk)
I

e-*~"
I 22(lk)), (34)

in which

f1—IIB1(k)fige~~ '&2&~~& IR1(k)
I

&e'*~~ ""'~~'. (28)

We note that when the norm
f f81(k) ff

is small we have
the more detailed statement

(22(lk)
I
e
—'"

I
22(lk)) = drrt„t(k; r)e '"'y„t(k; r)

Integrals of this general type may be evaluated in terms

Ri(k) = 1+O(Ii~1(k) II') . (29) of hypergeometric functions. ' In our particular case
the hypergeometric function reduces to a Jacobi

The bounding of the remainder function is now re-
duced to the evaluation of

Er(ik)'
ll~ (k) II'= T

1+(ZnÃ1(ik)) 2

X I 2r v(2r) —Z ]L—2:r v( —2r) —Z g. (30)

Since the factor involving the potential is positive
semide6nite, this norm is at most increased if we neglect
the positive definite operator (ZnÃ1(ik))2 occurring in
the denominator'

f'= (2k/p), p= arg({+2))0. (36)

Since the Jacobi polynomials possess a simple generating
function, ~ we may convert the infinite sum into a more
manageable integral,

(22(lk) I
e
—'~"

I 22(lk))

i-2 ) 1+1

e 22+(n+1+1)J1 (P 12+1 ()cos22)2(35)
{'2+1)

IIB1(k)ll'& dl id~so(1 1)o( 2)

XTrit 1 (2k) 2(e—2141"—]) (e11»—1)

(2',1(p,k) = —i(m/k) p
n=o

d/e ("+'+i+

X(22(lk)
I

e-'" f22(lk))

We may exploit the symmetry of this double integral
and write

=2(m/k) (-,')"+'(1+2/f') 21

lie, (k)ll & d»d„so(pt)o(p2)

X {bt(yt,k)+br(P2, k) —bt(P1 —P2, k)}, (31)

with

Che" '&"R '(R e "re ' 1)"+' (37)— —

R= L (1—e-') (1—e-"2'e-') j'~'. (38)

where
bt (12,k) =TrE1(ik) 2(1—cospr) . (32)

' The convergence of this bound requires that
f U(2r) f

&r ' as
r ~ e&, which is tantamount to the condition tpat weight o(11)
contain no deriva, tives of the 8 function. This is a somewhat
stringent condition on the behaviour of the potential in an un-
physical region. It arises from the use of the similarity transforma-
tion to rotate k into 2k so that the denominator in Eq. (30) becomes
positive-definite and the kernel E occuring in it may be neglected.
This procedure appears to be necessary if a simple form of the
bound is to be obtained.

This integral representation has the virtue of having
its dependence on the Coulomb parameter q isolated in
the simple factor e '&'. Other methods of calculation
generally lead to integrals with a complicated de-

6 See, for exa,mple, L. D. Landau and E. M. Lifshitz QzfantN&n
3fechanics (Pergamon Press Ltd. , London, 1958), p. 505.

~ The generating function used here is equivalent to that given
in the Bateman Project Sta6, Higher Transcendental Fz(nctions
(McGraw-Hill Book Company, Inc. , ¹wYork, 1953), Vol. II,
p. 172.
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pendence on this parameter, and these integrals are
correspondingly difficult to evaluate.

It is at this point that we specialize our discussion to
the case 1=0. In this case the integral can be evaluated
without great algebraic difficulty, for it is related to a
standard representation' of the I.egendre function of the
second kind, and one finds

@ I ( )lbo(~ k)

&xm'k '
PO IJ0

bo(pt —ps, k), and we secure the simple result

llano(k) II
&2 dpi I

o'(»)
I

Iji 0 HO

(4»

e,(l,k) = —(im/2k) {i/q+e—'~o

X[g,„r(COS2y+ie)+Q;„(COS2p+ie) J}. (39)

The argument of the I.egendre function is in the region
of its cut. The ie indicates that this cut is to be ap-
proached from above. It is the real part of 8,0 that enters
into the Fermi function and also into the bound which
was developed previously. This real part may be com-
puted with the aid of various relations among Legendre
functions' with the result:

ReO, o(p, k) = ——{1/rl+e '«rr(coth7rr)+1)
2k

X-,'[~;,( o 2o )+~-',( o 2o )j) (4o)

The derivative of this function with respect to Zo, ,
evaluated at Zo.=0, is related to the bounding function
60. This derivative may be obtained by expressing the
Legendre function E,„(s) in terms of a hypergeometric
function. ' The resulting terms contain logarithms and
an Euler dilogarithm. They can be expressed succinctly
by the integral

bo(p k) = (m'/2k')

d~(x'+ 1) '[27r —4 arctanx$, (41)

0&ho(p, k) & (m'/2k')
I p/k I

rr.

We may bound the double integral (31) by

llano(k)ll'&2 d~ l~(~ ) I d~ I~( )llbo(~, k)
PO

+bo(ps, k) bo(pt ps k) I

Since
(~/~~)bo(~, k) &0

within the integration range bo(p, r —po, k) d.ecreases
with p& and. is thus always smaller than bo(p&, k). Ac-
cordingly, the bound increases with the neglect of

Sateman Project Staff, Higher Trunscendentat Functions
(McGraw-Hill Book Company, Inc. , New York, 1953), Vol. I,
p. 160, Fq. (32). There are two misprints in this formula. The
curly brackets should be raised to the power —p —1/2, and the
term (s —1) occurring inside these brackets should be replaced
bv (s' —1}'".

Such formulas may be found in Ref. 8, Chap. III. There is
another misprint in this reference. A minus sign should appear on
the right of Eq. (8), p. 144.

The remarkably simple structure of this bound, which
depends only on the behaviour of the potential at the
origin, is a consequence of the analyticity of the poten-
tial which we have assumed.

6. DISCUSSION

The bound IIBo (k) II' is quite small for light to medium
weight nuclei and for moderate energies of the emitted
beta particle, energies of the order of a few hundred
kilovolts. Although such energies exceed the range in
which the nonrelativistic approximation is accurate,
relativistic corrections will not alter very greatly the
magnitude of the screening corrections themselves. A
quantitative estimate of the bound may be obtained by
fitting the Hartree potential function of various atoms
by a discrete sum of Yukawa potentials. Such a fit has
been performed by Byatt. ' His results give various
averaged inverse-range parameters that all lie close to
the value

(p) = 1.5Z'~%rm (45)

in agreement with the estimate of Durand. ' In many
cases he obtained an accura, te fit with a sum of terms of
the same sign, and in these cases the very simple formula,

(43) can be applied. For the other cases in which terms
of di6ering sign occur, one finds from Hyatt's work that
(43) differs at most by 30% from the correct value
given by (42). As a specific example, we note that for
an energy of 200 keV and with Z=16, Eqs. (43) and
(45) give

ro W. J. Byatt, Phys. Rev. 104, 1298 (1956). Our discussion is
simplified by the neglect of the long-range Coulomb potential of
the residual ion. The inclusion of this potential modifies our results
by at most 10%. We should also note that Byatt's potentials
contain a term proportional to r and hence violate the general
considerations given in the Introduction on the behaviour of the
correct potential near the origin. Moreover, they do not possess
the correct behaviour at infinity. However, the difference between
the true atomic' screening potential and that given by a model
such as Hyatt's can be made very small, the major relative error
occurring in a region where the potential is itself quite small.
These very small differences will have little effect on the value of
the wave function at the origin, and we may employ the model
potential in our calculations even though it violates some general
requirements.

If the weight o.(p) does not change sign we may write
this bound as

(43)
in which

(p)=(Za) ' dppo(y)=lim[r —' —(Zn) 'V(r)]. (44)
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Thus, for the conditions considered here, the remain-
der function Rp(k) can differ from unity by at most a
few tenths of a percent, and within this accuracy we
may use

fp(k) = fp& & (k) exp( —TrGpp(k) V+irpp(i+1+it))),

or
~ = Ifp(k)l '

=F, exp( (zrz)'(lz)/k) Lcotanhzrzl+ 1)l . (46)

Here F, is the Fermi function of a pure Coulomb
potential,

The parenthesis enclose the corresponding values found
by Reitz. His value for the positron-decay correction dis-
agrees quite strongly with ours. We also note that, to
within terms of order ((lz)/k)', we may write our result
(46) for the Fermi function as

v, = (k'/k) v, ',

where 5,' is the pure Coulomb Fermi function evalu-
ated at the shifted energy E'= E+Zcz(p), and k' is the
wave number corresponding to this shifted energy.
This form agrees with the WEB result of Rose."

E.= i F(1+izl) i'e— (47)
ACKNOWLEDGMENTS

and we have retained only terms to order p, in an ex-
pansion of the function Regp(pk) which determines
ReTrGO" 1/'. As an illustration of the order of the screen-
ing corrections, and to compare our results with the
numerical calculation of Reitz, "we consider again the
example of 8=200 keV, Z=16. In this case"

1+7X10 '(1+38X10—'), positron decay

1—3X10 '(1+OX10 '), electron decay.

"J.R. Reitz, Phys. Rev. 77, 10 (1950)."It must be noted that these values are of the same order as
that of the error bound ~~Bp(k)~~'. Indeed, the correction terms

I am indebted to Professor I..Durand, III, for bringing
the screening-correction problem to my attention and
for many useful conversations. I have enjoyed fruitful
discussions with Dr. Levere Hostler.

in (46) and ~~Bo(k) ~j' are both of order (zz)/k. However, an inspec-
tion of the determinantal representation of the remainder function
Rp(k) of Eq. (23) shows that its absolute value is not of order
(zz)/k as indicated by the bound ~~Bp(k) ~~', but rather of the smaller
order ((p)/k)'. The reason for this discrepancy is that ()Bp(k) ~P

gives essentially a bound on the logarithm of Ep(k), and Rp(k) has
a large phase of order (p, )/k."M. E. Rose, Phys. Rev. 49, 727 (1936).
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Empirical Screening Correction for M-Subshell Internal Conversion Coefficients*
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The only theoretical values which are available for coefFicients of internal conversion in the 3/I shell have
been calculated without the inclusion of screening, and they are in disagreement with experimental values by
factors as large as 3. From the comparison of these theoretical values with new accurate measurements on the
3f-subshell electron lines of the 354 transitions occuring in the decay of Te'" and of Te'", it was possible to
e8ect a tentative semiempirical screening correction. Essentially, this is the replacement of the nuclear
charge Z for the evaluation of the coefficient byZ, zzzz=Z —o;, where o;= 7 0, 7 9, and 10 0 forks (3s), Mzz, zzz

(3P), and iVzv, v (3d) electrons, respectively. This correction to the theoretical values is found to produce
agreement with other experimental Jff/I conversion results, both measured in this work and taken from the
literature, over a wide range of multipolarities and of Z and energy values. The nonspecific characteristic of
the correction is interpreted to mean that the screening is chiefly an eGect on the electron wave functions of
the initial bound states of the atom.

I. INTRODUCTION
' 'T has been recognized that experimentally deter-
s ~ mined values of internal conversion coefficients in
the M levels are considerably smaller than the theoret-
ical values now available. For simplicity, two effects
included in the later theoretical work on E and L, shell

conversion coeKcients'' were neglected in the M-shell
calculations. The 6rst of these, the effect of finite nuclear
size, was thought to be of little importance in most
cases; it was recognized that the second effect, the
screening of the M electrons from the nuclear charge
by the other electrons in the atom could produce

*Research performed under the auspices of the U. S. Atomic
Energy Commission.' M. E. Rose, Internal Conversion Coe+cients (North-Holland
Publishing Company, Amsterdam, 1958).

'L. A. Sliv and A. M. Band, Academy of Sciences of the
U.S.S.R., Coegcients of Internal Conversion of Gamma Radiation
(English transl. : Physics Department, University of Illinois,
Urbana, Reports 57 ICC K1 and 58 ICC L1, 1957 and 1958).


