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The pionic decays of hyperons are analyzed in terms of the pole approximation of Feldman, Matthews,
and Salam and the preceding paper. It is found that all the available experimental data are consistent with
the universal weak coupling scheme, provided all the strong coupling constants have the same magnitude as
the usual pion-nucleon coupling constant. In this universal weak coupling scheme, all the (dimensionless)
weak coupling constants which appear in the residues of the pole terms have the same magnitude as the
weak coupling constant determined in the preceding paper for the leptonic decays of pions and kaons. It is
argued that this scheme is a dispersion theoretic version of the usual V-A theory of the weak interaction.
The above universal coupling scheme predicts unambiguously that the S wave dominates in Z+ —& n+~+
and the I' wave dominates in Z ~ n+w, and also establishes some of the relative signs of the strong
coupling constants. It is shown that there appears no other universal scheme of both the strong and weak
coupling constants. In particular, the above universal weak coupling scheme is not compatible with the
usual unitary symmetry relations for the strong coupling constants, though this conclusion depends very
sensitively on the mixing parameter in the unitary symmetry relations, The main consequences and a dis-
cussion of the above universal coupling scheme are given in the last section.

I. INTRODUCTION

'N the preceding paper, ' a dispersion theoretic
-&- approach to two-body weak decays was studied, in
which the masses of particles are regarded as constants.
An analyticity assumption is introduced for the
invariant decay amplitudes defined off the energy-
momentum shell, which are invariant functions of three
invariant variables. In this approach, the invariant
decay amplitudes for the leptonic decays of pions and
kaons are constants and, therefore, can be regarded
essentially as the weak coupling constants. It was
found' that the weak coupling constants defined in this
way are independent not only of the charged lepton
being the electron or the muon, but also of the decaying
particle being the pion or the kaon. In the case of the
pionic decays of hyperons, the invariant decay ampli-
tudes have three kinds of poles and cuts, each corre-
sponding to the three invariant variables. The pole
term, s are identical with those assumed in the pole
approximation due to Feldman, Matthews, and Salam. '

The purpose of the present work is to discuss the
question of whether or not the above universality of
the weak coupling constants can be extended to the
pionic decays of hyperons. For this purpose, we assume
in the present work that the invariant decay amplitudes
are approximated reasonably well by the pole terms
alone (referred to hereinafter as the pole approxima-
tion). We assume also that the charge independence is
valid in the strong interaction and the selection rule,
hI= —'„ is applicable to the weak interaction. The
electromagnetic interaction is ignored in the pole
approximation.
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We summarize the pole approximation" in Sec. II.
The residues of the pole terms are expressed in terms of
various strong and weak coupling constants. The
dimensionless weak coupling constants are defined in
Sec. III, referring to some mass units. The possible
significance of these mass units is also discussed. All
the available experimental data are analyzed in Sec. IV
to determine whether these data are consistent with
the universality, in the sense that the above dimension-
less weak coupling constants all have the same magni-
tude as that determined for the leptonic decays of
pions and kaons. ' It turns out that this is actually the
case if all the strong coupling constants also have the
same magnitude as the known pion-nucleon coupling
constant. There does not seem to be any other universal
scheme of both the strong and weak coupling constants
as long as the pole approximation is approximately
valid. We summarize in Sec. V the main results of the
present work and, in particular, those consequences of
the above universal coupling scheme which can be
tested experimentally. A theoretical discussion of this
universal scheme is also given.

II. POLE APPROXIMATION

In the first order of the weak Hamiltonian, Hs (x),
the matrix element for a hyperon with four-momentum

p to decay into a nucleon (or il. in the decay) and a
pion with four-momentum q is given by'

(O' Vl J~~(o)
I P)= (&/V ~co)(&(p')L~Vs+~'3~(p)), (1)

where u's are free Dirac spinors, normalized as Ntu= 1,
u(p') stands for ut(p')p4, qe is the relativistic energy of
the pion, and the invariant decay amplitudes F and P
are dimensionless. On the left-hand side of (1) Land also
in (2) and (3) below(, the operator and the state vectors

~The units, A=c=1, are used throughout this paper. The
notation of four-momentum q is such that the space components
are those of three-momentum and the fourth component is iqo.
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are in the exact Heisenberg picture in which all the
strong Hamiltonian Hs(x) is included.

In the pole approximation, ' ' Il and Ii' consist of the
pole terms which correspond to the diagrams summa-
rized in Fig. '1. The residues of these pole terms are
expressed in terms of various strong and weak coupling
constants. For example, the strong vertex in the first
diagram for A. ~ p+zr gives rise to the pion-nucleon
coupling constant g~~ defined by

gus =
gxN (s= zzz.'),

&p. lbH (0)/~4(0)lp-)= v2g ()( (p.h (p.)), (2)

where s= —(p~ —p„)' and p(x) is the pion field operator.
The weak vertex in the same diagram gives rise to the
weak coupling constants u» and a»' defined by

aNa aNA(s 0) y aNA aiva (& 0) y

9-IH (0)lp.)
= {zz(p.)t.azva(s)+azv~'(s)V s]~(pa) }, (3)

P+v,

X P+g

X N+a,

X N+»,

8- 4+v,

p

where s= —(p„—pa)'. Instead of analogous definitions
for other coupling constants, the effective Hamiltonians
are given below which give those coupling constants
which are defined in the present work. when the lowest
order matrix elements are evaluated with respect to the
particles joining the vertices in question. The strong
effective Hamiltonian is

Hs zgrrzz(Nys~lV)
——zz+{zgaz(Ay, X) +zzH. c.}

+gzz(&ysX &) zz+zg=-. (-ps~-). zz

+{igzva(NysA)K+igzvz(Ny, ~ X)K

+iggz( ys&)K,+igz- (y,~ X.)K,+H.c.}, (4)
where

zz= {(zr++zr )/v2, i(zr+ zr )/W2—, zr'},

X = {(Z++Z-)/v2, z(Z+ —Z-)/KZ, Zo}.

The weak eftective Hamiltonian is

H s = arrgNA+ arrz(42PZ+ NZ')+as-. A '—
+az„-. (Z'='+v 2Z - )+azva'Ny&— —

+aivz'(~2PvsZ+ —NvsZ')+ a~z'AVs'

+az-. '(Z'ys'+%2Z 7s. )

+a zr (v2zr+K zr'K')+H. c. (6)—

In (4) and (6) (and also in all the effective Hamiltonians
hereafter), the particle symbols stand. for the respective
field operators. The expression (4) assumes nothing but
the charge independence for Hs(x), and the expression
(6) assumes only the selection rule EI= ', for Hw(x). -
All the coupling constants defined by (4) and (6) are
real, if Hs(x) and Hs (x) are time-reversal invariant.

Fio. i. Di.agrams which give rise to the pole terms in Ii and P
de6ned by (1) are shown for various pionic decays of hyperons.
The shaded circles stand for the strong vertices, and the open
circles are the weak vertices.

In terms of the above coupling constants, Ii and Ii' in

(1) are given in the pole approximation by'

P =~&gzvrraN~(M~+Ma)/(Ma' Mn')—
+V2gazazrz(Mz++M„)/(M~' Mz+')—

+~&g~«.x/(~. ' ~K'), (7)—
F' =42g zr rr arrg'(M „Mg)/(M g' M—')—

+V2ggza~z'(Mz+ M„)/(M„' M—z+'), —
for A —+ p+zr and similar expressions for other decays.
The full expressions for F and Ii' are given at the end
of the next section, by (16)—(20), in terms of the
dimensionless weak coupling constants c's defined

by (9).
In the pole approximation, both Ii and P are real,

if IXs(x) and Hs (x) are time-reversal invariant. One
notices that g~-. does not appear in the pole approxima-
tion. Some of the relative signs of the coupling constants
remain undetermined in this approximation, because
F and P either remain unchanged or change signs
simultaneously when

(a) all the strong or weak coupling constants
change signs,

(b) all the coupling constants which involve the
kaon change signs, or

(c) all the coupling constants which involve the A-

particle change signs.

III. DIMENSIONLESS COUPLING CONSTANTS

The strong coupling constants defined by (4) are
all dimensionless and the usual renormalized coupling
constants for the strongly interacting particles. The
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weak coupling constants defined by (6) are not yet
dimensionless. The baryon constants are of the dimen-
sion of energy and the boson constants are of the
dimension of energy squared. We introduce in the
present work the dimensionless coupling constants
cby

(M~ —MN)cN~,

(MZ MN)CNZ y

(M-. —Mg) cg-. ,

(M-. Mz)CZN-,

IIt-. —pl~ C)r~ )

&Nii (MA MN) cNA

GNZ (MZ MN)CNZ

aii-'= (M-. —Mii)cp„-. ', (9)
az-. ' ——(M-. —Mz) cz-.',

where the masses are to be identihed as those of the
respective members of the charge multiplets with
which the above constants a are associated in (6).

The basic motivation for the mass units in (9) is
simply as follows. For example, the constant a» is
defined, according to (3), with respect to e and A and,
therefore, the mass units should be either Mq+M or
M~—M . We assume the latter because the appropriate
energy unit in the decay is the mass di6erence.

Instead of (6), one may write the eRective weak
Hamiltonian as4

where the derivative operator in the second term is to
apply to the nucleon field and dots stand for the obvious
terms for other baryon vertices. One observes that there
are no mass factors in (10) and this expression is
constructed primarily in terms of vectors and pseudo-
vectors, whereas the expression (6) is written in terms
of scalars and pseudoscalars. One also notices that the
vectors in (10) are the usual weak vector currents. For
this reason, one may call the weak coupling constants
c the weak vector or pseudovector coupling constants.

The effective weak Hamiltonian, valid in the same
sense as (6) and (10) in the leptonic decays of pions
and kaons, can be written as

IIg. i(c. /m—.)(gp„-(1+pi,——)!P.)(Bir /Bx„)

i (crc /mx) (!Py—„(1+y-,)P„)(BK /Bx„)+H c ,
—(11)..

B (B Bi
Hw= —cN~ (Ny„A) CNii'Nl —y!,y5+Pay~ IABx„" &Bx„" "Bx„i

B B7r+ BE )—&2c rc IC z.+ 1, (10)—Bx„Bx„Bx„1

The eRective Hamiltonian (11) is constructed also
primarily in terms of vectors and pseudovectors. There-
fore, the c's in (11) may be called also the weak
vector (or pseudovector) coupling constants.

If one assumes a simpler effective Hamiltonian

8 8
H w cNA =(N7pA) &cNA (NV p'YGA)

l9Xp t9xIJ,

B Bir+ BE—)—&2c.rc E 7r+ —1, (13)Bx„Bx„Bx„i
instead. of (10), the dimensionless coupling constants
defined by (13) are related to the u's in (6) by

+NA (MA MN)CNA) GNA & (MA+ MN)CNl!
~ ~ ~

a.rc
——(mx' —m.')c.rc.

If the dimensionless coupling constants are defined by

GNA (MA+MN)CNA) GNA & (MA MN)CNA
~ ~ ~ (15)
a.x——(mx'+m. ')c rc,

one does not find any simple effective Hamiltonian of
the vector type.

As long as the weak coupling constants are regarded
as adjustable parameters, the mass units in (9), (14),
and (15) are all equivalent. However, if one assumes
that the dimensionless coupling constants c have all
the same magnitude, the consequence of this universal-
ity depends critically on the respective mass units, as
is seen in the next section.

Finally the full expressions for F and F' in (1) are
summarized in terms of the dimensionless coupling
constants c defined by (10).

I" ol' A ~ p+7!

F=&2gNNcNA v2gAzcNz !/2gNiic~K,

MJ, M„)—
p!!' 2gNNCNg'

Mg+M. i
(Mz+ —M„

%2g~zcNz'. (16)
kcVz++M„

For Z+~ p+~'.

F=%2gNNcNZ &2gzzcNZ+!/2gNzc~ir,

agni- Mz+ —M,)
(») M, +M ic -=c~-——1.50&10—7.

where f and P„are the field operators for the charged
lepton and the neutrino, respectively. It was found in
the preceding paper' that the dimensionless weak
coupling constants c — and c~- have the same m
tude, that is,

4 This was pointed out to the authors by K, Nishijirna (private
communication).

t'Mz+ —M~)
1~2gzzcNz' (»)!M, +M, i
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TAsLE I. Summary of theoretical and experimental values for the decay rate, m in 10'0 sec ', and the parameters n, P, y, dered by
(21), for various pionic decays of hyperons. The theoretical values are based upon the pole approximation, (16) to (20), with the
universal coupling scheme (22) and the particle masses taken from Ref. a. This approximation assumes the time-reversal invariance,
which makes P vanish identically, and also 0I=-,'. Therefore, the table does not include the figures for A —+ n+~' and. ™0—+ a+A.

Decay mode

m, theor.
exp.

n, theor.
exp.

P, exp.
y, theor.

exp.

0.34
0.26.

+0.49
+0 61&005b
—0.19&0.19d

+0.87
+0.78&0.04~

0.89
0.64.

—0.72—0.79a0.09

0.70

1.28
0.64a

0
0 05&0 08c

0.29
0.63a

—0.31—0.16&0.21'

—0.95

0.23
0.71.

—0.77—1.0 +0.33b
+0.68&0.27d

+0.64
+0.63&0.31'

a M. Roos, Rev. Mod. Phys. 35, 314 (1963).
b L. Bertanza, V. Brisson, P. L. Connolly, E. I.. Hart, I. S. Mittra et al. , Phys. Rev. Letter's 9, 229 (1962).
& R. D. Tripp, M. B.Watson, and M. Ferro-Luzzi, Phys. Rev. Letters 9, 66 (1962).
d Summary by F. S. Crawford, in Proceedings of the 1&6Z International Conference on FIigh-Energy Nuclear Physics ct CERN (CERN, Geneva, 1962),

p. 827.

For Z —+ ri+m. .

F=
gxzciv ii+—g zzciv z 2g rvzc ~rr—,

(Mg —M'„Mz~ —M ) (19)
g-c~. + Igzzc~z .

kMg+M. Mz'+M &

For . —+ 4+x.

F=v2ggzcz". 't/2g=-. cs=+V~—g~„=c~rc,

(M~ Mz- —
I~2g»cz=-'

(Mg +Mz-
(M. o —Mii

kg CA
t M„-.o+Mz

(20)

IV. COMPARISON WITH EXPERIMENTS

In the pionic decays of hyperons, experiments can
deterrn, ine the decay rate z and the real parameters n,

P, and y. These are expressed in terms of F and F' in

(1) as

~=
I qll:(M —M')' —~ '3(IF I'+ IF'I')/8~M'

cr= 2 Re(F*F')/(I F I'+ IF'I')
P= 2 Im(F*F')/(IF I'+ IF'I'),
v= (IF'I' —IF I')/(IF I'+ IF'I'),

with

(21)

For Z+ —+ rs+n+:.

F= 2gNNCNZ gAZCNA gZZCNZ )

(Mz+ —M„ (Mg —M
F' = —

I
2gxwcivz —

I
gszcivs'

(Mz++M~ kMg+M„(18)
Mzo —M )

lgzzcivz'.
Mzo+M„l

decaying hyperon and the nucleon (or A. in the " decay),
respectively, and

I q I
is the pion momentum in the c.m.

system. In (21), F' and F are, respectively, the 5-wave
and I'-wave amplitudes, and the asymmetry parameter
n refers to the direction of the nucleon (or A in the

decay). All the available data are summarized in
Table I.

The theoretical values in Table I are computed in
the pole approximation, (16) to (20), with the universal
coupling scheme

gNN= gAZ= gZZ= g=-"-= f",NA= gNZ= f",A=-= ~3.6,
CNA= CNZ= CA = CZ- =CzrK= CNA

=civz' ——cs„-.
' ——cz-. ' = 10—'. (22)

The upper f'igure in (22) corresponds to give'/47r = 14.8,
that is, 0.082 for the equivalent pseudoscalar-pseudo-
vector coupling constant squared. The lower figure
in (22) is roughly 1/K2 of the figure in (12). This
factor was introduced because c ~ refers to the neutral
bosons as is seen in (6) and (9), whereas the c's in (12)
refer to the charged bosons. Since all the coupling
constants are real in (22), P vanishes identically and is
not shown in Table I.

The agreement between the theoretical and experi-
mental values in Table I is satisfactory. One may
conclude that the universal coupling scheme (22) is
consistent with all the available data.

The universal coupling scheme (22) is subject to
ambiguities in the relative signs of the coupling con-
stants in (22). Some of these ambiguities are those
listed in (8). However, one can show that there are no
other theoretical values, besides those in Table I, which
agree even qualitatively with the data, if one requires
that the strong and weak coupling constants in (22)
have, respectively, the same magnitudes.

The proof of the above statement is as follows: Since
n for both A —+ p+s. and Z+ ~p+~' is quite large, F'
in (16) and (17) cannot be negligibly small, that means
that

F'= ([(M+M')' —m ']/[(M —M')' —nr 'j}'"F', gNN= gzz q gNNCNA = gAZCNZ . (23)

where n'+p'+ps=1, M and M' are the masses of the One then finds in (18) and (19), independently of the
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gNNCNZ = gh. ZCNg ~ (24)

The observed signs of n for A ~ p+vr and Z+ ~ p+x'
then requires that

gNAC~K —gNNCNg & gNZC~Ig= gNNCNZ ~

Similarly, one obtains

(25)

relative sign of gqz to g~~, that Ji' for Z——+a+~
becomes negligibly small, but Ii ' for Z+ ~ e+~+
remains appreciable. Since n for Z+ —& I+or+ is nearly
zero, F in (18) must vanish, that is, that

in the pole approximation, as long as the time-reversal
invariance is valid. One sees from (19) that n for

—+e+m vanishes in this scheme, if one ignores a
mass difference between Z' and A. Therefore, a relatively
large value (—0.31) for this n in Table I is due entirely
to this small mass difference.

It is added that the universal coupling scheme (22)
is very similar to one of the solutions discussed in

Ref. 2 and also the solution discussed by Fujii.
If a universal weak coupling scheme is introduced

with respect to the mass units in (14), one assumes that

ghzcz- =gZRckz , (26)
mK —m 2

(30)
Mg+M

ggzcz~~: g~~~~cgz ) (27)

which is analogous to (26), the observed sign of a for
—+ A+n. determines that

because n for —+ A+~ is quite large. If one requires
for simplicity that where dots stand for the obvious terms. A reasonable

agreement with data is obtained in this case with

aNA/(MA. M ) ' 10 ) gNN gkz gzz g""
=& (g~~/20) =~ (g~z/20) = (g~=-/20) = 14 (31)

gh."-C~K—gggCAg ~ (28) If one assumes

It is easy to show that the relations (23) to (28) are all
those which must be satisfied in order for the universal
coupling scheme (22) to be consistent with the data.
The theoretical values in Table I are independent of
changes of signs of the coupling constants as long as the
relations (23) to (28) are satisfied.

One finds in the foregoing proof some important
consequences of the universal coupling scheme (22).
First, this universal scheme predicts that the 5 wave
dominates in Z+ —+ I+++ and the I' wave dominates in
Z—-+++~—.This can be checked experimentally by
determining the sign of y, because the theoretical
values of y in Table I are almost unity in magnitudes.
Secondly the above scheme predicts, in particular, that

~ ~ ~ (32)
mx'+m. ' Mg —M„

e~/(%+M )= =10, g)r~=g~z=gzz=ge
=g~q/6= —2g~z =—gq-. /5 =14, (33)

or with the negative sign for all the a"s in (32) and

a~g/(Mz+M )= =10 ",

which refer to the mass units in (15), one obtains a
reasonable agreement with data with the positive sign
for all the a"s in (32) and

gNN=gzzl gNA/gNz gkz/gzz) (29)
gNN =2gsZ= gZZ= gF,"-=~4,

gNh, gNZ gA

(34)

which follows from (23) and (25). These relations
are likely subject to some tests. Thirdly, F consists, in
this scheme, of the kaon-pole terms alone in all the
decays in Table I. In the case of Z+ —+ e+~+, there is
no kaon pole and, therefore, F vanishes. Thus, the
kaon pole plays a crucial role in this scheme.

In the universal coupling scheme (22), both F and Ii'
are proportional to the numerical figures assumed in

(22). Therefore, the theoretical values for o., p, and the
ratios among the decay rates are all independent of these
figures in (22). A wide variation in the experimental
values of n is, according to this scheme, due to casual
cancellation among various pole terms. The figures for
the decay rates in Table I imply that the pole approxi-
mation may be valid to some extent but cannot be very
accurate, if the universal coupling scheme (22) is valid.
This may be checked experimentally by determining
if P is really small or not, because P vanishes identically

In the above cases, the pion coupling appears to be
universal except for the case of (34). However, the
kaon coupling constants are too large to be reasonable
in (31) and do not seem to be universal in (33) and (34).
The cases (31) and (33) are also similar to some of the
solutions discussed in Ref. 2. The case (34) is some-
what analogous to the solution discussed by Gupta, ' in
the sense that no kaon poles are effective.

One finds many other solutions which Gt data in the
pole approximation, if the coupling constants are
regarded as adjustable parameters. ' We point out,
however, that the solutions are very sensitive to the
data to fit. Since the experimental uncertainties are

5 A. Fujii, Phys. Letters 1, 7S (1962).
6 S. ¹ Gupta, Phys. Rev. 130, 1180 (1963).
Vone of the most extensive work of this type is J. C. Pati,

Phys. Rev. 130, 2097 (1963).
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quite large and, in addition, the pole approximation can
hardly be very accurate, one never knows which solu-
tions of these may be of significance.

If unitary symm, etry' is valid regarding the strong
Hamiltonian, the strong coupling constants satisfy the
relations

gsz/g~~ = 2 (1 f)/—&3, give/g~iv —(1+——2f)/V3 )

gzz/gviv=2f, gNz/gvx= (1—2f),
g=-=-/ger= (1——2f) ) gs=-/gNx= (1 4f)/—&~)

(35)

where the mixing parameter f is expected' to be around

4 ol1 1

One can show that (35) cannot be consistent with the
5 wave dominating in Z+ —+n+vr+ and the I' wave
dominating in Z —+ e+e. . To see this, one puts F
in (18) and Ii' in (19) equal to zero. Ignoring a mass
difference between Z' and A, one obtains

civs=~3civz, civa'= Lv3f/(1 —f)$civz' (36)

Then, the amplitudes in (16) are written as

Ii = (2/3)'i'(1+2f)giviv (civz+c~rc),
~'= —~(2/3)"'{Pf+2(1—f)'3/(1 —f))g»c»' (37)

and the amplitudes in (17) become

I" =&2(1 2f)g~iv (civz+—c rc) )

&&2 (1+—2f)g~~civz. ', (38)

~ —L3(1+f)—2(1—f)'j/(1 —f) (39)

s Y. Ne'eman, Nucl. Phys. 26, 222 (1961); M. Gell-Mann,
Phys. Rev. 125, 1067 (1962).

9 See, for example, A. W. Martin and K. C. Wali, Phys. Rev.
1M, 2455 (1963).

where 6= (Mz —Miv)/(Mz+Miv) and small mass
differences are ignored. Since the same coupling con-
stants appear in (37) and. (38), one finds that n for
A ~ p+m and Z+~ p+z' can have different signs

only when 1)f)-', . The lower bound for f is raised if

y for A —+ p+7r is required to have the observed sign.
A simple calculation shows that the allowed region
becomes 1&f&06if n= —. 0.7 for 2+ —+p+m', and
1)f&0.7 if n= —1 for Z+-+ p+e'. This region of f
can hardly accommodate the expected values. ' We point
out that the above inconsistency is essentially due to
the negative sign for give, /g~iv in (35).

One can apply the same argument to the case when

the I' wave dominates in Z+ ~ N+ m+ and the 5 wave

dominates in Z —& e+w . In this case, (38) remain the

same, but those factors in (37) which include f change

as follows:

=—Scivz' =—c.x/2. (41)

A more careful calculation shows that the above
analyses are essentially correct. Thus, one may conclude
that, if the unitary symmetry relations (35) are valid
with f somewhere between 0 and —',, the I' wave must
dominate in Z+ ~ n+~+ and the 5 wave must dominate
jn Z —+ B+vr . One does not find in this case any
simple relationship among the weak coupling constants.

However, the above conclusion should not be taken
too seriously. %'e know that unitary symmetry' is not
rigorous and, therefore, the relations (35) are valid only
approximately. Since the consequence of the unitary
relation (3S) is very sensitive to f, or the details of the
relations (35), even small change in (35) might change
the above conclusion.

Our foregoing analyses agree only qualitatively with
a recent work by Eberle and Iwao."The discrepancy
appears to be due to some mistakes in their work. "

V. SUMMARY AND DISCUSSIO5'

The main result of the present work is that all the
available data concerning the pionic decays of hyperons
are consistent with the assumption that the pole
approximation'' is approximately valid and all the
strong and weak coupling constants which appear in
the residues of the pole terms have the same magnitudes
as, respectively, the usual pion-nucleon coupling
constant and the weak coupling constants determined
for the leptonic decays of pions and kaons. '

The strong coupling constants g are defined by the
strong effective Hamiltonian (4) and are the usual
renorm, alized coupling constants for the strongly inter-
acting particles. The weak coupling constants c are
defined either by the weak effective Hamiltonian (6)
and the mass units in (9), or by the weak effective
Hamiltonian (10), whereas the weak coupling constants
jn the leptonic decays of pions and kaons are defined
by the effective Hamiltonian (11).Since both (10) and
(11) are of the vector-pseudovector type, one may
regard the universal weak coupling scheme in (22) as a
dispersion theoretic version of the usual V—2 theory of
the weak interaction. One should note, however, that
no specific form of the weak Hamiltonian is assumed in
the present work, except that this Hamiltonian is
time-reversal invariant and satisfies the selection rule,
DI=—,.
"E. Eberle and S. Iwao, Phys. I.etters 6, 302 (1963).

Thus, n for A —+P+vr and Z+~P+vr' can have
diferent signs only when

-', )f)0.32 or —0.14&f)—-', .

If one regards the former as an allowed region, one
obtains a reasonable agreement with data concerning
A and Z, with the values

f 0.4
& C1vlL cNA, ScNz
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There are ambiguities in the relative signs of the
coupling constants in the universal coupling scheme
(22), because the theoretical values in Table I are
independent of any change of the signs as long as the
relations (23) to (28) are satisfied. Some of the rela-
tive signs which are Axed in this scheme are those in
(29).

One of the consequences of the universal coupling
scheme (22) which can be tested experimentally is that
the S wave dominates in Z+ ~ m+~+ and the P wave
dominates in Z ~ I+~ . An experimental determina-
tion of the sign of the parameter y in (21) is suflicient,
because the theoretical values for y are quite large in
Table I. According to this scheme, a closer agreement in
the decay rates in Table I can be attained only by going
beyond the pole approximation. Thus, the figures in
Table I suggest that the pole approximation cannot be
very accurate. This may be checked experimentally by
determining if the parameter P is really small or not,
because P vanishes identically in the pole approxima-
tion, as long as the time-reversal invariance is valid.
The agreement for the asymmetry parameter n is
better than is to be expected. One notices that n is
identically zero for &+~ e+~+ but is quite large for
Z——+ e+~ . This difference in n is due to a small mass
difference between Z' an A. in the pole approximation,
but could very well remain beyond the pole approxima-
tion, according to this scheme. Therefore, a more
accurate determination of n for Z —+n+vr is very
desirable.

The pole approximation" allows many other solu-

tions, ' '—' if the coupling constants are regarded as
adjustable parameters. However, there does not seem
to be any other universal scheme of both the strong and
weak coupling constants, besides (22). This is quite
satisfactory, because only the mass units in (9) are
physically plausible, at least to the present authors.
It is, however, somewhat embarrassing that the
universal weak coupling scheme in (22) is not consistent
with the unitary symmetry relations (35) for the strong
coupling constants. However, the strong coupling
constants defined in the present work refer to the full

strong Hamiltonian and, therefore, do not satisfy the
rigorous unitary symmetry relations (35) because
unitary symmetry is not strictly valid. As is seen in

the analyses in Sec. IV, the consequence of the unitary

symmetry relations (35) is very sensitive to f, and thus,
to the details of (35).Therefore, the above inconsistency
does apply to the relations (35), but may not necessarily

apply to unitary symmetry in the usual sense.

According to Pais, "a possibility that

gxz=~gzz, gxx=&gprz, gs=-=&gzg, (42)

with either the positive sign or the negative sign in all
the terms in (42), contradicts the experimental data,
provided the mass difference between A. and 5 does not.
affect the argument. The first two equations in (42) are
formerly the same as the second equality in (29). It is
pointed out, however, that the above argument" does
not apply to the universal coupling scheme (22). This is
because the coupling constants in (22) are the renormal-
ized coupling constan. ts, whereas those in (42) are the
unrenormalized ones which appear in the strong Hamil-
tonian. Therefore, there 's no reason why the argument
of Ref. 11 should apply to those in (22).

It is often argued that the isospin —', for the m-
resonance at 1535 MeV would be very diKcult to explain
in terms of a universal strong coupling scheme such as
(22), because the isospin for the corresponding ~—X
resonance is ~&. However, the differences in masses and
strangeness for these systems are very likely to cause
large differences in the coupling of these systems with
the E Aand/or —X—Z systems. In view of the complex-
ity of the origin of the resonance, the present authors
feel that one should not accept the usual argument
without a detailed analysis of these resonances.

Several authors"" discussed a universal weak cou-
pling scheme in which a weak Hamiltonian of the type
of(11) was extended to the pionic decays of hyperons.
This scheme explains the experimental decay rates in
Table I within a factor of three but fails to explain the
experimental asymmetry parameters in Table I. This
is to be expected from the present dispersion approach,
because the weak Hamiltonian (11) may be regarded
as an effective weak Hamiltonian in the case of the
leptonic decays of pions and kaons, but a weak Hamil-
tonian of the type of (11) extended to the pionic decays
of hyperons cannot have any simple significance
because the pionic decays of hyperons have too compli-
cated structures to make any simple effective Hamil-
tonian of the type of (11) of any use.
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