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Conservation of Particle Number in the Nuclear Pairing Model*
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The Euler —Lagrange equations corresponding to a Bardeen —Cooper —SchrieGer state that is an eigenstate
of the number operator are derived and solved numerically for a 8 interaction. The errors due to the non-
conservation of particle number in the usual Bardeen —Cooper —Schrieffer theory are studied as a function of
particle number, level density, and strength of the pairing interaction, A proof is given that for attractive
pairing interactions the lowest energy solution corresponds always to real positive probability amplitudes
vyp Nyo

I. INTRODUCTION pairing interaction. " This investigation showed the
results of the superconductivity model to be in re-
markably good agreement with the results obtained by
an exact diagonalization, even for small particle num-
bers. Several papers related to our topic have been
published this year and have just become known
to us.""

In a recent paper Hogaasen-Feldman investigated the
components in the ground and erst excited states of
the pairing model that correspond to different numbers
of particles. "Meanwhile, various pairing-model calcu-
lations have been performed with more realistic forces
such as 8 forces, ' 8 plus quadrupole forces, ' and finite
range forces,"' also taking into account the effect of
the residual interactions on the Hartree-Fock field. In
view of this increasing number of applications, it
seemed worthwhile to study more widely the errors ex-
pected as a result of the nonconservation of particle
number, formulating the pairing model consistently
with conservation of particle number and comparing
the final results with those of the BCS method.

In Sec. II, we derive the variational equations corre-
sponding to a BCS state that conserves particle number.

In Sec. III, we generalize this treatment to odd
numbers of nucleons. In Sec. IV, we show that use of
the saddle-point method for the evaluation of the con-
tour integrals leads us back to the usual supercon-
ductivity treatment. This, of course, can already be
found in Bayman's paper. ' %e include the proof for
the sake of completeness.

In Sec.V, we present results obtained from a numerical
solution of our variational equations and compare them
with the corresponding results of the BCS treatment.

HEX the theory of superconductivity had been
developed, "it was pointed out very early by

Bohr, Mottelson, and Pines, that this theory might
also be a useful tool in nuclear physics. ' Several authors
have applied the theory to heavy and medium-heavy
nuclei and have obtained encouraging results on the
basis of a simple constant pairing interaction. ' ' In
both formulations of the theory of superconductivity,
the particle number is not conserved; only the expecta-
tion value of the number operator is kept equal to the
required particle number.

One can easily project from the Bardeen-Cooper-
Schrieffer (BCS) state an eigenstate of the number
operator. ' Bayman showed that starting from such an
eigenstate of the number operator, we are led back to
the BCS treatment as long as we evaluate the entering
expectation values with the saddle-point method. ' A
crude estimate shows that the saddle-point method can
be trusted as long as the number of levels that are
neither empty nor fully occupied is large compared to
one. ' For applications of the theory in nuclear physics
this condition is generally poorly fulfilled. Besides
Bayman, Blatt considered trial wave functions of the
BCS type that conserve the particle number. "

Kerman, I awson, and Macfarlane compared the re-
sults of the superconductivity model with the results of
an exact diagonalization assuming again a constant
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The Appendix contains proof that we can restrict
the variational parameters of the BCS state to real
positive quantities without loss of generality.

8=+ e„a„ta„+
+ (&1r &2r &3) &4)

vivrvmr4avi av2 av4av3 y (2' )

in which a, and a, are creation and annihilation opera-
tors, respectively, of particles in state ~; e, are single-
particle energies that should contain a part of the real
nucleon-nucleon (X-Ã) interaction;

l rivmrrv4= s(vtvs I "I vsv4) i

where (vtvsIeI vsv4) is the matrix element of the 1V-X
interaction between antisymmetrized and normalized
products of single-particle wave functions; and v stands
for the set of quantum numbers that define a single-
particle state in the chosen representation. Using the
j-coupling scheme we have

v—= (o, j, m)0),
—v—= (a, j, rrt(0),

where j= total angular momentum, m= magnetic quan-
tum number, a.= any additional quantum numbers that
characterize the state. The distinction between states
with positive and negative magnetic quantum numbers
is, of course, merely a matter of convenience. We choose
a representation in which the Hamiltonian without
interaction is diagonal. We may think of the single-
particle energies e, as discrete energy levels of either a
harmonic oscillator or a more realistic single-particle
potential.

Furthermore, we use a phase convention that is par-
ticularly convenient in the HCS theory. It can be
related to the usual phase convention of Condon and
Shortly" in the following way: All single-particle states
with negative magnetic quantum number m&0 differ
from the corresponding states in the Condon-Shortley
(CS) convention by a factor (—)'+i+~ (i=orbital angu-
lar momentum),

I
jlrrt)= (—1)&+'+

Ijim)cs 'for nt(0, (2.1')

I jlrrt) =
I jlrrt)cs for nt) 0. (2.1")

We describe the system. by a trial state 0 that we
obtain by projecting from the BCS state an eigenstate
of the number operator E,

X=+~, a,ta, . (2.2)

'OE. V. Condon and G. H. Shortley, The Theory oj' Atomic
Spectra (Cambridge University Press, New York, 1959), p. 48.

II. THE EULER-LAGRANGE EQUATIONS CORRE-
SPONDING TO A BCS STATE THAT

CONSERVES PARTICLE NUMBER

In occupation number representation, the Hamil-
tonian for one sort of interacting nucleons has the form

This state 4 can be written in the form' "

0 =C d "&—' u„v„u„~a„~Co, 2.3
V

where Co is the vacuum state, eo is the number of
nucleon pairs, and C is a normalization constant that
we define by requiring

or
(+I+)= I,

I
CI'= 1/( —4~s)see.

(2.4)

I For the definition of Ree see Eq. (2.8).j The contour
may be any closed path around the origin.

For interactions that exhibit negative pairing-type
matrix elements we obtain the lowest energy solution
for real positive u. and ri„. (For proof see Appendix A.)
Furthermore, we may require

u,s+s,s=1 (2 5)

s{(eIaI~)—z(eI+)) =0. (2.7)

We define the following functions as residues of simple
contour integrals in the complex plane:

R„"(v.. .vtv)

d» '"' "' 'II.~. ," ..~(u '+»') (2 g)
27ri

In this paper we shall sometimes refer to these func-
tions as "residuum integrals. " The X states listed in
parentheses are those that are to be excluded from the
product Q.(u.s+v„'s). For X=O the product contains
Xe different factors (u„s+ss„2). Physically, Ee is the
finite number of pair states (v, —v) that we take into
consideration in a given problem. In Appendix 8, we
have put together some useful mathematical properties
of the functions R ~(vt, ,v„). By definition, we put

2' If not mentioned differently the indices are always supposed
to run only over positive values of the magnetic quantum number.

(see Appendix A). Henceforth, we will therefore con-
sider the u, and v, as real positive quantities, subject
to condition (2.5). We wish to remark at this point
that the total energy

&= (+
I
& I+&/(+ I+) (2.6)

remains unchanged if we multiply all the quotients
v„/u, by a common factor x. Thus, even with (2.5)
holding, the set of parameters u„, v„ is not uniquely de-
fined by the variational problem (see Appendix A).

Next we ask for the Euler-Lagrange equations that
must be fulfilled as a necessary condition for (O'I HI%')
to be stationary. The variations of 0' are restricted by
the subsidiary conditions (2.4) and (2.5). Disposing of
the restrictive condition (2.4) by the use of a Lagrangian
multiplier, we have to deal with the variational problem,
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residuum integrals that contain any pair of equal argu-
ments equal to zero. Using the residuum integrals (2.8),
we can write the total energy E as

In this formulation we have assumed

6v 6—v ~ (2.10)

L~;=2 Q o„v„2RII(v)/Rpp+4 Q V„„„„v„2RII(v)/Rpp

+4 Q (VVIVIVIVI+ VVI—VIVI —V2)vVI vv2 R2 (Pllv2)/R0
&1&2

+4 Q VVI—VIV2—V2Nvlvvlgv2~V2RI (Plv2)/Rp (2 9)
&1&2

(tv+Fv'+Av)BV V.+V6'(vQ v—'Vv )=0. (2.11)

The quantities c„I'„A„,A„are defined as follows:

The sums are extended only over states with positive
magnetic quantum numbers. Variation of (2.9) with
respect to v„and N„, with condition (2.5) holding, leads
to the set of equations

0„=(0„+2U„„„„)LRI'(v)]/Rp',

I'„=4p(U„„,„„,+V„„,„„,)v„,2I R22(PIP)]/Rpp,

(2.12)

(2.13)

A„=2 p V„„„,„,23„,v„,LRI2(vlv)]/Rpp, (2.14)

Rp'(v)R2'(vlv) —RI'(v)RI'(PIP)
Av g (&v+2UVI —vlvl —vl)OVI

(Rpp)'

(Ro')'&1&2

Rp (P)R3 (Plv2P) Rl (P)R2 (vlv2P)
+2 Z (Uvlvlvlv2+ Uvl —v2vl —v2) vvl vv2

+2 Q Vvl vlv2 V2—+VIVIV—INV2~V2

&1v2 (R 0)2 ~00

Rp (P)R2 (PIV2P) —Rl (V)R1 (P1P2P) Rp'(v) —Rl'(v)
+ I

0„2|„2+I"„21„2+26„m„o„] (2.15)

The quantities I'„and 6, are the Hartree-Fock and
pairing potentials that appear in an analogous way in
the BCS method. In our formulation the term with the
diagonal matrix element V, „„„is included in the single-
particle energy 0„(see 2.12), since it contains the same
residuum integral as the single-particle energies. This
is merely a matter of convenience. In Sec. V we shall
rearrange the terms in such a way that they immedi-

ately yield the corresponding quantities of the BCS
theory when the saddle-point method is applied.

The quantity A„has no counterpart in the equations
of the BCS theory, which contains instead a constant
chemical potential. This potential is chosen so as to
make the expectation value of the number operator
equal to the required particle number. In the deriva-
tions of the Eqs. (2.11) the quantity A„arises from the
differentiation of the residuum integrals with respect to
1I„and u„(see Appendix B). In the formulation (2.15)
the recursion relations (B1) and (B2) have been used.

An equivalent formulation of A„ is

g 0 Rpp

R2 (PIV2V) Rl (Plv2P) Rl (P) Rp (V)
+2 Q VVI—VIVI—VImvpVINV21IV2 2E I (2.16)

Bopg 0&1&2

R2 (VIP) —RI (PIP) R3 (Plv2P) R2 (Plv2P)
v 2(pvl+ Uvl vlvl vl) vl +2 2 (Uvlvlvlv2+ Uvl vlvl —v2) vl v2

f '=1—e '=N 2LR '(v)]/Ro' (2.18)

where J' is the total energy given by (2.9).
In the usual superconductivity theory, v„' is the

probability for the pair of states (v, —v) being occupied,
and n„ is the probability for this pair being unoccupied.
This is no longer true in our treatment.

Let us call e 2 the probability of occupation, f„' the
probability of nonoccupation of a pair of states (v, —v).

Then

Ov2= (IIV
I

(avt3—v) tava —V IIIV) = v„2LRI'(v)]/Rpp, (2.17)

Ep

8v Sp ~
2=

III. BLOCKING IN THE THEORY WITH
CONSERVED PARTICLE NUMBER

The pairing model has been extended to systems with
an odd number of particles by blocking one of the avail-

Of course, the sum of the occupation probabilities is
equal to eo, the number of pairs of particles
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RP(vv) RP (Pv)8=2 Q„e„v„2 +op+4 Q„V„„„„P„2
Rp'(v) Ro'(v)

able pair states. '" In our theory with conserved par- quantities e„and A„. The total energy E has the form
ticle number, a system with an odd number of particles
will be described by the state

+V= C d "' 'an't NV VV aVtu —V~ C 0 3 1
V+V

Of course, C is again the normalization constant given by

I~l'=I:(—4~')Ro'(P) j ' (3.2)

no is the number of pairs, the total particle number
being (2ppp+ 1).The quantum state P is occupied by the
odd nucleon. The formulas that we will obtain, starting
from state (3.1) can be almost guessed without calcula-
tion: All residuum integrals will contain the additional
argument v, which means that this state is never avail-
able to any pair of particles. The interaction of a pair
of particles with the odd nucleon will be represented by
a special term that will modify the definitions of the

R2 (VP1V2)
+4 2 vlv2 ( VV1V2Vlv2+ VV1—V2vl —V2) Pvl PV2

Ro'(v)

RP(PPt)
+4 ZPI(Vvvlvvl+ Vv vlv —vl)svl

Ro'(v)

RP(PP1V2)
+4 Zvlvp Vvl vlv2 P2+vl vllv2 v2 ( '3)

Rp'(P)

The Euler-Lagrange equations have the form (2.11),
with the coefficients

ev= (ev+2 Vv—vv—v)R1 (vp)/Rp (v)
+2 (Vp p +Vp vv —v)Rp—( Pv) /Ro (P) (3 4)

I",=4 +(V.„,„,+V. „,„„)P„,2)R22(Pvtv) j/Ro'(P),
Vl

h„=2 Q V„„„,„,N„,v„,R1'(vvlv)/Ro'(P),

(3.5)

(3.6)

Rp (PV1P) Rp(PP1V) R2'(P vlv) —RP (Pvlv)
+v p (evl+2Vvl —vlvl —vl)svl +2 2 (Vvvlvvl+ Vv—vlv —vl)svl

v1 Rp'(P) Ro'(v)

Rp (vvlvsv) Rp (—vPlv2P)
+2 2 (Vvlvlvlvl+ Vvl —vpvl —v2)&vl ov2

V1V2 Rot(v)

R2 (vPlv2v) —Rl (Pvlv2v) (E ep) I Rl (Pv) —Rp—(Pv))
+2 p Vvl —vlv2-v2Nvlevllvpev2 (3.7)

VQV2 Rp'(v) 2 Rp'(r)

Blocking of different states P will, in general, lead to
diferent total energies E. The lowest of these energies
is the ground state of the system with odd-particle
number; the other ones correspond to excited states.
The generalization to the case of neutrons and protons
is straightforward. The results are given in a laboratory
report. " where

1
R„"(vl,v~) =— dze«v&X„~(S)

2%i

Np

(4.1)

proof only for the sake of completeness, using a slightly
different formulation.

We write the residuum integrals (2.8) in the following
way:

IV. USE OF THE SADDLE-POINT METHOD FOR THE
EVALUATION OF THE RESIDUUM INTEGRALS

f(s) = ppp lns+g l—n(2p„2+so„2);
V=1

(4.2)

Bayman' has shown that using the saddle-point
method for the evaluation of the integrals R„~(vl, ,v~)
is equivalent to the BCS treatment. He assumes that
the saddle points corresponding to diferent integrals
E„N are almost equal, and he shows that this is the
case for a constant level density. We reformulate his

"V. G. Soloviev, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Skrifter 1, No. 11 (1961) with references to earlier work; S. Wahl-
born, Nncl. Phys. 37v 554 (1962).

+ K. Dietrich, H. J. Mang, and J. Pradal, Lawrence Radiation
I aboratory Report UCRL—11083 (unpublished).

X„"(svvl vs) =s"—'/g„y vl v~ (Iv'+ssv') . (4.3)

p 2So
f'(so) = ——+2

SO " Nv +SO2PP2

=0. (4 4)

Thus, we can use the saddle-point method to evaluate

f(s) and x„~(s) are analytic functions of s on the path
of integration. The path of integration can be chosen so
that it crosses the saddle point zp of f(s) on a line of
steepest descent, the saddle point being defined by
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FIG. 1. Spectrum of single-particle
energies for spherical nucleus.

We observe that Esp as well as Eq. (4.9) contains sp

only in the combination sp ~ ~ . Therefore, we can choose
sp= 1 without loss of generality. This is Bayman s line
of argument. Thus, it is shown that using the saddle-
point method in the theory with conserved particle
number is equivalent to the usual BCS treatment if
we choose the saddle point at sp= 1. In this case all the
residuum integrals become equal if they are evaluated
with the saddle-point method.

In the Fuler-Lagrange equations (2.11), the term
8„N„v„contains the diagonal matrix element V, „, „ in
the form

2V, „,u,v, LE2'(v)]/Rpp.

We can write this term as

3f3
2V, „.I Z, '(v)/Zpoju„. ,

=4V. „,LE2'(v)/Epp)v, pu„v„+2V„„„,
XLE2'(v)/Ep'$u. v. (u.'—p') . (4.10)

the residuum integrals (see Appendix C). We obtain So, if we define ~„, F„, A„as

1 e (*o X "(Sp,v2 .v~)
E„"(v2 vg) =

(22r)'"
with

4nof"(sp) = ;+2-
v (u„+spv„)

(4.5)

(4.6)

(4.11)

R2" (v)
+4V„„„„0„2 —, (4.12)

g o

e, = p,LE2'(v)/Eppj,

E2 (vlv)I'.=4 Z (V-2 ..2+ V.—..—.2) &.2'
V g p

The total energy E (2.9) as well as the variational
equations (2.11) contain only quotients of residuum
integrals. By using the saddle-point method, the total
energy E will be given by

E=2 Q p„n„2X2'(sp, v)+4 2 U.—-—„0„2~2'(sp,v)

+4 Z (Vvlv2v2v2+ Vv2 —v2vl —v2)2vl vv2 2 (sp)vlv2)

and
R2 (v&v)

~2 2 2 Vv—vv2 —v2uvlpv2
v1 ~oo

R,'(v)
+2V„„„„u„v„—,(4.13)

Eo

these quantities go over into the corresponding quan-

v1v2

+4 Q Vv2 —v2p2 —v2uvpvluI pv2Xl (Sp&vlvp) (4 7)
v1v2

In Appendix A we shall show that the set of v„and Nv

is not unique. Given a set of N„and v„ that corresponds
to a saddle point sp/1, we can always 6nd a trans-
forrnation Lsee (A4)j such that for the equivalent solu-
tion S„v„of the variational equations the saddle point,
will be at zp ——1. For sp ——1 Eq. (4.4) is the subsidiary
condition required in the theory of superconductivity

P &.'= (+scs I 2 & t+, I+sea) =up (4 g)

ll ~„(MeV)
4.2

0- ~

-2---

j( c„ (MeV)

q=0

f—5
2

P—2

FIG. 2. Spectrum of
single-particle energies
for deformed nucleus
(gN'18 0 4 2)

and (4.7) is the total energy of BCS. We can also argue
in the following way: We may multiply E by sp and
consider the variation of Ezo, since E will be stationary
if Esp is stationary, and vice versa. Equation (4.4) can
be written

ot3

f—T2

up —g (spp„2)/(u„2+spp„2) =- 0. (4.9)
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In Figs. 3—15 we plot on the abscissa the quantities

—l.6 /g =e+p Bcs (5.1)

-4 -2
h„(MBV)

- l.4

I.2

—l.o
EIs
CJ
5) m

—0.8
JC

—0.6

—0.4

—0.2

——0
0

where e, are the single-particle energies and I',B is
the Hartree-Fock potential I', in the BCS theory, i.e.,

(5.2)
vl

In the case of our spherical nucleus, p—= (angular
momentum k, magnetic quantum number m). Physi-
cally, h„ is the average field acting on a particle in
state v. It depends, of course, on the interaction
strength m and on the number of particles.

We call the pairing interaction strong if the pairing
potential A„B in the BCS treatment is larger in abso-
lute value than the experimental odd-even mass dif-
ferences where

FIG. 3. Level occupation p«as a function of the (self) energies
h«~ for two pairs (««0=2) and diiferent interaction strength.
+ solid line, theory with conserved-particle number; e dashed
line, BCS theory.

tities of the BCS theory if the saddle-point method is
applied.

V. NUMERICAL RESULTS

We wish to study the difIerences between the BCS
theory and the results of the theory with conserved
particle number as a function of (a) the particle
number, (b) the strength of the pairing type inter-
action, and (c) the level spectrum. For this we use the
special case of a level system with 15 pair states and an
attractive 8 function potential of strength constant m.
We consider separately the case of a level spectrum that
corresponds to a spherically symmetric nucleus (see
Fig. 1) and one that corresponds to an axially sym-
metric, rather strongly deformed nucleus (see Fig. 2,
deformation parameter rf of Nilsson" =4.2).

In this publication, we only study the errors due to the
nonconservation of the particle number.

The results of the BCS theory with conservation of
particle number will be compared to the results of an
exact diagonalization in a forthcoming paper of Ras-
mussen and Rho.

We have also performed some calculations with more
complicated forces such as delta-plus quadrupole and
finite-range forces and have found the expected result
that the errors due to nonconservation of particle
number do not depend much upon the special type of
forces but mainly on the relative strength of the at-
tractive short-range part of the force compared to the
average level spacing. Thus, it is sufhcient to study the
question of nonconservation of particle number in the
special example mentioned above.

~v 4 ~ ~v—vvj —vylvt&vt ~
BCS

vj.

(5.3)

—5.0

—2.5

—2.0
Vl
CJ
Clm

CL

l 5 a

CL

—I.O

—0.5

0-4 -S -2 -l 0
hk~ (M«)

[The factor of 4 used in Eq. (5.3) is a different conven-
tion than the factor of 2 used in Eq. (2.14).$ The level
spectrum we have chosen corresponds to a nuclear
situation in the Pb"' region where the odd-even mass
differences are known to be of the order of 1.0 MeV.
This means that m= —1 must be regarded as a strong
pairing interaction, m= —0.9 is still slightly stronger
than realistic, m = —0.45 is slightly weaker than realistic,
and ze= —0.2 is extremely weak.

In the case of the spherically symmetric nucleus the
levels are degenerate. For this case, we de6ne quan-
tities p«as the sum of occupation probabilities for all
the degenerate magnetic substates of the level with
angular momentum k,

(5.4)

24 S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. Fys. Pro. 4. Level occupation pI, as a function of the (self) energies h&„-

Medd. 29, No. 16 (1955). for six pairs (I«——6) and different interaction strength.
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strongly occupied than a neighboring one with lower
energy. This happens if the gain in pairing energy is
larger than the loss in single-particle energies. This
phenomenon is well known since the early days of the
shell model. "

CL

2
CL

—20

—15

&7
I

-6
I I

-5 -4
h„(MeV)

0-2

Pro. 5. Level occupation pe as a function of the (self) energies he
for ten pairs (NO=10).

and PIncs is the corresponding quantity in the BCS
theory,

p sos —pp 2 (5.5)

Figs. 3, 4, and 5 show pq and ppcs as a function of ht. „,
for pairing interactions of different strength and for
different pair numbers mo.

Besides realizing that the agreement between the
results of the BCS theory and the theory with conserved

I

-5
I I

-4 -3 -2

hkm (Mev)

-5
0

A clearer picture of the errors connected with non-
conservation of particle number can be obtained from
Figs. 6, 7, and 8.

A procedure that is frequently used to improve the
result of a BCS treatment consists in. first solving the
BCS equations and then projecting from the obtained
BCS state the required eigenstate of the number
operator. In this case, a new set of occupation proba-

FIG. 7. Accuracy of occupation probabilities in methods with-
out conservation of particles for different pair numbers and
strength constant 8"= —0.45.
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FIG. 6. Accuracy of occupation probabilities in methods without
conservation of particles for different pair numbers and strength
constant 5'= —0.9. & solid line, BCS method with subsequent
projection; ~ dashed line, BCS method.

particle number is good, rather independently of the
number of pairs, we mention that for strong and
moderately strong pairing interaction, the BCS theory
overestimates the dissolution of the Fermi surface; for
weak pairing interactions it underestimates it.

Furthermore, we observe from Fig. 3 that there may
be cases in which a level of higher energy is more

-4 -2
hk~ (M~V)

0'

FIG. 8. Accuracy of occupation probabilities in methods with-
out conservation of particles for different pair numbers and
strength constant S'= —0.2.

25 M. Goeppert-Meyer, J. H. D. Jensen, Elementary Theory of
Nuclear Shell Strgctttre (John Wiley fk Sons, New York, 1955),
p. 8.
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0.6

cv 4—02

Figures 9 to 12 show the corresponding plots in the
case of a level scheme corresponding to a deformed
nucleus. Figures 9 and 10 show the occupation proba-
bilities as a function of the single-particle energies h„.
The distributions of energy levels are very smooth now,

I

-4
I

-2
h„(MeV~

00

Fzo. 9. Occupation probabilities for deformed nucleus (YJN ]„,
=4.2), pair number co=3; strength constant W= —1.0. E solid
line, theory with conserved particle number; ~ dashed line, BCS
theory.

bilities e„~' is calculated according to (2.17) from the
set of v„' that has been obtained as a solution of the
BCS equations.

In order to measure the accuracy of the BCS solution
and of the solution obtained from it by projection, we
define the quantities

and

Aacs= L(e '—v„acs')/epj&&100

A =
I (e '—e '))e,s]&&100

— I.Q

—0.8

—0.6
Ol g

—04 „„"

and plot them against h„ for different pair numbers sp
and different strength constants zv. This is done in
Figs. 6, 7, and 8 for the case of spherical nuclei. We can
learn several things from these diagrams:

(1) The smaller the occupation probabilities in ques-
tion, the larger the deviations of the BCS and projec-

lg
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lgi4

ILa
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np =10

t
no "
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1I
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and no shell effects are discernible. Figures 11 and 12
again show the fractional errors of the BCS treatment
and of the BCS calculation with subsequent projection.
Evidently, the statements we have made for the case
of the spherical nucleus remain correct also for the

1
PO

—18

FIG. 11.Accuracy of occupation probabilities in methods with-
out conservation of particles for deformed nucleus (gN;~,„, =4.2),
strength constant m= —0.9.
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Fro. 10. Occupation probabilities for deformed nucleus (gN;~.„,
=4.2), pair number F0=6 and different strength constants.

tion results from the ones with conservation of particle
number.

(2) The weaker the pairing type interactions the
larger the deviations of the BCS and projection results
from the ones of our method. In this connection, we
stress that the projected solution is only nearer to the
solution with conservation of particle number, if the
pairing interaction is not too weak.

(3) In all the cases considered, the solution obtained
by projection yielded too small occupation probabilities
for the weakly occupied levels. In other words, the pro-
jected solution generally underestimates the smearing
out of the Fermi surface.
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Pro. 12. Accuracy of occupation probabilities in methods with-
out conservation of particles for deformed nucleus (gN;~„, =4.2),
strength constant 8'= —0.45.
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FIG. 13. Accuracy of the saddle-point method for diferent pair
numbers and spherical nucleus-strength constant 5'= —0.9.

deformed nucleus. For the case of a strong pairing-type
force the projected solution becomes a very good
approximation.

Generally speaking, the errors due to nonconserva-
tion of particle number are appreciable only for the
small components of the wave function. These small
components of the BCS state will usually diRer from the
corresponding components of the exact solution by
amounts of the same order of magnitude. Preliminary
calculations show that for rather weak, butnot too weak,
pairing interactions, conservation of particle number
improves the BCS results appreciably as compared to
the exact solution. " At this point we would like to
mention that once one has decided on solving the BCS
equations with the help of a fast computer it is not
much more difFicult to solve the equations given in this
paper. The residuum integrals E„~ can be calculated
from recursion relation (B1).Since this recursion rela-
tion is very well suited for numerical calculation, a
solution of Eqs. (2.11) is even not excessively more
time consuming than a solution of the BCS equations,
the time depending sensitively on the number of states
Np taken into account.

Figures 13 and 14 are supposed to show the accuracy
of the saddle-point method for the case of individual
integrals E„~.We define the quantity Qt'(v) as

Qt'(v) = LLEt'(v) —Eo'7/Ro'7X 100. (5 8)

The quantities Qt'(v) are evaluated as a function of the
set of v„' that is obtained from a solution of the BCS
equations. Hence, if the saddle-point method were cor-
rect, the quantities Qt'(v) should be zero according to
what has been said in Sec. V. The Qt'(v) can also be
written

Qr'(v) = (e„v'—tIBos')/(n„sos') X 100, (5.9)

i.e., the differences between the occupation probabilities

26 J. Rasmussen and M. Rho (private communication).

v„s' of the BCS theory and the occupation proba-
bilities e„"' obtained by subsequent projection give a
direct measure of the accuracy of the saddle-point
method. For physical pairing interactions the true
occupation probabilities e„' usually lie between the
quantities e ' and v„~ '. This means that for these
cases the BCS theory is more reliable than one would
expect from considering the accuracy of the saddle-
point method.

In the case of odd nuclei we obtain different nuclear
states by putting the unpaired nucleon into different
orbitals. The state of lowest energy is the ground state
of the odd nucleus; the others represent excited states.
These states are calculated in different approximations
in the literature. If we do not conserve the particle
number in the pairing model, we write the wave func-
tion C„- of an odd nucleus with the unpaired nucleon
being in state F as

4p= ~v gvNf(+v+&v+v +—v )40,

and we obtain the excitation energy E„- from

(5.10)

are solved, and the expectation value of the number
operator is kept equal to the required odd-particle
number. The set of N„and v„ thus obtained is used to
calculate E„according to (6.1-1). A better approxima-
tion (approximation B in Fig. 15) consists in solving the
Euler-Lagrange equations corresponding to the trial
state (6.10). One can hope to improve this latter ap-
proximation by projecting from solution B the cor-
rect eigenstate of the number operator (approximation
BP ln Fig. 15).

In Fig. j.5, results of these three methods are com-
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FIG. 14. Accuracy of the saddle-point method for diRerent pair
numbers and spherical nucleus-strength constant 5'= —0.45.

(5.11)

where Ep is the ground-state energy of the odd nucleus.
In crudest approximation (approximation Q in Fig. 15),
the variational equations corresponding to an ordinary
BCS state

(5.12)
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FIG. 15. Excitation energies of
odd nuclei calculated with different
approximations (see text). The
level numbers signify the following
Nilsson orbitals: $651=1; -', 642
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pared with the result of the theory with conserved
particle number (method C).

The cases of 13, 15, 17, 19, and 21 nucleons in 25
Nilsson orbitals are considered. Again, a b force is used
as pairing interaction. The orbitals correspond to the
actinide region and the nuclei successively to Ac, Pa, Np,
Am, Bk. Having neglected the neutron-proton inter-
action, we do not put any emphasis upon obtaining
agreement with experiment. Nevertheless, the ground-
state spins come out correctly. We are interested only
in the comparison of results of the difIerent methods.

Approximation Q in almost all cases, differs the most
from the results with conservation of particle numbers.
The excitation energies differ usually by more than
100%%uo from the values obtained with the theory with
conserved particle number.

The blocking calculations (8) give relatively better
results. However, there are still errors up to more than
100 keV for excitation energies ranging from a few keV
up to 700 keV, and neighboring levels sometimes come
out in the wrong order.

Subsequent projection (BP) improves the blocking
calculations for the case of Ac, Pa, and Np, where the
pairing interaction is relatively strong compared to the
average level distance. In the spectrum of Am this pro-
cedure brings the levels 2 and 6 into wrong order. In
the case of Bk the solution obtained by subsequent
projection is definitely of poorer accuracy than the
simple blocking calculation. In this case, the pairing
interaction is weak relative to the average level dis-

tance. Thus, we find again that subsequent projection
does not improve the BCS results if the pairing inter-
action is relatively weak.

It should be mentioned that conserving the nucleon
number generally leads to a smaller level density near
the ground state as compared with all other methods.
The only exception is the case of Pa where there is an
accidental near degeneracy of three levels one of which
is the ground state.

Generally speaking, the errors due to nonconserva-
tion of particle number are larger for the excitation
energies than for the occupation probabilities. Further-
more, these errors are usually of different magnitude
for neighboring even-even and odd-even nuclei. This
question is studied in detail in a forthcoming paper by
Nilsson. '4

Last but not least, it should be mentioned that the
total energy E as obtained from the BCS theory, from
the BCS theory with subsequent projection, or finally
from our formulation with rigorous conservation of
particle number differ usually only by fractions of a
percent. The reason is that the main contributions to
the total energy originate from strongly occupied levels.
As we have seen before the occupation probabilities for
strongly occupied levels are by far more accurate than
the ones corresponding to weakly occupied levels.
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APPENDIX A: DISCUSSION OF THE SOLUTION
OF THE VARIATIONAL EQUATIONS

We can write the trial state in the form

df v„
@=C~u,] g 1+—ia„'a „' lC

P'+I ~ u„

=C' g 1+—la„ta „2 lC'II. (A1)
f v|0+I v u„)

From this it follows that only the quotient v„/u, will

be defined by the variational equations. We may, of
course, retain the redundant parameters and impose as
many conditions as there are superQuous parameters.
We choose the conditions

We choose the representation so that the matrix ele-
ments of the nucleon-nucleon interaction are all real.
Then we have the symmetry condition

V1—V1V2—V2 V2—V2 V1—V1 ) (AS)

R2'(v, v,)
+4 2 (VVIV2VIV2+ VVI v2vl V2) I vvI I

V1V2 Rp'

+S + V"I "I"2 "2 I u"I I I

u 21 I "II I
v 2 I

V14 V2

and with the aid of (A6) and (A7), we may write the
energy as

R,'(v) R,'(v)I =2P.„[v„[ +4P V, „,l., l'
Rp' Rp'

uv~uv+vv*vv = 1,

The normalization coe%cient C is given by

(A2) Rl (VIV2)
)& cosl argv„2 —argv„,] . (A9)

Ro

(+I+)=1. (A3)

The numerator and denominator on the right side of
Eq. (A1) are sums of terms each containing a product
of no factors v, /uvv Thus, if we multiply all quotients
v„/u, with a common factor X, this factor cancels in

(A1). This means that even with the restrictive condi-
tions (A2), the set of u., v„ is determined only up to the
following transformation between equivalent sets of
Nv) ev.'

The & sign at the last sum means that any couple of
quantum states (vi, v2) should appear only once, not
also in the reversed order (v2, vi). The residuum inte-
grals are all independent of the phases.

Variation with regard to the quantities
l u„l and

l v„l
leads to the set of equations that we have derived in
Sec. II, the only difference being that all pairing-type
matrix elements are multiplied by cosl argv, ,—argv„,].
Variation with respect to the phases leads to the fol-
lowing equations:

bilities of occupation e„' or the total energy E are in-
variant under the transformation (A4). This ambiguity
of the solutions does not exist in the BCS theory. Next,
we wish to show that we may assume the v„and I„ to
be real without loss of generality.

In the case of complex coefficients v„and I„, the total
energy 8 is given by

Equation (A10) has the trivial solution

(A11)argo„= const.

Since a common phase factor of all parameters v„can
be immediately repla, ced by +1, (A11) corresponds to
a solution with real, positive coefficients v„and I„ the
one considered in Sec. II.

We assert that this solution corresponds to the lowest
energy E, if the pairing-type matrix elements are all
negative. This is the case for an attractive interaction
and the phase convention defined in (2.1'), and (2.1").
Proof: Suppose we have found a solution of the Euler-
Lagrange equations (A10) and (2.11) L(2.11) being
modified by the phases in the above-mentioned way]
with a set of phases argo„/const, and Ep being the
energy corresponding to this solution. Then we can
certainly find a lower energy E&(Ep by replacing all
the cosine factors by 1. Since the set of lu„l, lv„l is
consistent only with the set of nonconstant phases,
Ej does not correspond to a solution of the variational
problem. But we can now determine the minimum of
EI by variation of

I v„l and
I
u, l keeping

RI'(v) R,'(v)
P.=2 Q e„v„"'v„—+4 Q V„„„„v„*v„

R2 (VIV2)
+4 Z(Vvlv2vlv2+Vvl v2vl v2)vvl vvlvv2 vv2

V 1V2 Rp

RI (VIV2)
+4 P VVI—VIV2-v2uvIvvI uv2 vv2

V1V2 Rp
(A5)

We can write the N„and v„as

v„=
l v„l exp(i argv„); u„=

l
u„l exp(i argu„) . (A6)

From (A1) we infer that we may put

(A7)argu„=0

v Xv /(u +X v ) u u /(u +X v ) (A4) P V
l
u

l l
v

l
LsjnLargv arg ]]

V2

Physically meaningful quantities like the proba- )&RI2 (VV2)/R20. (A10)

without loss of generality. lu I'+lv I'=1. (A12)
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This variation leads to the set of equations (2.11) and
to a total energy E2 that is lower or equal to E&,

E2&Ei&Eo, (A13)

if the second variation of (+IHI+) is positive in the
neighborhood of our solution. This must be the case for
any physically reasonable solution.

method of steepest descent (see, for instance, Ref. 27).
If f(s) exhibits a saddle-point so somewhere between A
and 8, the path of integration should be chosen so as
to cross the saddle point on a line of steepest descent.
In this case the integral I can be approximated by
(see Ref. 27)

u,2+v„'= 1

of the usual superconductivity theory. Furthermore,
we see from (81) that all the residuum integrals will
have values between 0 and +1 if the u„and e„ fu1611
condition (2.5).

In the derivation of the Euler-Lagrange equations,
we have to evaluate variational derivatives of the
residuum integrals hR (vi v~)/5v„:

B (vi' ' 'vg) 8 8„8
6v„ Q„BQ„

Rn (vi' ' 'vN) ~

APPENDIX 3: SOME PROPERTIES OF
THE RESIDUUM INTEGRALS

From definition (2.8) of the residuum integral we can
easily infer the following recursion relations:

Rn+1 (vi ' ' vNv)&u +R77 (vi' ' vNv)u~

=R„~(vi .v~) 7 (81)

R."+'(vl vNv)R. +i"+'(vi v gv') R—(vl vg)

XR77yl (vi' ' 'vÃvv )=&u LRe (vl' ' 'vxv)

XRn+2 (vl' ' ' VNvv ) R~+1 (vl ' ' ' vNv)

XR.+i +'(vi vzrvv')] (82)

Relation (81) is useful for numerical computation of
the residuum integrals. In the limit of the saddle-point
method (with saddle point at so ——1) relation (81)
becomes the normalization condition

(C4)
I
f"(s ) I'~' Iri —p v 'I' ' Ip u 'v 'I' '

For the saddle-point method to be applicable, 2P should
be small compared to the total path length 2x, or

(g u„2v„2)'"PyVg/~=-' (C5)

In (C2) u is the angle between the positive real axis
and the direction of the path in so. If f"(so)W07 f(&)
can be expanded near so in the form

f(s) =f(so)+l(s —«)'f" («)+" (C3)

the direction of the path in so has to be such that
(s—so)'f" (so) is real and negative. '7

Equation (C2) represents the first term of an asymp-
totic expansion (see Ref. 27, p. 502). The higher order
terms of this expansion are, in general, difficult to
obtain. Therefore, it is difficult to obtain a reliable
estimate of the accuracy of formula (C2). The error
will certainly be small if the dominant contributions
to the integral come from the immediate vicinity of the
saddle point.

In the case of our residuum integrals the saddle point
is at so ——1 and we integrate over the unit circle. The
quantities f(s), y(s) are defined in (4.2) and (4.3). Let
P be the angle where the exponential ei'&'& has dropped
to 1/e of its value at so ——1. The equation for f is
given by

From definition (2.8) of the residuum integral we can
immediately see that the following relation holds:

bRP(vi vg) = 27 „LR„~i~+'(vi v~, v)

The product N„v„ is different from zero only if v„as
well as I„is substantially different from 0, i.e., only in
the region II, where v„' drops from =1 to almost 0
(see Fig. 16). Bayman' uses the approximation

—R„"+'(vi v~)]. (83)

From (83) it becomes apparent how the term A Lsee
(2.16)] comes to exist.

Q u.27„2=-',0,

2
Vp

(C6)

APPENDIX C: USE OF THE SADDLE-POINT METHOD

Integrals of the type

1Fn. 16. Occupation
probabilities as a func-
tion of the energy levels.

B

I= e'f izix(s)d
A

(C1)

where t is real and Positive and f(s), g(z) are analytic 27H p„Q Q S Jeftrpyp ~pth0$, 0f ~ptQ, ~~tt,~t Phy, tpz (Ca~
on the path of integration, can be approximated by the bridge University Press, New York, 1956), Chap. 17,
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Qn»1. (C7)

The larger 0 is, the more reliable the saddle-point
method should be. Large 0 is favored by strong pairing
interactions. On the other hand, the BCS state con-

where 0 is the number of states o in region II. With
this we obtain the criterion

serves particle number in the case of a sharp Fermi
surface. Thus, it is to be expected that in the limit of
very small 0 the errors connected with the nonconserva-
tion of particle number should be small too, ' whereas
the saddle-point method can be substantially wrong in
this case. This is borne out by our numerical results
(see Sec. V).
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Separability of Center-of-Mass Motion in the Nuclear Shell Model

M. A. NAGARAJAN

Case Inslillle of Technology, Cleveland, Ohio

(Received 13 February 1964)

It is shown that one can 6nd an orthogonal transformation that will enable one to split the motion of a
many-body system to a center-of-mass motion and an internal motion. A particular orthogonal transforma-
tion has been chosen which retains the independent-particle aspect of a harmonic-oscillator shell-model
Hamiltonian. It is suggested that one could easily study and eliminate the states with spurious motions
of the center of mass by a direct transformation of the shell-model wave function into the new coordinate
system.

1. INTRODUCTION
' 'N calculations of nuclear structure using shell-model
~ - wave functions, the shell-model wave functions are
constructed from independent-particle wave functions.
These independent-particle wave functions describe the
motion of a particle moving in a potential fixed in space.
Because of the assumption of a potential fixed in space,
the shell-model wave functions so obtained are not
translationally invariant. It has been recognized that
the neglect of the center-of-mass motion will cause
errors in the calculations of energies and transition
matrix elements. But the extraction of the center-of-
mass motion leaves us only (A—1) degrees of freedom
and the internal coordinates cannot be treated sym-
metrically; therefore, the construction of antisymmetric
states becomes very cumbersome.

It was first shown by Bethe and Rose' that the anti-
symmetrized shell-model wave function for the lowest
states in a harmonic-oscillator potential are always
translationally invariant. However, some of the excited
states of the nucleus could be describing a system whose
center of mass is in motion. These "spurious states"
were first recognized by Elliott and Skyrme. ' They
pointed out that when two or more unclosed shells are
involved, one has to investigate that the state has the
proper center-of-mass motion. Their prescription is to
form suitable linear combinations of shell-model wave
functions to describe the proper center-of-mass motion,

In our investigations, we have tried to find a co-
ordinate transformation such that the total kinetic-

' H. A. Bethe and M. E. Rose, Phys. Rev. 51, 283 (1937).
s J. P. Elliott and T. H. R. Skyrme, Proc. Roy. Soc. (London)

.A232, 561 (1955).

2. THE COORDINATE TRANSFORMATION

Ke shall designate the original A-independent set of
coordinates by (yi, ys .,y~), and the transformed co-
ordinates by ($s, gi gz i). The transformation' is
given by'

1 A

A —i ~='+I
s —0 1 A 1

(2 1)

F0=0.

The inverse transformation is given by

1
v'= 4'—4—Z 6

i=i (A —j+1)
4=0.

(2.2)

' I. Talmi, Heiv. Phys. Acta 25, 185 (1952).' R. Thieberger, Nuci. Phys. 2, 533 (1956).' Note that our erst coordinate is (e= —R, and is thus diiierent
from the corresponding one of Lipperheide. Our choice makes the
transformation orthogonal.' R. Lipperheide, Ann. Phys. (N. Y.) 17, 114 (1962); S. Hoch-
berg, H. S. W. Massey, and L. H. Underhill, Proc. Phys. Soc.
(London) A67, 957 (1959).

energy operator of the many-body Hamiltonian splits
up into the center-of-mass kinetic energy and the re-
maining kinetic energy of relative motion. This has
been done for the case of two degrees of freedom by
Talmi' and Theiberger. 4 In the particular case of the
harmonic-oscillator potential, our choice of orthogonal
transformation separates the center-of-mass part of the
potential energy for a general n-body problem.


