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Weidenmuller. '4 Nonradiative effects due to electron
screening, nuclear electromagnetic form factor effects,
E-capture competition and second forbidden matrix
element corrections seem to be agreed upon. " All of
these effects are included in Table I.

It is fair to say that a vector boson car explain the
current muon lifetime discrepancy, although its mass
should not be much greater than 500 MeV. If the indi-
cations from CERN' that M =1.335„are confirmed, we

32L. Durand, L. F. Landowitz, and R. B. Marr, Phys. Rev.
Letters 4, 620 (1960).

can only conclude that a sizeable discrepancy still re-
mains to be explained.
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At a sharp resonance the phase of a Regge residue P(t) should be essentially a multiple of 2sr. The value
it takes determines to a large extent the falloff rate of P and of the reduced residue y =P/v" for t &~ 0. If f0 lies
on the Pomeranchuk trajectory and if the phase there is 2sr then it turns out that y(t) falls off exponentially
for small —t with a width comparable to the one deduced from the widths of the high-energy di8raction
peaks, and for large t, y(i)—has a power fall-off. On the other hand, if the phase at f' remains small then
the width is at least an order of magnitude larger. The latter case is indicated on the basis of the potential
theory results. However, it is possible that the former may be a purely relativistic phenomenon peculiar
to the Pomeranchuk pole in which case the Regge-pole hypothesis would be consistent with the high-energy
experiments.

for large —t.4 Potential theory results, however, indi-
cate that near a resonance the phase should stay small
and not approach 2m. ' If this is assumed to be true also
for P then we find that it is impossible for y to achieve
a diffraction-type behavior; the width turns out to be
at least an order of magnitude larger than the experi-
mental values. This would strongly suggest that the
pole-hypothesis is inadequate and that perhaps other
singularities in addition to the commonly assumed poles
play an important role.

Consider elastic x+ scattering with s the square of the
c.m. energy and t the square of the momentum transfer.
We shall take BeV as the unit of mass. For large s, the
contribution of a Regge pole with position n(t), to the
scattering amplitude Az(s, t) is given by

2~—' (sr) '"(2o.+1)I' (-, +n)
Az(s, i) = pz-

r(I+ )

4 Even if fo turns out to be 1 or 3 /see W. Frazer. S. Patil, and
N. Xuong (to be published) ] the essential points of this paper will
not change provided that there exists a 2+ particle on the I"
trajectory at a higher mass (&2 BeV).

5 A. Ahmadzadeh, thesis, University of California (un-
published). The results, based on Yukawa potentials, were com-
municated to me by G. F. Chew.
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' More precisely, 2arr+O(a r). For a sharp resonance, as«1.' B.R. Desai, Phys. Rev. Letters 11, 59 (1963).' References to the earlier theoretical work are given in Ref. 2.

[NITARITY implies that a Regge-pole term

p(i)/I —(i) (I)
near a sharp resonance at i=is a~(ip) =t satisfies the
relations Pg= I' (the width of the resonance) and
pz«p~. Since psr is positive at te, the latter condition
implies that the phase of P must essentially be a multiple
of 2x at a resonance. ' This is a strong restriction on the
phase; the value it takes, namely, =0, 2x, etc. , deter-
mines to a large extent how fast P or rather the reduced
residue y (see below) falls off for t(0. The behavior in
the negative t region is of some interest since it was
pointed out recently' that if p of the Pomeranchuk pole
(P) showed a sharp diffraction-type fall off for small t, —
then the Regge-pole approximation' may still be ade-
quate in explaining the high-energy behavior of scat-
tering amplitudes. The question of shrinkage or absence
of it can then be understood in terms of appropriate
linear combinations of P with other important poles. '
We shall show below that if f' lies on the I' trajectory
and if the phase is 2m. at ty then one obtains an exponen-
tial type falloff for small —t, with a width comparable
to the one observed experimentally, and a power falloff
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where

(3)

3f is the nucleon mass, t=4(v~+m '), I is the isotopic
spin index, and p~ is the element of crossing matrix. For
the P pole n(0) = 1 and pz= ~~ for all I(=0, 1, 2). From
the optical theorem, y(0) = (0.06)o „where o „, in mb,
should be about 15 from the factorization theorem. '

In the t channel, near the f' resonance, t = tz,
o.zr(tz) =2, and the D wave should be well represented

by the single term

p(t)/ng'(t)

tz—t—sL~z(t)/~~ (t)j
if ni is small, where

nz(tz) = I'z(tz)'"rrzs'(tz)

and from unitarity,

(4)

(5)

where the phase p& vanishes at threshold. ' At infinity,
on the basis of the strip-approximation result of Chew and
Jones' the phase must approach e7r, where e&&1.Note
that the expression (8) is arbitrary up to a finite number
of zeros. The only strong evidence for a zero exists not
for P, which is under consideration here, but for the co

pole. ' Experimentally it is observed that at a given
energy, do/dt for pp at t= 0 is much larger than that for

pp and falls off very rapidly as t increases. "—"In fact,
it goes below the pp value at around t =0 15 Asim—ilar. .

'M. Gell-Mann, Phys. Rev. Letters 8, 263 (1962); V. N.
Gribov, and I. Pomeranchuk, Phys. Rev. Letters 8, 343 (1962).

r A. O. Barut and D. E. Zwanziger, Phys. Rev. 127, 974 (1962).
8 R. G. Newton, J. Math. Phys. 3, 867 (1962).
G. F.Chew and C. E.Jones, University of California Radiation

Laboratory Report UCRL-10216 (unpublished).
'~ F. Hadjioannou, R. J.N. Phillips, and W. Rarita, Phys. Rev.

Letters 9, 183 (1962).
"K.J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J.

Russell, and L. C. L. Yuan, Phys. Rev. Letters 10, 376 (1963);10
543 (19e3); 11,425 (1963).

'~ K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J.
Russell, and L. C. L. Yuan, Phys. Rev. Letters 11, 503 (1963).

0 (tz) = Lt~/(tz —4m-') j'" .(tz) (6)

Pz(tz) «Pzr(tz) . (7)

r, is the width of f' and n~'(tz) is the slope of the P tra-
jectory at tp. Experimentally, ted=1.56 and Fy=0.20.
As a reasonable estimate we shall take rsvp'(tz) to be 1.
It turns out that a change by a factor of 2 in the slope
changes the diffraction width by not more than 10%.

The reduced residue y(t) is real along the real axis
except for a cut from t= 4m ' to ~.A phase representa-
tion can, therefore, be written as follows:

v(t) =v(0)c"'"

and'

v(tz)
rtg(tz) = ln

—v(0)-

rtz(tz)=2ez. , m=0, 1, (12)

which determine the values of e and c.
One of the questions we are concerned with is whether

p(t) has a sharp exponential-type behavior for small
t If we —de.note by 8 the (width) ' of do/dt, then

since do/dt~y'(t)(s/23/I')" ~l" 'l and s/2M'=m~M 'E
~m E, we obtain

8=2( (r0t) +(rr)0ln(m E)$, (13)

where E is the lab energy. One would expect 8 to be
about (2m ) '~10 since the radius of interaction is
about (2m ) '. Experimental values for z.p, pp, etc. are
roughly of the same order. " Since rr'(0) is small the
second term in (13) in the energy interval of about
10—20 is quite small and therefore the major portion

phenomenon occurs for E p E—+p."At the crossover
point, therefore, y„(t) should be zero since it occurs with
different signs in pp(E+p) and pp(E p). Such zeros are
possible if one has long-range attraction for co followed

by a short-range repulsion. As far as P is concerned, we
shall, for the present, ignore the zeros.

An approximate analytical expression for rtz(t) of P
satisfying the above conditions is the following:

r)z(t) =ez.f(t—4m ')/(t+c)]"', t&~4m ', e~&1, (10)

where Xs n(——4ms )+~~ and c is a positive constant.
There is an additional logarithmic factor in (10) which
has a negative sign near threshold but becomes positive
eventually. ~ The effect of neglecting this factor on the
width or on g'(0) (see below) should not be large if at the
same time we have rtz(tz) = 2N7r with m &~ 1.The fact that
this is a very large value attained at only moderately
large energies means that the negative contribution of
the logarithmic factor can come only froin a narrow re-
gion near threshold where it will be suppressed by the
strong threshold behavior (Xs) 1).We have no reason to
believe that between threshold and f' there are any
sign changes other than the one mentioned above. If
they do occur and if the amplitudes of the oscillations
are not very large, however, the same arguments can be
applied as above to say that their contributions should
be small. Furthermore, when rtz at f' is large the knowl-

edge of rtzr(tz) Lsee Eq. (11)j and of the behavior of rtz

at threshold and infinity are strong enough to fix the
value of rt'(0) within a small range. For the case where

rtz(tz) is negligibly small, however, any sign changes will

very likely reduce the value of rt'(0). The expression (10)
in that case will allow us only to give an upper bound on
n'(0)

Since rr'(0) is small ( 0.2) on the basis of the z.p
data'" we shall take n(4m ') =n(0) = 1. Thus, we have
two relations deduced from (7) and (8):
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of the (width) ' should be contained in r)'(0). For large
t,—y'(t) behaves as

~
3

~

"and on the basis of the pp
data, e should be about 2.5."

Among the many choices in (12) we shall consider the
first two. It is clear that a larger phase at ty implies
more oscillations in y(t) for t) 4m ', and, therefore, if
p(0) is held 6xed, implies a sharper falloff for t ~&0. If
we take rzz= 27r at tz, then r)'(0) is 4.9. The value of 8
obtained from (13) is then roughly what one observes in
the high energy experiments. The value of e is 3.4, not too
different from the experimental results. "Also for phe-
nomenological purposes, a good approximation to y(t)
for t ~&0 is found to be y(0) (1—t(ts) ', where ts() 4zzs ')
is essentially the point where pz achieves its maximum
value. In particular, e 2.5 and to 0.5 give a good fit to
the di6raction data.

Note also that the value of g'(0) and, therefore, of 8
is proportional to y(0), the total cross section. 8 de-
pends inversely on I'z, the width of f' Thes.e proper-
ties are consistent with what one would normally ex-
pect of a function which gives the diGraction peak.

Consider now the case where gl is small at t~. For a
sharp res'onance, qz should be roughly of the order of
o.~. However, in order to obtain a firm upper bound, we
shall take riz=w/4 (i.e., Pz ——Pzt) at tz The va.lue of
r)'(0) then is 0.6 and e is 1.2. Since these are overesti-
mated values, the actual value of 8 obtained from (13)
will be at least an order of magnitude smaller than the
experimental results. Potential-theory results seem to
favor this alternative. ' The point is that if there is a
sharp resonance then it is quite likely that (1) would
satisfy unitarity for /=n~(tt), for tt up to the turning

"R.Serber, Phys. Rev. Letters 10, 357 (1963).

point of the trajectory. "By writing (1) in the Breit-
Wigner form, we observe that since exp remains small
and positive, Pzt should not be expected to change sign
as t~ increases from threshold towards the resonance
region. Therefore, gy should remain small at t~, instead
of approaching 2m.

In summarizing, let us consider the above results
vis-a, -vis the Regge-pole hypothesis. It was recently
pointed out by Desai' that the pole approximation may
still be adequate if the following assumptions are made:
(i) n'(0) should be small in order to understand the
absence of strong shrinkage in s.p scattering. (ii) The
experimentally observed sharp exponential fall oG for
small —t and a power falloff for large —t should then be
given by p(t) (iii) T. he shrinkage in pp and E+p should
essentially come from the co-pole which happens to be
absent in harp. One of the predictions of this model,
namely that the shrinkage in E+p should be inter-
mediate between s.p and pp is borne out by the recent
experiments. "As mentioned earlier, one will have to
make the additional assumption of y„(t) having a zero
in order to explain the pp and E p scattering. But the
most crucial assumption is (ii). If the potential theory
results, mentioned above, hold also for the P trajectory,
then y(t) will not have a sharp falloff and it would be
impossible to understand the high-energy behavior in
terms of poles alone. On the other hand, in the rela-
tivistic case, the effect of inelastic channels or nearby
trajectories or perhaps cuts in the unitarity relation
may enable Pz to change sign before reaching the reso-
nance region. In that case the close agreement we have
found with experiments will not be just a coincidence.

'4 G. F. Chew (private communication).


