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Classical Motions of Spin--,' Particles*
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From the WKB solutions to the squared Dirac equation we derive the classical trajectories and spin
precessions originally postulated by Bargmann, Michel, and Telegdi for charged spin--, particles. Identical
equations of motion are obtained from the WEB solutions to the Dirac equation.

I. INTRODUCTION

N 1959, in an analysis based on classical mechanics,
- - Bargmann, Michel, and Telegdi' derived the follow-

ing set of relativistic equations describing the classical
trajectories and spin motions of spin-~ particles in
uniform and constant electric and magnetic fields':

m(dv„/dr) = —(e/c)F„,v„dS„e) (gie)= —(1+gi) —iF„„S„+i iFo.Sos.s„. (1b)
mci &mes

Their equations (hereafter called the classical equa-
tions) predicted particle trajectories and spin pre-
cessions which agreed with those obtained in special
cases by other authors whose calculations were based
on the Dirac theory. These calculations were com-
pletely confirmed by experiments performed with
polarized beams. ' The Bargmann, Michel, Telegdi note
of 1959 stated so clearly and succinctly the classical
limits of the Dirac theory, that soon thereafter attempts
were made to derive the classical equations directly from
the Dirac equation in the usual limit as h vanishes.

In a recent article, Rubinow and Keller4 proved that
the classical equations do indeed follow from the Dirac
equation in the same sense that Newton's equations
follow from the Schrodinger equation. Rubinow and
Keller found the WKB solutions to the Dirac equation
and showed that the classical equations coud be ex-
tracted from these asymptotic solutions.

In this note we wish to show how the classical equa-
tions may be obtained by another method based on
some early work of V. Fock. ' This method, which is
representation invariant, leads to a considerable simpli-
6cation in the calculations of Rubinow and Keller,
shows clearly the relation between the asymptotic
solutions of the Dirac equation and the squared (second-
order) Dirac equation, and permits one to treat more

readily the related problems of the classical motion of
charged, spinning particles and the asymptotic solu-
tions to the Dirac equation, in the presence of inhomo-
geneous fields. '

Ppr„y„tmc—(g,e—A/4mc')y„y„F„„]0=0, (2)

with sr„= thct—„+(e/c)A„. We introduce the wave
function C,

$7r,y,+imc+ (gteh/4mc')y, y,F„54=2mck (3)

and apply the operator 7r„y„t'mc —(gteh/—4mc')y„y„F„.
to both sides of Eq. (3). We find that C satisfies the
equation

/sr„sr„+m'c'+ (1+gi) (eh/2t'c)yp „F„„
+ ( gIte/ tm)cF„„y„are =0, (4)

when terms depending on A' are neglected.
We now follow Fock' and seek the %KB solutions to

the squared Dirac equation, (4). These asymptotic solu-
tions are written as a series in the small parameter A,

—ets/a P ( t'ft) na

where 5 is a scalar function and the a„are four-com-
ponent spinors. In our present calculation we are
interested in only the first term in the expansion. We
insert 4 wxs= ape' " into (4), once again neglect terms
depend. ing on A', and require the coeKcients of A' and.
A' to vanish separately. We 6nd that 5 and ao satisfy
the following equations:

(B„S+(e/c)A„)'+m'c'= 0

II. WKB SOLUTIONS TO THE DIRAC EQUATION

The Dirac equation, including the Pauli anomalous
magnetic moment term, may be written'

and*This research was supported in part by the Aerospace Re-
search Laboratories of the OfBce of Aerospace Research, USAF.

' V. Bargmann, L. Michel, and V. L.Telegdi, Phys. Rev. Letters
2, 435 (1959).

In our notation the four velocity is given by v„, the spin pseudo-
vector is S„,v„'= —c', S„'=const. , S„v„=0, v„=dx„/dr,
(x,ict), F;J,——B~, FI,4=iEf, and r is the proper time. The anomalous
magnetic moment is described by g&. Our g&+1 =g/2 of Bargmann,
Michel, and Telegdi, and the sign of our charge e is the negativ
of theirs.' References to theory and experiment are to be found in Ref.

4 S. I. Rubinow and J. B.Keller, Phys. Rev. 131, 2789 (1963
~ V. Fock, Physik. Z. Sowjetunion 12, 404 (1937).

2

5m'd'or)oa

p+ tm (Bo'vo) ap

= (1+gt)(e/2ic)y, p F„ap+(gte/c')F try yeas, (7)

where mu„= r)„S+(e/c)A„.

~In this note we treat only the motion of particles in homo-
geneous Gelds.

1. V We follow the notation in H. S. Bethe and E. E. Salpeter,
). Qnontttm Mechantcs of One and Tvoo Elec-tron Atoms (Acade-mic

Press Inc., New York, 195It), Sec. 10'.
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The WKB solution of the squared Dirac equation is
found by solving Eqs. (6) and (7). Equation (6) is the
Hamilton-Jacobi equation associated with the classical
equation of motion Cthe classical equation (1a)),

m(dv„/dr) = —(e/c)F„„v„. (1a)

We now show (following Fock) that (7) may also be
written as an ordinary differential equation with the
proper time r acting as independent variable. We
write ao=RQ, where P is a unit spinor and R a scalar
whose square satisfies an equation of continuity,

~.Cv.(~)wxnj=o (12)

Since R satisfies this equation, g must be a unit spinor.
However, from Eqs. (10) we find

d(yy)/dr= —(igie/mc')F ttyy yvtt, (13)

so that g is a unit spinor only if pbbs P ec v; otherwise the
right hand side of Eq. (13) fails to vanish. Since v is a
time-like vector (v v = —c'), we require that

then in the classical limit (44)wxn must satisfy the
equation of continuity

(1/m) ct„CR'(cl„S+(%)A „)j—=cl„(R'v„)=0. (8) icily P=v, ~=1. (14)

It is not difficult to prove that if we have a solution of
the relativistic Hamilton-Jacobi equation, (6), then a
solution of (8) is always given by

The above identification is consistent, for with it
i cPp @may be shown to satisfy the same equation as v„

In addition to the requirement Pp= 1, we may also fix
&ps&=0, since if we choose this value initially, it is
maintained for all time by the equation of motio~
(d/dr) (&vs') =o.

Once the classical velocity vector has been equated
to the bilinear form icky„p, it seems reasonable to
attempt to relate the classical spin pseudovector S„ to
the bilinear form /yean„P. Indeed, if, in analogy with
(14), we write

R'= ic

The et' in the determinant (Van Vleck determinant),
llew'S/Dot'Bn"ll, are the three separation constants ap-
pearing in the complete solution of the relativistic
Hamilton- Jacobi equation. '

We return to (7), replace ae by Rp, and find that
when R' satis6es (8), v„et„g=dQ/dr —is given by

(16)S.=thy~ ~.y,
dQ e ( igie—= —(1+gi) y,y F, p ~ F„v,y&. (10a) we then find the following dynamical equation for S„:
dr 4mc &2mc'

Similarly for &=&+ye we have

dp (igie )—= (1+gi) I».& F"—
I leF.".~' (10b)

dt 4mcl
' '

(2mc't

For the case of uniform constant fields, (10a) and
(10b) are ordinary differential equations, since the ve-
locity vector v„(r) is a solution of (1a) and therefore a
known function of r.

We now have Eq. (1a) and Eqs. (10) as the classical
equations of motion (both are independent of itt)

associated with the squared Dirac equation. Equation
(1a) yields the trajectory of the particle, while the unit
spinor @ of (10) in some way describes its spin (in-
trinsic rotation). Before we find the classical spin equa-
tion, we return to analyze the WKB solution of the
squared Dirac equation,

Ryets/tt

All along we have insisted that P is a unit spinor, i.e.,
gp=1. This requirement has been made so that the
probability interpretation of the wave function C could
be maintained even in the asymptotic limit of the wave
theory. For if (44)wxn is to represent the relative
numbers of particles in a given (four) volume element,

' R. Schillcr, Phys, Rcv. 125, 1100 (1962).

dS„(e (gie= —(1+gi)
I

—F"S.+ I F-eS.vev. (1b)
dr (me ~rlc'

In the derivation of the last equation, (1b), which is
the spin equation of Bargmann, Michel, and Telegdi,
we have made use of the following identity:

-'4( .—. ) 4=(jt) '(S .—S. )

where v„an.d S„are given by Eqs. (14) and (16), and
At =1, O'Vsd =0.

It should be emphasized that the Dirac electron
theory predicts, and experiment confirms, that, in the
classical limit, spin-~ particles have both space-time
trajectories and intrinsic moments (spin). It should
also be noted that the classical equations, (1), set A,
may be replaced by (1a), (10a), and the definitions (14)
and (16), set B.The latter choice (set B) corresponds to
the use of spinors in, for example, the classical theory
of the top. ' However, in a classical theory, physical
meaning can be attributed only to the expectation
values (bilinear forms) associated with the spinor, so
that both sets of classical equations, A and 8, are
equivalent. Nevertheless, if we recognize that the rela-
tivistic quantum theory predicts quantization of spin
and, under usual circumstances, a gap between positive

' F. Klein, The Matheraatecat Theory of the Top (Scribners and
Sons, ¹wYork, 1897).
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If we write
2mc+w Kn =m(s„y„+sc)C'w Kn.

2mc+w Kn Rge'8——'" (19)

g is easily shown to satisfy the relation g =const, and

and negative energy states, then the solution for g in
(10a) indicates the relative numbers of particles which
have been transformed by the interaction from a given
spin and energy state at some initial time, into other
states of spin and energy at some later time. In this
sense, Eqs. (10) for the spinor p yield more information,
at least from an interpretive point of view, than Eqs.
(1) for the bilinear forms v„and S„.

The classical equations may be determined in exactly
the same manner from the asymptotic solutions of the
Dirac equation (instead of the squared Dirac equation);
for once we have found an asymptotic solution, 4 ~&a,
in the form of Eq. (11), Eq. (3) then gives us the
appropriateWKB approximation to the Dirac equation:

the bilinear forms associated with f satisfy the following
relations:

scl 'ypl np ) (20a)

s&4vsvA =Su. (20b)

In deriving (20), v„and S„are defined by Eqs. (14)
and (16), and the identity (17) is invoked. If we in-
terpret the left-hand sides of Eqs. (20) as the velocity
and spin of a classical particle, we arrive at the classical
equations.

III. CONCLUSION

In this note we have shown that the classical equa-
tions of Bargmann, Michel, and Telegdi may be derived
from either the asymptotic solutions to the Dirac equa-
tion or the squared Dirac equation. In a future paper
we shall discuss quantization of these WEB solutions,
as well as the many analogies existing between the
classical theory and the quantum theory of spinning
particles.
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A simple general criterion is developed, using the retarded potentials of classical electromagnetic theory,
for absence of radiation from arbitrary time-periodic charge-current distributions. The criterion is applied
to rigid Gnitely extended distributions of charge which may undergo orbital motion with period T. It is
found that, for this type of distribution, the condition for no radiation is that the extent b of the distribution
be an integer multiple of cT. Some of these distributions may spin while orbiting. There exists at least one
asymmetric spinning distribution which doesn t radiate under this condition; for this distribution, the
(constant) spin angular velocity must be proportional to an integer )0 times c/b This lead. s to the result
that that part of the total (electromagnetic) angular momentum which is associated with the spin angular
velocity must be an integer )0 times e'/c times a numerical constant whose value depends on the details
of the distribution. It is shown that, when such nonradiating distributions are considered as stable particles,
there exists an intrinsic uncertainty relation of the same form and with almost the same meaning as that of
quantum theory.

I. INTRODUCTION
' "T still seems a fairly common belief that there exist
~ ~ no nontrivial charge-current distributions which do
not radiate, according to classical electromagnetic
theory retarded potential solutions. However, early in
this century SommerfeM, ' Herglotz, ' and Hertz' con-
sidered extended electron models, and established the
existence of radiationless self-osciHations. In 1933,
Schott4 showed that a uniformly charged spherical

' A. Sommerfeld, Nachr. Akad. Wiss. Goettingen, Math. —

Physik. Kl. IIa Math. -Physik. Chem. Abt. 1904, 99 and 363;
1905, 201.' G. Herglotz, Nachr. Akad. Wiss. Goettingen, Math. -Physik.
Kl. IIa Math. -Physik. Chem. Abt. 1903, 357; Math. Ann. 65, 87
(1908).' P. Hertz, Math. Ann. 65, 1 (1908).

4 G. A. Schott, Phil. Mag. Suppl. 7, 15, 752 (1933).

shell will not radiate while in orbital motion with period
T, provided the shell radius is an integral multiple of
cT/2; the orbit need not be circular nor even planar.
In 1948, Bohm and Weinstein' found several other
rigid spherically symmetric distributions which can
oscillate linearly without radiating.

In this paper we derive a simple exact criterion for
absence of radiation, and apply it to moving rigid
extended charge distributions. ' We 6nd that there are
many such distributions, some of which may "spin, "
and others which need not be spherically symmetric.

' D. Bohm and M. Weinstein, Phys. Rev. 74, 1'B9 (1948).' In Bull. Am. Phys. Soc. 9, 148 (1964), which I received while
writing this paper, there appears an abstract by S. M. Prastein
and T. Erber which implies that some of the content of this paper
has been worked out independently by these authors.


