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in KH that the 78.69-keV and ground states probably
arise from different intrinsic levels (gr~, and ds~s, re-
spectively). As previously noted in KH, the relative
strengths of the E2 components of the 54.84- and
133.54-kev transitions (see Table III) seem consistent
with this interpretation, as does our nonobservance of a
transition between the 133.54- and 123.73-keV states.

Kith the exception of the 373.15-keV state, the re-
maining levels in Cs"' seem to decay preferentially to
the ground and 123.73-keV states. Since the 216.01-
and 92.25-keV transitions are mainly M1, it appears
that the 216.01-keV state cannot be interpreted as a
collective level based upon the ground state. A defini-
tive statement as to the origin of this state therefore
cannot be made at this time.
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The corrections to the Fermi function F (Z, IV) which arise from the screening of the Coulomb Geld of the
nucleus by the atomic electrons have been investigated using a Hulthen model for the screened 6eld. The re-
sulting problem is exactly solvable for the Schrodinger and Klein-Gordon equations. The results agree with
those obtained by Rose and by Longmire and Brown using a modi6cation of the WEB method, and disagree
markedly with those obtained by Reitz by numerical integration of the Dirac equation. The latter results ap-
pear to be incorrect. The screening corrections are su%ciently small for light nuclei as not to affect materially
present tests for the universal Fermi interaction and conserved vector current hypotheses for beta decay, but
may become signi6cant for low-energy beta transitions in heavy nuclei.

I. INTRODUCTION

'HE wave function for a free electron of moderate
energy is well approximated in the vicinity of an

atomic nucleus by the wave function appropriate to a
pure Coulomb field. This approximation leads to the
appearance of the Fermi factor Ii+(Z, W) for a Coulomb
field in the electron spectrum for allowed beta decay,

dN(W) = ', m'7r '
~

M
~

'Il+(Z-, W)pW(Ws W)'dW, (1)—
where

F+(Z,W) = 2(1+s)(2pR)'s-
0& e+ &

~
I'(s+it))

~

'Ll'(2s+1) j-'. (2)

In these expressions, TV is the total energy and
p= $W' te'$'" is the momentum —of the electron, and
8'0 is the maximum electron energy possible in the de-
cay. The Coulomb parameter ZnW/p is denoted by t),
while s= L1—Z'n'7' '. The units are such that A= c= 1.
This result for the electron spectrum is subject to many
small corrections, including the effects of forbidden

* Supported in part by the National Science Foundation.

transitions, the finite spacial extension of the wave func-
tion of the decaying nucleon, the finite electromagnetic
size of the nucleus, radiative electromagnetic correc-
tions, and the effects of the screening of the Coulomb
field of the nucleus by the outer electrons. Most of these
corrections are well understood for light nuclei. ' How-
ever, the electron screening corrections calculated by
different methods are not consistent. These corrections
have been investigated by Rose' and by Longmire and
Brown' using a modified WKB approximation. The cor-
rections were found to be rather small at moderate
energies for light nuclei. Quite disparate results were
obtained by Reitz4 by numerical integration of the
Dirac equation using a Thomas-Fermi-Dirac model for
the interaction between the electron and the residual
ion. The discrepancies are especially large in the high-
energy, low-Z region in which the WKB method should

' ' L. Durand, III, L. F. Landovitz, and R. B. Marr, Phys. Rev.
130, 1188 (1963).The known corrections to the f values for the
0+ ~ 0+ transitions in light nuclei are summarized in Table I
of this paper.

2 M. E. Rose, Phys. Rev. 49, 727 (1936).' C. Longmire and H. Brown, Phys. Rev. 75, 264, 1102E (1949).
4 J. R. Reitz, Phys. Rev. 77, 10 (1950).
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be most reliable. Although the screening corrections are
generally small, the accuracy of recent experiments' on
0+ —& 0+transitions in light nuclei is such that
the corrections should be considered. For example,
the fb value for the 0+ —+ 0+transitions Oi4(P+)N'4*,
Al"*(P+)Mg", and Cie'(P+)S" have been determined
with accuracies of 0.3—0.7%. Calculations using the
method of Rose yield screening corrections to f of
+0.09, +0.11, and +0.13% for these three transitions.
However, at the highest momenta considered in his
paper, the screening corrections to F+(Z,W) obtained
by Reitz are an order of magnitude larger than those
obtained by the foregoing method. The numerical cal-
culations unfortunately did not cover the regions of high
momenta and low Z in which we are primarily inter-
ested. It is nevertheless possible to estimate the screen-
ing corrections to f using reasonable extrapolations of
the tabulated results. The corrections so obtained are
much larger than those quoted above, and could be as
large as 1—2% for 0".' However, corrections of this
magnitude would be inconsistent with a rigorous bound
on the ratio F„(Z,W)/F(Z, W) obtained recently by Dr.
Lowell Brown. ' The bound is in fact violated by the re-
sults quoted by Reitz for high momenta and low Z.
These inconsistencies, and the relevance of the indi-
cated 0+ ~ 0+transitions to experimental tests of the
conserved vector current and universal Fermi inter-
action hypotheses for the weak interactions, ' clearly
necessitate a re-examination of the screening correc-
tions to the Fermi factor. It is with this problem that
we shall be concerned.

The screening corrections to the Fermi function were
estimated by Rose' using a modification of the WKB
method designed to overcome a well-known difficulty,
that the value of the WKB wave function at the origin
is accurate only for large values of the orbital angular
momentum quantum number. The WKB wave func-
tions for the screened Coulomb field were consequently
assumed to be accurate only for electron-nucleus separa-
tions larger than some minimum value ro. If ro can be
made small compared to the radius of the atom, the
interaction potential associated with the atomic elec-
trons will be essentially constant for r &ro, and the wave
functions in this inner region can be approximated by
Coulomb wave functions for a shifted energy. The
necessary conditions are satisfied if r, p '«ae. When
the inner wave functions are properly joined to the

WKB wave functions for the exterior region, the
Fermi factor for the screened Coulomb field is found to
be

F.,+(Z,W) = (p'W'/pW)F+(Z, W'), W'=W&Ds, (3)

where Do is the value of the electronic potential of the
parent atom at the nucleus, and F+(Z,W) is defined in
Eq. (2).

Although the argument which leads to Eq. (3) is
plausible, it is very dificult to estimate the errors in the
WKB wave functions in a convincing manner, and the
accuracy of the approximation is consequently difFicult
to assess. We have therefore chosen to study the screen-
ing corrections of F(Z,W) using the exact S-state solu-
tions to the Schrodinger and Klein-Gordon equations
which may be obtained for a Hulthen model of a com-
pletely screened Coulomb field, '

U(r)=Znhe ""L1—e ""7 '~ (Zn/r)
—-,'Z X+, r 0. (4)

It is found that the exact results for the screened Fermi
function reduce to the appropriate modified WKB ex-
pressions in the limit p/)»1 for which the latter are
valid. The Dirac equation cannot be solved for a
Hulthen potential, but there is no reason to expect any
peculiar behavior in this case. Furthermore, the very
smallness of the correction to F(Z,W) associated with
the transition from an unscreened Coulomb field to a
completely screened field, indicates that little error has
been made by ignoring the odd charge of the residual
ion in U(r) The c.orrect result for p/X»1, or more
generally, for WDe/p'«1, is clearly given by Eq. (3).
The results obtained by Reitz4 are undoubtedly in
error at the higher momenta considered, but do not
differ too greatly from those of Rose' for small momenta.

The main uncertainty in the screening corrections
arises from the uncertainty in Do. For a Thomas-
Fermi Dirac model of the atom, Do ranges from
1.91Z' 'n'm for light nuclei, to 1.82 Z'"o.'m for heavy
nuclei. " However, the electron charge density is too
large at small radii for this model, diverging as r '~' for
r —+ 0, and the resultant values of Do are undoubtedly
too large. Perhaps the most reliable values of Do are
those derived from atomic potentials calculated by the
Hartree-Fock self-consistent-field method; for light to
medium weight nuclei, the best value of Do appears to

~The electron charge density corresponding to this potential
diverges as r ~ for r ~ 0, but the charge in the neighborhood of
the origin is Rnite. The divergent term is readily removed by
adding to V(r) a term x'sZahe "', but the resulting Schrodinger
equation is apparently not solvable. The divergence is less severe
than that associated with the Thomas-Fermi-Dirac model of the
atom, p(r)~r ",r -+ 0. In any case, the screening corrections to
F(Z,W) will be shown to depend to an excellent degree of approxi-
mation only on the value at r=0 of the interaction potential
associated with the atomic electrons. It is consequently important
only that a model for the potential be reasonable, and reproduce
this term correctly."R.P. Feynman, N. Metropolis, and E. Teller, Phys. Rev. 75,
1561 (1949).

' R. K. Bardin, C. A. Barnes, W. A. Fowler, and P. A. Seeger,
Phys. Rev. 127, 583 (1962);D. L. Hendrie and J.B.Gerhart, ibid
121, 846 (1961);J. W. Butler and R. O. Bondelid, ibid 121, 1770.
(1961); J. M. Freeman, J. H. Montague, D. West, and R. E.
White, Phys. Letters 3, 136 (1962); J. M. Freeman, J. H.
Montague, G. Murray, R. E. White, and W. E. Burcham, ibid.
8, 115 (1964). The present results on the 0+ —+ 0+ transitions
are summarized in the last paper.

'Private communication from Dr. Joan M. Freeman. The
author is indebted to Dr. Freeman for calling this problem to his
attention.' L. S. Brown, following paper, Phys. Rev. 135, B314 (1964).

'R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 1.93
(1958); M. Gell-Mann, ibid 111,362 (1958). .
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be 1.45Z'~'o. 'm, "with an uncertainty of a few percent.
The corrections are in any case small for energetic de-
cays of light nuclei, and the uncertainty in the value
of Do does not affect materially the tests of the uni-
versal Fermi interaction and conserved vector current
hypotheses.

II. CALCULATION OF ELECTRON SCREENING
CORRECTIONS TO THE FERMI FUNCTION

The Fermi function appropriate to a screened Cou-
lomb field of the Hulthen form is readily obtained by
solving the Schrodinger equation for the potential given
in Eq. (4).We shall in fact consider a slightly generalized
problem, and seek a solution to the equation

dsu/de+ [p2 gg i r (1 e
—Xr)——1

+be si~(1 e—i~—)
—sou= 0

with the boundary conditions u(r) —&0, r —&0, and
u(r) —& e'@ sin(pr+C), r —&ao. The particular choice of
parameters, a=2nzZn'A, b=0, yields the Schrodinger
equation for a positron in the screened Coulomb field of
a point nucleus of charge Z. A second choice, a = 2$"Zn'A,
b= (Zer)i)', leads to the Klein-Gordon equation for the
same potential. " With the present normalization for
u(r), the Fermi function is defined for these cases as
the value of

~ u(r)/pr ' at r =0 (Schrodinger equation),
or as the value of u(r)//pr~' at the nuclear radius
(Klein-Gordon equation).

The differential equation for u(r) is readily converted
into an equation of the hypergeometric form by chang-
ing the independent variable from r to t,

1=1—e—"".

I'(1+ 2i v)1 I'(o+iv) I'(o —il)
u(t) =- ta (1 t)-ie

2i I'(1—2in) I'(o ii )I—'(o+if )

XsFt(o+iv, o if'; 1 —2i»;—1—t)

I'(1—2in)
(1 t) ie

I"(o+iv)I'( a if' )

XfFt(o —iv, is+if'; 1+2iK& 1—t)

For t —& 1, the hypergeometric functions approach unity,
and u(t) approaches its asymptotic form, equivalent to

u(r) ~ s'~ sin(pr+C), ) r&&1,

properly normalized solution,

I'(o+iv) r(o —il )

I'(2o) I'(1—2')
Xt'(1—t) '" sFi(o+iv, o' g'; 2o—,

' t), (5)
where

f=)i '[p'+a+b]'Is+p/)i,.=) -i[ps+ a+be»' —p/),
and

o= l+s L1—(4b/) ')j'".
The function u(t) clearly satisfies the proper boundary
condition at r =0(t=0). That it also satisfies the proper
boundary condition for r ~~ (t ~ 1) may be verified

by using the well known relation between the hyper-
geometric functions with arguments I, and 1—t to
write"

Upon writing u(t) in the form

u(t) =$(1—t)-'" n(t), n= p/)~,

C =arg
I'(o+iv) I'(o —if)-

r(1—2ii~)

we obtain a modified di6erential equation for the func-
tion w(t),

d'v 1 2iii dv —a/), s b/)-, s

+ + +
dts t 1dt t(t —1)—

v=0.

Solution of this equation in terms of the hypergeometric
function is straightforward; we shall give only the

"This result was derived from the numerical results for the
atomic potentials given for the indicated atoms by: F. W. Brown,
Phys. Rev. 44, 214 (1933) LF,Neg; E. H. Kennard and E. Ram-
berg, ibid. 46, 1034 (1934) LNag; D. R. Hartree, R. deL. Kronig,
and H. Petersen, Physica 1, 895 (1933—34) )Clj; D. R. Hartree,
Proc. Roy. Soc. (London) A143, 506 (1933—34) LK+,Cu+, Cs+g.

~ It is amusing to note that the term quadratic in the potential
may be used to approximate the centrifugal barrier for l)0.
Provided that p is large, the barrier term is needed only for small
values of r, and the approximation is very good. The appropriate
choice of coeKcients is given by c+b=2mZa), b= —l(l+1}X~.
For p /P))1, the resulting expression for the Fermi function
)Eq. (11)g reduces to the familiar nonrelativistic form. The actual
potential in this case varies as r ' for r ~ ~.

F +(Z W) = (p'/p)F+ (Z W'). (7)

Here, FNri+(Z, W ) is the nonrelativistic Feiini factor,

Five+(Z, W') = e e~z~'v'
~

I'(1+imZn/—P')
~

' (8)

is E. T. Whittaicer and G. N. Watson, Modern Analysis (Cam-
bridge University Press, Cambridge, 1952), p. 291.

The nonrelativistic Fermi function for the screened
Coulomb field is readily obtained from Eq. (5) by con-
sidering the limit of the function tu(r)/pr~' for r —+0
with the choice of parameters a= 2mZnX, b=0. Denoting
this (Schrodinger) function by F8(Z,W), we obtain

F,+(Z,W)= ~r(1+iv)i'(1 —ti)/I'(1 —2i.) ~'. (6)

The function Fs (Z,W) may be obtained from Fs+(Z, W)
by changing the sign of Z wherever it appears. The
absolute squares of the gamma functions can be evalu-
ated in terms of hyperbolic functions. For electron en-

. ergies such that p/)i»1, n and t' are large, and the results
simplify somewhat:
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evalua, ted for a modified momentum p'

p' = 't p'-+ 2mZnh]"'+ 'p— (~)

The usual Fermi factor is obtained in the limit X ~ 0."
The 5-wave scattering phase shift is given for p/X)) 1 by

I = —(m Zn/p') ln(2p'/X)+ argI'(1+imZn/p') .

This result differs from that for a pure Coulomb field

only by the replacement of p by p', and of the usual
radius-dependent term ln2pr by 1n(2p'/X).

Except for the different definitions of the effective
moinenta, the function in Eq. (7) is the exact nonrela-
tivistic analog of the modified WKB result given by
Rose, Eq. (3). However, the effective momenta are in
fact equal to within terms of order s (nzZnX/p')' rela-
tive to unity; to this accuracy, p' may be approximated
as

Relativistic corrections to the screened Fermi func-
tion may be examined by considering the solutions of the
Klein-Gordon equation for the Hulthen potential,
Eq. (4). The wave function u(r)/pr, obtained from Eq.
(5) with the choice of parameters a= 2WZnX, b = (Znh)',
diverges weakly for r —+0. We shall therefore follow
the procedure which is customary in the Dirac case, and
define the Fermi function for the Klein-Gordon equa-
tion as the value of the quantity ~u(r)/pr~' at the
nuclear surface,

Fxg+(Z, W)
= (gR)2' 2~ I'(o+iv)1'(o —il')/I'(2o)1'(1 —2iK)

~

. (12)

The gamma functions which involve ~ and t may again
be replaced by their asymptotic forms if p/X))1. In this
approximation, neglecting terms of order (ZnX/p)' rela-
tive to unity,

p'= $p'+mZnX]i"

and the corresponding nonrelativistic energy, as

(10) Fir g+(Z, W) —+ (p'/p) (2p'R)"-'
&&e

—&'(I'(a+i'')/I'(2o) ~', (13)

W'= W+-', Zn1i.

The energy shift in this approximation is equal, as ex-

pected, to the negative of the potential energy of the
positron in the field of the atomic electrons, evaluated
at the origin; and the exact and modified WKB results
are consequently identical in the low-Z, high-energy
limit. The approximation which connects Eqs. (6) and

(7) is valid for positron energies above a few kilovolts
even for the heaviest nuclei. On the other hand, the
approximation in Eq. (10) fails at low energies for heavy
nuclei because of the appearance of powers of Zn/v in
the correction terxns, and the exact value of the effective
momentum p' should be used. Tha, t p' should have a
dependence on p other than that indicated by the modi-
fied WKB approximation is not unexpected. The varia-
tion of the effective energy shift over distances on the
order of the electron wavelength was neglected in that
approximation, yet this variation may be quite large
for small momenta and large values of Z. The Hulthen
model of the screened Coulomb field should give reason-
able results for the screening corrections for. electron
energies sufficiently high that the electron wave length
is smaller than the mean radius of the atomic E shell.
For lower energies, the detailed structure of the atom
may become important, and at very low energies, the
concept of a static atomic potential will cease to be valid.
It is readily shown using the WKB method that the
difBculty with the Hulthen potential noted in footnote
9 does not materially affect the screening corrections.

where o =-', +-', $1—4Z'n']'~' and g'=Z nW/p' The.
shifted energy W' is again given by W'=W+-,'Znh,
while p'= LW"—m']'I'. The approximation is excellent
for light nuclei for positron energies greater than a few
kilovolts, but the exact expression in Eq. (12) should be
used for heavy nuclei and low energies. The result in
Eq. (13) is identical to that obtained by the modified
WKB method, and reduces to the exact result for a
Coulomb field in the limit X —+ 0.

The Dirac equation unfortunately cannot be solved
exactly for a Hulthen potential. However, since the
modified WKB method reproduces the correct results
for the screened Fermi function as calculated for the
Schrodinger and Klein-Gordon equations, it is unlikely
to be seriously in error in the Dirac case so long as the
relevant parameter is small, ZnXW/p'&1. It is clear,
furthermore, that the energy-shift —,'ZuX characteristic
of the (completely screened) Hulthen potential should
properly be replaced by Do, the value of the atomic
potential of the parent atom, evaluated at the nucleus.
The results for the shielding correction to F(Z,W) ob-
tained from Eq. (3) differ markedly from the numerical
results obtained by Reitz, ' and we are forced to conclude
that the latter are incorrect.
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