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this channel. The state D5~2 is suggested for this reso-
nance. If this assignment is correct the question arises
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Fio. 6. A possible connec-
tion between the trajecto-
ries of Z and 1765-MeV V1*.
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as to where the first recurrence of this trajectory with
spin 2 is. From the slopes of the other trajectories and
from the fact that there is no particle between 1190and
1765 MeV with the quantum numbers of this resonance
one would expect its trajectory to lie higher than Z

trajectory. But also below 1190MeV there is no particle
with the quantum numbers of this resonance. Thus we

are faced with the alternative that the odd parity
trajectory crosses the spin —, line in the positive energy
region thus having the wrong region for the odd tra-
jectory and having the wrong slope for the even trajec-
tory. A wrong slope would give a negative width and
would not correspond to a particle. This possibility is
shown in Fig. 6.
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A dispersion theoretic approach to two-body weak decays is discussed in which the masses of the particles
are regarded as constants. In this approach, an analyticity assumption is introduced for the invariant decay
amplitudes which are defined oR the energy-momentum shell. These amplitudes are invariant functions of
three invariant variables. The singularities and the dispersion relations for these amplitudes are very similar
to those assumed by Mandelstam in the case of scattering. As examples, the pionic decays of hyperons and
the leptonic decays of pions and kaons are discussed in detail in the first order with respect to the weak
Hamiltonian. It is assumed in the present approach that there exists a weak Hamiltonian which is localized
in the sense of the present local field theory and can be treated as a small perturbation. In the case of the
former example, it is shown that there are three kinds of pole terms corresponding to the above three in-
variant variables and that these pole terms are identical with those assumed in the pole approximation due
to Feldman, Matthews, and Salam. The invariant decay amplitude in the case of the latter example becomes
a constant in the present approach, if the electromagnetic correction is ignored. This is to be contrasted with
various dispersion relations proposed in the conventional approach in which the mass of the pion is regarded
as the variable. The dispersion theoretic version of the usual U —A theory of the weak interaction is then
constructed, in which the invariant decay amplitude (being a constant) is regarded essentially as the weak
coupling constant. The experimental data concerning these leptonic decays indicate that the weak coupling
constant defined this way is independent of not only whether the charged lepton is the electron or the p
meson, but also whether the decaying particle is the pion or the kaon.

I. INTRODUCTION

'"N the dispersion theoretic approach to scattering,
~ ~ one usually assumes analyticity of invariant scatter-
ing amplitudes with respect to the invariant combina-
tions of the particle four-momenta. These four-momenta
are subject to the over-all energy-momentum conserva-
tion and all remain on the respective mass shells. One
then finds two independent invariant variables. If one
assumes analyticity with respect to both of these
variables, one obtains double dispersion relations for the
invariant scattering amplitudes. This was done first
by Mandelstam. '

* Work supported by the National Science Foundation.
' S. Mandelstam, Phys. Rev. 115, 1741 (1959).

Suppose one applies the same consideration to decay
of a particle with mass M into two particles with
masses M' and m, respectively. It is straightforward to
define invariant decay amplitudes. However, one 6nds
no invariant variables, if all the particle four-momenta
remain on the respective mass shells and satisfy the
over-all energy-momentum conservation. To see this,
let p, p', and q be the four-momenta' of the particles
with masses M, M', and m, respectively. The conditions
that these momenta are on the respective mass shells
and satisfy the over-all energy-momentum conservation

' Our notation of the four-momentum p is such that the space
components are those of the three-momentum p, and the fourth
component is ipo, where po is the relativistic energy of this particle.
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are expressed as

p2 — ~'2 p12 -.— I&2 q2 rri2

p=p+0 (2)

' M. L. Goldberger and S. B. Treiman, Phys. Rev. 110, 1178
{1958);111,354 {1958).

4 Some of the recent works are M. Ida, Phys. Rev. 132, 401
(1963) and K. Nishijima, Phys. Rev. 133, 81092 (1964), which
contain references to all previous work.

E. R. McCliment and K. Nishijima, Phys. Rev, 128, 1970
{1902).

If one regards two momenta out of these three as
independent, one finds three independent invariant
combinations of these momenta. However, because of
(1) and (2), all these invariants are merely the three-
particle masses. Therefore, in the case of two-body
decays, one cannot introduce an analyticity assumption
of the kind which is usually assumed in the case of
scattering.

One can still introduce analyticity assumptions for
two-body decays, if one regards some of the particle
masses as variables and considers invariant decay
amplitudes as functions of these variable masses. This is
what has been done so far in the applications of disper-
sion relations to some of the two-body weak decays.
In particular, the leptonic decays of pions were analyzed
by Goldberger and Treiman' and subsequently by many
others, 4 using the pion mass as the variable. The pionic
decays of hyperons were also discussed by McCliment
and Nishijima, ' using the mass of the decaying hyperon
as the variable.

The purpose of the present paper is to investigate the
alternative way of introducing an analyticity assump-
tion, in which the masses of the particles are regarded
as constants. In this approach, all the particle four-
momenta are strictly on the mass shells given by (1).
The only way to introduce the variables is then to
consider the decay matrix element off the energy-
momentum shell, that is the matrix element of the
original Hamiltonian responsible for the decay with
respect to the same kinds of particles, the four-momenta
of which do not have to satisfy the over-all energy-
momentum conservation (2). The invariant decay
amplitudes then become invariant functions of three
invariant variables, which can be chosen as s, t, and I,
given by

~= —(p'+9)', 1=—(p- p')', ~= —(p I)' (3)—
The number of the independent variables is reduced
to two, if one requires that

s+t+u= M'+m'+M", (4)

which includes the physical region in these variables

s=3P t=m' u=M". (5)

The fundamental postulate in the present approach is
the assumption that the invariant decay amplitudes
defined off the energy-momentum shell are analytic in

s, t, and I except for the cuts and poles which appear
along the real axes of these variables and satisfy the
simplest dispersion relations consistent with the above
singularities.

We add two remarks to the above discussion. First,
without the condition (2), one finds generally more
invariant decay amplitudes than one has with it.
However, this does not cause any difhculty as long as
the invariant decay amplitudes are defined in such a way
that they tend to the invariant decay amplitudes on the
energy-momentum shell when the physical region is
approached. The details are explained in Secs. II and
III.

Secondly, the condition (4) is equivalent to

k+ p= p'+g, k'=0.

One can see this, by observing that s+1+u M' —M'—
—M" is equal to —(p —p' —q)' because of (1) and (3).
Because of this equivalence, one may have the following
picture of the present approach. One postulates a
fictitious massless particle (also neutral and spinless)
which is annihilated in the two-body decays in such a
way that the corresponding decay matrix elements
become the physical decay matrix elements in the limit
when this fictitious particle carries no energy and
momentum. However, the present author is not
inclined to take this picture seriously. The basic
motivation for requiring the condition (4), which is
equivalent to (6), is to minimize the amount of un-

physical continuation without excluding the physical
region (5). For this purpose, the present author finds no
other way than requiring (4) or (6). For example, one
could reduce the number of the independent variables
by putting some of s, t, and n equal to their physical
values (5). However, there is no u priori criterion for
which variables ought to be fLxed. Besides, one might in
this way overlook some of the analytic structure of the
decay amplitude which could otherwise be very useful.

In Secs. II and III, we explain in detail how to de6ne
the invariant decay amplitudes off the energy-momen-
tum shell and how to locate the singularities with
respect to the invariant variables. We discuss, as
examples, the pionic decays of hyperons in Sec. II and
the leptonic decays of pions and kaons in Sec. III. We
assume in these sections that there exists a weak
Hamiltonian Hs (x), which is localized in the sense of
the present local field theory, and can be treated as a
small perturbation, and is responsible for these weak
decays in the first order. However, one does not have to
know the explicit form of Hs (x). The analyses in
Secs. II and III refer to the first-order matrix element
of this weak Hamiltonian, ignoring the electromagnetic
correction. However, all the strong interactions are
included. If some of the higher order matrix elements of
the weak Hamiltonian and/or of the electromagnetic
correction are included, additional singularities have
to be added to the invariant decay amplitudes, but
these higher order corrections do not cause a~y basic
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difFiculties in formulating the present approach. How-
ever, the existence of a localized weak Hamiltonian
appears to be a crucial assumption in this approach,
because the present author does not know how to define
the decay matrix element off the energy-momentum
shell when there is no localized weak Hamiltonian.

In the 6nal section, we summarize the analyses in
Secs. II and III, with particular emphasis on compar-
ison between the present approach and the conventional
approach. ' '

II. PIONIC DECAYS OF HYPERONS

We assume that a localized weak Hamiltonian
Hs (x) is responsible for the pionic decays of hyperon
in the first order. We use those notations of masses and
four-momenta which are introduced in Sec. I, except
that the particle with mass m is identified in this section
as the pion. In this and the following sections, all the
state vectors and the operators are in the exact Heisen-
berg picture in which all the strong interactions, Hs(x),
are included. In the first order of Hs (x), the over-all
decay matrix element Sy, is given by

s,,= —z(p', qI H~(x)dxI p)

=(2~)'~(p —p' —v)( —~)(p', VIH~t0) I p& (7)

where the integral is the over-all space-time integral. '
According to the covariance argument, the matrix
element in the last expression in (7) can be written as

—~(2Vo)"'(p', VIHw(0) I p) = {u(p')L» +F'ju(p)), (g)

where u(p) and u(p') are free Dirac spinors, normalized
as utu=1; u(p') stands for ut(p')y4, and F and F' are
invariant functions of the invariant variables. As is
explained in Sec. I, the invariant variables are all the
masses of the particles involved, and, therefore, P and
P are constants as long as the masses are regarded as
constants. The parity-conserving part Ii accounts for
the I'-wave amplitude in the final state, while the
parity-violating part Ii is essentially the 5 wave final
amplitude.

The decay matrix element off the energy-momentum
shell is defined as the same as the matrix element in the
last expression in (7), except that the three momenta p,
p', and g satisfy (4) or equivalently (6), instead of (2).
According to the covariance argument, this matrix
element can be written as

—f(2&o)'"&p', v I
H w( ) I p)

= (u(p') {F(s,t,u)yg+F'(s, t,u)

+iy k/G(s, t,u)y~+G'(s, t,u)])u(p)), (9)

where s, t, and u are defined by (3) and all the F's
and G's are invariant functions of s, t, and N. The

expression (9) contains four invariant decay amplitudes
compared with two in the expression (8). However, the
F's and G's are defined in (9) in such a way that the
F's in (9) tend to the F's in (8) as k ~0. In other words,
the following relations hold:

F=F(s=M' t=nz' u=M")
F'=F'(s=M', t=nt', u=M"). (10)

Therefore, one does not have to consider the G's in (9).
The fundamental postulate in the present approach is
that the F's in (9) are analytic in s, t, and u except for
poles and cuts along the real axes of these variables.

We assume that the above singularities can be located
according to the usual heuristic argument. Thus, one
first eliminates' the pion in the decay matrix element off
the energy-momentum shell. Ignoring the electro-
magnetic correction, one obtains

Ms(x)T,Hs (0)
Syt(x)

5H s (x) 8H s (x)
=Hs (0) +q(t) —, Hs (0), (12)

Syt(x) Syt(x)

where rt(t) is unity when t)0 and zero when t(0, and
the last bracket is the usual commutator. The 6rst term
in (12) does not contribute in (11) because

SHs(x)
(p'I dxHs (0) e-'&

I p)
hqV I,x)

=p(z~) sip —
v
—p„)&p'IHw(o) I n&

8Hs(0)
X(nI I p&=0, (13)

Syt(0)

where the sum over e is over the complete set of the
eigenstate In) of the total strong Hamiltonian Lthus
excluding Hw(x)$ and p„in the corresponding energy-
momentum eigenvalue. The last equality is due to the
stability of hyperons against all the strong interactions.
If one introduces the same complete set expansion also
to the second term in (12), one can perform the space-

—(2vo)"'(p', VIH (0)IP&

8H w(0) Ms (x)= —t&p'I Ip) —(p'I dxr, H (0)
byt (0) Syt(x)

Xe '"Ip), (11)

where P(x) is the pion 6eld operator and T stands for
the tiIne-ordered product. This time-ordered product
can be written as

' The units k=c= 1 are used throughout this paper. 7 F. E. Low, Phys. Rev. 97, 1592 (1955).
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time integral in (11).The result is

8Hw(0) bHs(0) &(y-—y' —e)—i(2qo)'"(p', qlHw(0)lp)= —i(p'I Ip&
—i(2pr)p Z (p'I IN&(iplHw(0)lp&

~~'(0) b~'(0) po +qo —p o+ip

&Hs(0) ~ t.y.—y+ q)
+(p'IEI w(0) Iip&(gl-

Ip), (14)
By (0) pp

—
qp

—p„p—ip

where c is an infinitesimal positive real number.
According to the usual heuristic argument, the singularities of the invariant decay amplitudes are entirely due to

the energy denominators in (14). Thus, one can locate all the singularities in s by looking at the mass spectrum
of the intermediate state

I I) which contributes to the first sum in (14), while the same consideration regarding
the second sum in (14) enables one to locate all the singularities in N.

However, the expression (14) does not allow one to locate the singularities in t. For this purpose, one eliminates
the nucleon (or A in the decay) in the decay matrix element off the energy-momentum shell. The analogous
procedure leads one to the expression

8Hw(0) t'iHs(0) ~(y- —y' —tl)
p', qlH (o) IP&= —iN(p')(ql IP&

—i(2~)'2 ~(p')(ql l~&(~IH (o) I p)
&4 (o) pp +qp pno+ip

&II (o) s(y- —y+ y')
+(qlHw(0) l~&@p')(~l I p&

",(15)
g (0) pp pp' p—„p i—p—

where |P(x)=|Pt(x)y4 and tp(x) is the nucleon (or A in
the . decay) field operator and other nota, tions are the
same as those in (14).The second sum in the expression
(15) enables one to locate all the singularities with
respect to t.

According to the above heuristic argument, poles are
due to the single-particle intermediate states which
contribute to the sum in (14) and (15). One thus finds
that there can be poles in s because of the intermediate
nucleon (or Z in the " decay), and in I due to the
intermediate hyperon, and also in t by virtue of the
intermediate kaon. One also 6nds three cuts given by
s&s~, N&N~, and t&t~, where sj, Nj, and t~ are the lowest
total mass squared of the intermediate states which
contribute to the respective sums in (14) and (15) and
involve at least two particles.

The residues of the poles depend upon various strong
and weak form factors. For example, the residue of the
s pole includes the invariant form factors defined by

(P'I » (0)/~4'(0) I
P"&

=ig(z)l i7(p'h'pN(p")) (16)

(P"IH (0) I
P&= f~(p")I a(z)+a'(z)7)~(p)}, (»)

with z—= —(p' —p")' in (16) and z= —(p"—p)' in (1.7).
The invariant form factors, g(z), a(z), and a'(z) are
real, if EIs(x) and Hw(x) are time-reversal invariant.
With (16) and (17), one can carry out the sum over the
spin of the intermediate nucleon (or Z in the decay)
implied in the sum over I in (14). If one introduces
covariant notation in the resulting expression of the

term in (14) which gives rise to the s pole, one obtains

—p(2qp)'"(P', q IH w(o) I P&

= Q(m')/(s —M po)]&u(P')((Mp+M)a(0)yp

+ (M, M)a'(—0)+iy kl a(0)yp+a'(0))}~(p))
+ . . (18)

where dots stand for the terms without the s pole.
If one applies the same consideration to the term in

(14) which gives rise to the I pole, one obtains

F(s,t,l) = L(Mp+M')g(m')a(0)/(I —Mp')]+
F'(s, t,l) = t (M p M')g(m') —(0a)/( pMt p'))+, (20)

where dots stand for the terms which do not have the e
pole. In (20), Mp is the mass of the intermediate hyperon
responsible to the I pole and the definitions of g(m'),
a(0), and a'(0) are the same as those in (16) and (17).

Concerning the term in (15) which gives rise to the
t pole, one first observes the following identity relation
which is valid when p= p'+q'.

&Hs (0) 1 &Hs (0)
~&p')(q'I I P&=, „,P, -

where Mp is the mass of the intermediate nucleon (or Z
in the decay) and dots stand for the terms which do
not have the pole in question. By comparing (18) with

(9), one finds

F(s,t,l) =
I (Mp+M)g(m')a(0)/(s —Mp'))+

F'(s, t,l) = L(Mo —M)g(m')a'(0)/(s —Mp'))+, (19)
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where PK(x) is the kaon field operator. The identity
relation (21) can be proved easily by eliminating' the
kaon on the left-hand side and the nucleon (or A. in the

decay) on the right-hand side in (21). Therefore, one
introduces the invariant form factors by putting

bHs(0) 1
~&P')(v'I IP)=, ~gx(s) L~iP')»~(P)7, (22)

g (0) (2qo') "'

(23)

with s= —(P' —P)' in (22) and s= —
(q

—q')2 in (23).
Equation (22) is correct at least for the purpose of
finding the residue of the t pole. In (22) and (23),
gIr(s) and ax(z) are real if HB(x) and H~(x) are time-
reversal invariant. Upon substituting (22) and (23)
into the term in question in (15), one 6nds, after
introducing covariant notation, that

F($,t,u) =
I glr(mx')ax(0)j(t —mx')7+, (24)

F'($, t,u) = .

where m~ is the kaon mass and dots stand for the terms
which do not have the t pole. The absence of the t pole
in F ($,3,N) is simply due to (23} in which the parity-
violating part of Hs (x) has no contribution to the
matrix element in (23).

In addition, one obtains (19) also from the first sum
in (15).This can be shown with the help of the identity
relation (21).

All the preceding analyses which begin with Eq. (11)
are valid, for any choice of the independent variables.
Thus, one finds the same poles with the same residues
and the same cuts, regardless of whether the condition
(4) or equivalently (6) is required. However, the
situation changes if one chooses the masses of the
particles as variables, with the over-all energy-momen-
tum conservation (2) required. In this case, $ in (19)
is M' and u in (20) is M". Since M and M' appear also
in the numerators in (19) and (20), one has to conclude
that F'($, t,u) has neither an $ pole nor a n pole, unless
the invariant form factors g(s) and a'(s) become singular
at these points. However, it is contrary to the usual
heuristic argument to assume such singular behavior
in the invariant form factors. It is a simple matter to
check that the pole terms in (19), (20), and (24) are
those which are assumed in the pole approximation due
to Feldman, Matthews, and Salam, ' if our g's and a' s
are identified with their vertex constants.

One notices that g(m'} in (19) and (20) is what one
calls the coupling constant of the pion with baryons in
the dispersion relations for the pion-baryon scattering
amplitudes. The same remark applies also to gx(mx')
in (24). Therefore, it is very natural to regard the a' s

G. Feldman, P. I'. Matthews, and A. Salam, Phys. Rev.
121, 302 (1961).

in (19), (20), and (24) as weak coupling constants of
some type. The usefulness of defining the weak coupling
constants this way is discussed in Secs. III and IV.

There is a simple graphical way to enumerate the
singularities of the invariant decay amplitudes. First,
one introduces the 6ctitious particle mentioned in
Sec. I to the intitial state, in addition to the decaying
particle. The decay diagram then consists of four
particles, rather than the original three. In order to
locate the singularities with respect to s, t, aud I, one
proceeds exactly the same way as one usually does in
the case of scattering, except that the vertices which
the fictitious particle end up with are always the weak
vertices, and the other vertices are to be regarded as
the strong ones. This rule follows directly from the
expressions (14) and (15).

One of the fundamental postulates in the present
approach is that the invariant decay amplitudes
satisfy the simplest dispersion relations consistent with
the above singularities. Therefore, we assume that
F($,t,N) and F'($, t,u) satisfy the following double
dispersion relations:

F($,i,u)

Rt R„1
+ +- +-

S—So t—to I—No m',

" p~a(t', I')dt'du'

, , (t' —t)(u' —u)

pa i (n', $')du'd$'-

„„(I'I) ($' ——$)

(25)

in terms of the obvious notation and a similar expression
for F'($,t,u). In (25), F($,f,u) is assumed to have one
pole in each of s, t, and I, since the exact number of
poles is completely irrelevant in the following discussion.

One finds from (25) the limit of F($,t,u) when one of
the variables become in6nite while the other remains
6nite. For example, when s~ ~ with t fixed, one
obtains from (25) tha, t

lim LF($,f, u) 7,i;.,d ——E,/(3 —t,), (26)

lim F($,t,u)=0. (27)

The single dispersion relations for F($,t,u) can also
be inferred from (25). For example, when F($,t,u) is
regarded as a function of $ with t fixed, (26) implies
that F($,I,,n) approaches a real finite number at infinity

provided that the double integrals in (25) converge
individually for all values of s. One obtains similar
expressions as (26) when other limits are considered.
When all of s, t, and u become infinite, one obtains also
from (25) that
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in the s plane with t fixed. Therefore, F(s,t,u) satisfms

E„
F(s,t,u) = + +

s—Sp t—tp Q—Qp

1 "pi(s', t)
+— ds +

s1 $ $

"p,(u', t)du', (28)
Q —Q

in which the limit (26) is used. In fact, one obtains
(26) also from (28) in the limit when s approaches
infinity, provided that the integrals in (28) converge
individually for all s. One can show that the discontinui-
ties in (25) and (28) are related, for example, by

1 "pi2(s', t') "p3i(u', s')
pi(s', t) =— dt' — du', (29)

g,

where t' in the last integral stands for M'+M"+m
—Q —s.l

Those who are interested in seeing the details of this arugment
are referred to M. Sugawara and A. Kanazawa, Phys. Rev. 123,
1895 (1961).

III. LEPTONIC DECAYS OF PIONS AND KAONS

The leptonic decays of negative pions and kaons
are considered in this section. The notation which is
introduced in Secs. I and II is used, except that now the
particle with mass 3f' is identified as the neutrino. It is
assumed that the neutrino mass is zero (M'=0) and
that the neutrino has the negative helicity. The question
of whether or not the neutrino is the same in these
leptonic decays is irrelevant. What is important to the
following discussion is that a local weak Hamiltonian
Hq (x) is responsible for these leptonic decays in the
first order, and the leptons participate only in the weak
interaction.

The over-all decay matrix element is given also by
(7) in the first order of H~(x). The matrix element in
the last expression in (7) can, in this case, be written as

~(2po)'"&p', VIH (o) Ip)
= I:u(v)F (1+»)u(—p')5, (3o)

compared with (8) in the previous case. The difference
between (8) and (30) is simply due to the requirement
that the neutrino has the negative helicity. The constant
F is dimensionless and is real if H~(x) is time-reversal
invariant. The decay matrix element off the energy-
momentum shell is defined in exactly the same way as in
Sec. II. This matrix element can be written also as (9),
except that G(s, t,u) and G'(s, t,u) are the same in this
case. The relation (10) holds also in this case.

In order to locate the singularities of F(s, t,u), it is
the most convenient to eliminate' the leptons in the
above decay matrix element. Because of the fact that
the leptons participate only in the weak interaction,
one obtains, when the electromagnetic correction is

lgnol ed'

—&(2p,)'& &p', vlH~(0) I p)
= —(2po)'"I: (q)&0 l~'H (o)/

xg(0)w, (0) IP) (—P')5, (31)

F (s,t,u) =Fi+ (m/M)F2 F. ——(34:)

Therefore, according to the present approach, the
invariant decay amplitude F(s,t,u) satisfies no (non. -

trivial) dispersion relation, in contrast with various

dispersion relations' ' proposed in the conventional

approach. The basic reasons for the result (34) are that
the leptons participate only in the weak interaction
and that the electromagnetic correction. is ignored.

In the dispersion theoretic approach to scattering,
various constants in the dispersion relations (the
residues in the pole terms and the subtraction constants)
are regarded as coupling constants of some type.
Similarly, in the dispersion theoretic approach to the
weak interaction, some constants in the dispersion

relations for the invariant decay amplitudes ought to be
identified as weak coupling constants of some kind.
Since the invariant decay amplitudes themselves are
constants in the leptonic decays of pions and kaons, it
is quite natural in the present approach that one

regards these invariant amplitudes as essentially the
weak coupling constants.

One here observes that the usual V—2 theory of the
weak interaction predicts that there is in (32) only the
term with F2 and that this constant F2 is independent
of whether the charged lepton is the electron or the p,

meson. One can construct a dispersion theoretic version

of the usual V—2 theory, by defining the weak coupling
constant C by

F= (nz/M)C, (35)

where 1t,(x) is the neutrino field operator and 4(x)
is that of the charged lepton. Since the matrix element
on the right-hand side of (31) depends only on the
four-momentum p, the covariance argument leads to

—i(2p, ) ' &ols'H (0)/g(0)&1t. (0)I p)
=Fi(1+»)+Fi'(1—y~)

—(i~ p/M) {F2(1+»)+F2'(1—»)}, (32)

where M is inserted in the last term to make all the
F's dimensionless. In (32), all the F's are invariant
functions of p' and, therefore, are constants as long as
M is regarded as a constant. From (31) and (32),
one obtains

—t(2po)"'&p', v I
H ~(0) I p)

= {u(q)LFi+ (m/M)F g+ (iv k/M)F25
X (1+ps)u( —p') ), (33)

where M' is put equal to zero.
By comparing (33) with (9), one finds that F(s,t,u) is

a constant and, thus, equal to F in (30):
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Cir/C =0.97,

C =1..50&10 ~.

(37)

(38)

Presumably the most ambiguous experimental figure
in determining the above ratio is that of the branching
ratio for E~ ti+ v. The value in (37) is based upon 64%
determined by Roe et al."All the previous values" of
this branching ratio are consistently lower than 64%
and make the figure in (37) smaller roughly by 5%.
According to the quoted uncertainties of the experi-
mental data which are necessary to determine the ratio
Ca/C, the figure in (37) is uncertain by not more than
roughly 2%. This leaves a discrepancy from unity of
this ratio of about 1%.

IIesides these experimental uncertainties, there are
some theoretical corrections. Presumably the most
important of all is the electromagnetic correction. Kith
the electromagnetic interaction included on the left-
hand side of (31), one obtains another term on the
right-hand side of (31), upon eliminating the leptons,
due to the fact that the charged lepton participates also
in the electromagnetic interaction. This additional
term gives rise to some analytic structure of the
invariant decay amplitude F(s,t,u). Therefore, it would
no longer be adequate to regard the values of F(s,t,tt) in
its physical region as essentially the weak. coupling
constant. It would still be meaningful to define the
weak coupling constant referring only to the term

B.P. Roe, D. Sinclair, J.L. Brown, D. A. Glaser, J.A. Kadyk,
and G. H. Trilling, Phys. Rev. Letters 7, 346 (1961).According to
Roe, a new determination of this branching ratio is now in progress
based upon a larger number of events. According to Roe, however,
the branching ratio is not expected to diGer very much from 64%
(private communication) .

and requiring that C is independent of whether the
charged lepton is the electron or the p, meson. This
version of the usual U—A theory makes the same
prediction as the latter regarding the following ratios:

zv (n. ~ e+ v)/to (~ —& ti+ v) = 1.28X 10 ',
tv(E ~ e+ v)/ttt(E ~ ti+ v) =0.257 X 10—4. (36)

However, the above version is more general than the
usual U—A theory because the former does not neces-
sarily require the usual form of Hs (a) but is valid
under a wider class of Hrv(x).

According to the usual U —A theory, it would not be
a meaningful question to ask, if the weak, coupling
constant C, defined in (35), is also independent of
whether the decaying particle is the pion or the kaon.
However, this question is of direct significance according
to the present approach, because this concerns directly
the universality of the weak interaction. Ke have,
therefore, determined the empirical values of the two
weak coupling constants C and C~, defined in exactly
the same way in the leptonic decays of these two
particles, respectively. Using the available data concern-
ing the p,-mesonic decay modes, we have found that

which appears on the right-hand side of (31). In other
words, the weak coupling constant would have to be
determined not directly from the observed decay rate
but rather after the electromagnetic correction is
subtracted.

In spite of these uncertainties which are mentioned
above, it. is very tempting to investigate whether the
weak interaction is universal, in the sense that the weak

coupling constants defined as outlined above become the
same in the other weak decays also. For example, we

have defined, in the case of the pionic decays of hyper-
ons, the various constant a's which appear in the pole
terms (19), (20), and (24) of Sec. II. These a's are not
yet dimensionless and, therefore, cannot directly be
compared with the c's in this section. The purpose of a
subsequent paper" is to show that the available data
actually suggest that these a' s, after having been made
dimensionless, are all numerically the same as that
in (38).

IV. SUMMARY AND DISCUSSION

Ke have discussed in the previous sections how one
can introduce an analyticity assumption for the two-

body weak decays without regarding the masses of the
particles as variables. For this purpose, one first defines

the decay matrix element off the energy-momentum
shell. This introduces the invariant decay amplitudes
o6 the energy-momentum shell which are the invariant
functions of the invariant variables s, t, and I dehned

by (3). One then assumes as the fundamental postulate
in the present approach that these invariant decay
amplitudes are analytic in s, ), and I except for the
poles and cuts which occur along the real axes of these
variables and behave in possibly the simplest way at
inanity with respect to these variables.

The above singularities can be located more or less
in the same way as they are in the case of scattering.
This is because one is in the present approach off the
energy-momentum shell and, thus, one has an extra
energy momentum which can formally be attributed to
the fictitious particle present initially, in addition to the
decaying particle. In other words, one has, so to speak,
four particles to deal with. This analogy is obvious in

the diagrams of Fig. 1.
According to the definition (3), the variables s, t, and

m are the so-called total energy squared in the three
channels appropriately defined. In the conventional
approach, ' ' these are simply the m, asses of the particles
involved. For this reason, one may think, offhand, that
the difference between the present approach and the
conventional one is more or less a matter of terminology
or interpretation, or the difference is, after all, very
small even if it exists. This is correct in some sense, but
there are rather surprising differences in some of the
consequences of these two approaches.

"M. Sugawara and T. Sakuma, following paper, Phys. Rev. 135,
8260 (1964).
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In the case of the pionic decays of hyperons discussed
in Sec. II, the usual heuristic argument implies that
there should be no parity violation in the pole approxi-
mation in the conventional sense, while the pole
approximation in the present approach is identical to
the pole approximation due to Feldman, Matthews, and
Salam, .' If this pole approximation' is valid to some
extent, one may say that the present approach is more
useful than the conventional one in the case of the
pionic decays of hyperons.

A very remarkable difference between these two
approaches arises in the case of the leptonic decays of
pions and kaons. It is shown in Sec. III that the
invariant decay amplitude remains a constant, even o6
the energy-momentum shell. This means that one
obtains no (nontrivial) dispersion relation in the present
approach, in contrast with the various dispersion
relations' ' proposed in the conventional approach.

The present approach differs also from the conven-
tional one in interpreting the empirical fact that the
ratio in (37) is almost unity. This can only be a pure
accident according to the conventional approach,
because these c's in (37) have complicated structures
which are expressed by various dispersion relations. ' '
On the other hand, the equality of these c's in (37)
implies the universality of the weak interaction accord-
ing to the present approach, because these c's in (37)
are the genuine constants which can be identified as the
weak coupling constants. According to Sec. III, these
c's in (37) are also independent of whether the charged
lepton is the electron or the p meson. Therefore, the
present approach is not only simpler but also m,ore
useful than the conventional one, as far as the leptonic
decays of pions and kaons are concerned.

The above universality of the weak interaction is
further extended in a subsequent paper" to the pionic
decays of hyperons. The various constants a's which
appear in the pole terms (19), (20), and (24) are first
made dimensionless by introducing appropriate mass
units. The above universality then implies that all
these a' s, after having been made dimensionless, are
numerically the same as the c's in (37) and (38). It is
found in the subsequent paper" that the available data

y/n

p k

(a) (b) (&)

FIG. 1. Diagrams (a), (b), and (c) indicate those intermediate
states, denoted by n, which give rise to the singularities with
respect to s, I, and u, respectively. The vertices with 8' within
circles stand for the weak vertices, while those with 8 are the
strong ones. The dashed lines denoted by k indicate the Qctitious
particle mentioned in Sec. I of the text.

are actually consistent with the above universality as
long as the pole approximation' is valid.

Therefore, it appears that the present approach is
more useful than the conventional one as far as the
pionic decays of hyperons and the leptonic decays of
pions and kaons are concerned. However, the conven-
tional approach has made a successful correlation' —' of
the leptonic decays of pions with the P decay of nucleons.
Therefore, it would not quite be until one works out the
corresponding correlation according to the present
approach that one can really tell which approach is
more useful. The P decay of nucleons has not yet been
fully investigated along the line of the present approach.

Besides the analyticity assumption, we assume in the
present work some other basic assumptions. The basic
assumptions are summarized at the end of the introduc-
tion. As is stated there, the existence of a localized
weak Hamiltonian Hs(x) appears to be a crucial
assumption, because the present author does not know
how to formulate the present approach without this
assumption. The present approach can be formulated
without some of the other basic assumptions and/or even
if the weak boson exists. However, if the weak boson
exists, almost all the details given in Secs. II and III
have to be rederived because all the decays discussed
there become of the second order with respect to H s (x).


