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Electromagnetic Corrections to Muon and Beta Decays
when Mediated by a Vector Boson
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The radiative corrections to the weak decays have been calculated using two electromagnetic formalisms
for the vector bosons. The energy spectrum for the electrons from muon decay is obtained and is found to
reduce to the old form, obtained using the four fermion interaction, when the mass of the boson becomes
infinite. The effective value of the Michel parameter is calculated. It seems unlikely that the electromagnetic
effects of a boson would be observed through a study of the spectrum shape. The spectrum we have calcu-
lated satisfies Kinoshita's theorem. The results for muon decay are independent of the vector meson for-
malism employed. It is found that the bosons can reduce the corrections to the 0"decay lifetime to 1.2%,
although the reduction depends upon the choice of formalism. The boson mass provides an effective cutoff
which renders the over-all correction to the lifetime finite. This was not previously the case. Finally it is
concluded that a vector meson can explain the muon lifetime discrepancy, but not if the current indications
on its mass prove to be correct.

1. INTRODUCTION

~
'HE discrepancy between the theoretical and ex-

perimental values of the muon's lifetime has been
discussed many times. The most notable analysis of the
then current situation was given by Feynman. ' Since
then, additional experiments have been performed which
place the discrepancy as high as 4.6%%u~; so that, in spite
of the numerous uncertainties, there can be no doubt
at all that the muon's lifetime is not well understood.

One of the strong candidtates for an explanation of
this puzzle has always been the intermediate vector
boson. Its popularity springs from the fact that for a
suitably light boson, over half of the discrepancy is
removed. This modification, however, decreases rapidly
as the mass of the boson is increased. Experiments done
at Brookhaven, ' and recently at CERN' tend to confirm
what is in fact assumed in this paper, namely that
massive charged vector bosons mediate the strangeness-
conserving weak interactions.

With this assumption, one is immediately forced to
recalculate the electromagnetic corrections to muon and
beta decays, since these are presently computed' '
using the four fermion interaction. ' We may then con-
sider what effect these new corrections will have upon
the muon's lifetime.

In Sec. 2 we consider two formalisms for the descrip-

tion of the vector mesons, and derive the rules for Feyn-
man diagrams to be used in each formalism. Section 3
is devoted to muon decay. We calculate the energy
spectrum for the decay electron, with both radiative and
nonradiative effects included, and compute the effect of
the mesons upon the effective value of the Michel
parameter. In order to know the effect of the meson on
nuclear beta decay and hence upon the vector coupling
constant, one must first calculate the corrections to
neutron decay. This is done in Sec. 4. Section 5 employs
the results obtained in 3 and 4 to consider afresh the
lifetime of the' muon.

2. RULES FOR FEYNMAN DIAGRAMS
INVOLVING VECTOR BOSONS

(a) Proca Formalism

The vector boson field was first studied by Proca. '
The free field Lagrangian is

gPI'oca r f wfop+1lIsI
where q „is the meson's fieM operator,

tv= ~s'Pv ~v P)4 )

Bp= 8/BX

&=mass of the boson.

The free field commutation relations can be deduced, '
and also the propagator. One hasR. P. Feynman and M. Gell-Mann, Proceedings of the 1960

Annual International Conference on IIi gh Energy Physics at
Rochester (Interscience Publishers, Inc. , New York 1960l, pp.
501-508.

G. Danby, J. M. Gaillard, K. Goulianos, L. M. Ledermann,
N. Mistry, M. Schwartz, and J. Steinberger, Phys. Rev. Letters
9, 36 (1962l.

3 J. M. Gaillard, New York meeting of American Phyiscal
Society, Jan. 1964; Bull. Am. Phys. Soc. 9, 40 (1964).

R. E. Behrends, R. J. Finkelstein and A. Sirlin, Phys. Rev.
101, 866 (1956).

' S. M. Berman, Phys. Rev. 112, 267 (1959).
T. Kinoshita and A. Sirlin, Phys. Rev. 113, 1652 (1959

'R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 19
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which in momentum space becomes
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) 'A. Proca, J. Phys. Radium 7, 347 (1936).
3 G. Wentzel, Quantum Theory of I'ields IInterscience Publishers,
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The electromagnetic field u„ is introduced minimally by
by the substitution in Z

8„—+ 8„—ieu„when acting on y„,
cI„~r)„+zea„when acting on Ip„*.
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Then the total Lagrangian is

&pm+&M+&r,

Zl is the interaction Lagrangian

& = eL(r) *) "rz" (cI V"—*) "&" rz v"*(cI"v'")
+~pVp (~ 'P )j ~ ~vA g ~ +~ ~vip
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The canonical formalism is employed and Matthews"
is invoked to remove the normal dependent terms. %e
see finally that there are two vertices of the boson field
with the electromagnetic field. The first involves the
emission or absorption of one photon, and the second,
the emission or absorption of two photons. The factors
present in momentum space are given in I'ig. 1.

The assumption that vector bosons mediate the weak
processes means that the so-called "weak current" Jq
is not coupled to itself by a contact interaction, ' but is
instead coupled to the vector meson field q ~. The inter-
action Lagrangian is

Photon- B3 vertex

Photon-A4 vertex

pl ~
Pt =B

Ie

+ e(p+p')

+e'2g g

Photon- B4 vertex e 2g

(b) Stiickelberg Formalism

FIG. 2. Stuckelberg formalism rules.

where

&r =fJr,,q "+fA*q *",
The Stuckelberg formalism" replaces the field Ip„(g)

by two fields A „(x),B(x)
Iz =4"vi&4".+4.v i&4'.
u= ', (1 iy-s),—

f„p„„p„,II„, are the field operators corresponding to
e, v„p, , v„, respectively. f is the coupling constant and
is dimensionless.

Thus, there is just one type of vertex in this formalism.
It involves a lepton, its neutrino, and the meson. At
such a vertex there is a factor fp„a in a Fe—ynman
diagram.

PRO CA FORMALISM RULES

p„=A„+(1/M)B„B,

and the free field Lagrangian density is

+st', i,
& A ~&„A,+& B~&„B+MsA *A„M'BaB

The solutions must then be restricted by the imposed
subsidiary condition

cI„y&(x)=0,
or equivalently,

a„A p(x) —MB(x) =0.
Element Graph
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Then all the negative energies are contained in the
8 field, which turns out in effect to be uncoupled. "One
can then derive the free field commutation relations and
also the propagators. In momentum space the 3 field's
propagator is

3- vertex

4- vertex

P
p I ~F
Pf=

e tppQp + ppgp
- g p(p~p )vj

vv aP gap gyp gavgIz 1

L
—i/(2zr)'jg „/(Is' M'+ze), —

and that of the 8 field is

Li/(2zr) 4]1/(O' —M'+ ze) .

The electromagnetic field is introduced minimally, as

FIG. 1. Proca formalism rules.

'P P. T. Matthews, Phys Rev. 76, 684 .(1949).

z' E. Stlickelberg, Helv. Phys. Acta 11, 225, 299 (193g).
~2 W. E. Thirring, PrinciPles of Quantum Electrodynamics

(Academic Press inc. , London, 1958), p. 1.68.



FIG. 3. Muon decay via a vector meson.

3. ELECTROMAGNETIC CORRECTIONS
TO MUON DECAY

We shall now use the formalisms discussed in the
previous section to calculate the electromagnetic cor-
rections to muon decay:

before, and we find that the interaction Lagrangian is

Zr=ie/(B„A *)A"a& A—„*(r) A")a"j e'A—„*A"a„a"

+ie)B*(r)„B)a" (8„B*—)Ba"j+e'B*Ba a".

Proceeding in the standard way via the canonical
formalism and the interaction representation, we see
finally that each of the two fields A „,8 has two vertices
with the electromagnetic field corresponding to the emis-
sion or absorption of one and two photons. The factors
present in momentum space are given in Fig. 2.

Just as in the Proca formalism the weak current Jq is
coupled to the field q ~. In the Stuckelberg formalis~

J),p"=J),A "+(1/M) J),8"B,

and when the electromagnetic field is introduced mini-

mally, this becomes

JqA "+(1/M) J'q(8"—iea~) B.

Thus we see that there are three types of vertices in
which the leptons interact with the bosons. Two of these
are simply the 3 or 8 being emitted or absorbed by the
leptons. The third is a vertex peculiar to the 8 field.
It involves the leptons, a photon, and the meson inter-
acting at a point. This gauge invariant vertex is a direct
consequence of the derivative coupling of the 8 mesons
to the leptons, and is unique to this formalism. The rules
for Feynman diagrams in momentum space are given
in Fig. 2.

It has been observed" that there is no "normal"
vector meson electrodynamical formalism. This is why
we employ the two formalisms discussed above. That
the formalisms we are using describe vector mesons with
diferent electromagnetic properties is clear from the
fact that their magnetic moments differ. The Proca
boson has no anomalous magnetic moment, and con-
sequently has a total moment of one Bohr magneton.
Choice of the Stuckelberg formalism implies that the
boson has zero magnetic moment, or equivalently an
anomalous moment of —1 magneton. Whether this is
the only difference in the bosons so described is not
presently clear. Of course, both formalisms yield the
same matrix element for muon decay without electro-
magnetic corrections. This is clear because the electro-
dynamics of the meson do not then enter.

"J.A. Young, thesis, University of California, Lawrence Radia-
tion Laboratory Report UCRL-9563, 1961 (unpublished).

p ~e +0+v„

We assume that the boson is coupled to the leptons in
the manner described. Then the diagram representing
this process in the absence of electromagnetic effects is
shown in Fig. 3.Eventually we expect the decay electron
spectrum to consist of four parts: (i) The bare spectrum
shape having Michel parameter p= 43, which arises from
the Fermi-type point interaction. (ii) Corrections due to
nonlocal effects induced by the vector meson (but not
including radiative effects). (iii) Radiative effects which
are present for the four fermion interaction. (iv) Electro-
magnetic corrections arising solely from the presence of
the charged vector boson propagating the process. These
four classes may be characterized (for convenience):

(i) no bosons, no photons,

(ii) bosons, no photons,

(iii) photons, no bosons,

(iv) bosons and photons.

(i) and (ii) arise from the diagram shown, in Fig. 3.
(iii) has been written down previously. ' '"

It is the fourth class which concerns us, although in
the course of deriving it we shall inevitably write down
the other terms. It is of interest to observe" that no
two of the published results are exactly the same for the
inner bremsstrahlung calculations. Our calculations
agree with those of Kinoshita and Sirlin' for the con-
tribution to class (iii). We expect that class (iv) will, in
the main, contribute terms of the order of k'/iV' times
the contribution from class (iii). k is the momentum
carried by the boson in the bare process. For muon decay

k'/M'&m '/3P(5&&10 '

where the upper limit is calculated by using the lower
bound on 3f, namely, one kaon mass. Such terms will in
general be negligible, and we therefore make the ap-
proximation (in the radiative corrections only) of
neglecting terms of order k'/&Vs except where they are
multiplied by a large number, for example, like
ln(m, s/3P). Terms proportional to nz,m„/M' are com-

pletely negligible.
As might be expected, a number of the Feynman

graphs which we consider are divergent. These are
handled in the standard way by introducing an ultra-

'4 V. P. Kuznetzov, Zh. Eksperim. i Teor. Fiz. 37, 1102 (1959);
39, 1'722 (1960) LEnglish transls. : Soviet Phys. —JETP 10, 784
(1960); 12, 1202 (1961)].

~s C. R. Schumacher, Cornell University, thesis (unpublished).



ELE CTROMAGNETI C CORRECTIONS TO M UON AN D P D E CA YS B159

violet cutoG X, One replaces the photon propagator

1 1 ) —X'

q' q' —l 'kq' —1 ')
;„is an infrared cutoff which prevents a low energy

divergence, arising because the photon has zero mass.
'A;„will disappear from the final answer because we
consider both "pure" muon decay and the inner brems-
strahlung process

~ e +P,+v„+'Y.

The integer e is chosen to be just large enough to
secure convergence of all of the diagrams under con-
sideration. It is important that the same integer e be
used for all diagrams, since otherwise the procedure is
not gauge invariant. "

%hen using a cutoff, the "rules of the game" are to
let 'A be infinite wherever possible. One retains only
those terms which would be infinite in the limit of
X~ ~. Similar considrations apply to X;„and the
limit X;„—+ 0.

It turns out that when one calculates the total matrix
element for muon decay, including electromagnetic
corrections, there are many terms proportional to the
bare matrix element Mo which arises from Fig. 3. The
total matrix element 3f has the form

FIG. 4. Virtual photon diagrams: Stuckelberg formalism.

M =Mp+u(A+ B(k))Mp+nMt,

where n= e'/47r, putting A= c= 1. A is a constant; B(k)
is a symbolic notation to indicate energy dependence.
M& is a matrix element not equal to ufo. We see that M
can be rewritten

M = (1+trA) LMp+o13(k)Mp+aMt]

since we can neglect 0(n') Thus t.he constant term A in
no way affects the shape of the decay electron's spec-
trum, and could be ignored if we were only concerned
with the spectrum's shape. Since we are ultimately
interested in the muon's lifetime we must be more
careful.

We can regard the factor 1+nA as a coupling constant
renormalization. The coupling constant for muon decay
is derived from the decay of 0'4. If an identical constant
term nA e,rises in the calculations of the radiative cor-
rections to 0" decay it too can be absorbed into the
coupling constant and in this case will have no ob-
servable eGect whatever since both coupling constants
have undergone an identical renormalization. In this
case the term nA can be dropped completely. However
if the constant term nA arises in muon decay but not in
nuclear beta decay then we may absorb o.A into the
coupling constant, as demonstrated, and it will not
affect the spectrum shape, but we must retain it for use
when calculating the lifetime of the muon. Examples of
such a term would be one which depended on the mass

of the muon, or a term whose sign di8ered when calcu-
lating beta decay.

Shaffer" has calculated the electromagnetic cor-
rections to muon and nucleon decay using the Proca
formalism. However he has neglected all boson eBects
in the bremsstrahlung calculation, ' and consequently
the spectrum he obtains does not satisfy Kinoshita's
theorem "

(a) Stiiclrelberg Formalism

For historical reasons we calculate the radiative cor-
rections first using the Stuckelberg formalism. To order
e', there are 19 virtual photon diagrams which con-
tribute to muon decay. These are shown in Figs. 4 and 5.
The labeling of these diagrams is self-explanatory. Q'e
need m=2 for this formalism.

The contributions of the self-energy diagrams (1), (2)
(Fig. 4) can be written down immediately. Neglecting
m.m„/M',

O' X' m,m„~,+~s= 0~ 1+» —»n +-,'
M — m,m„Xm,„

X(7 )( y. p),

~P R. A. ShaGer, Phys. Rev. 128, 1452 (1962).
' R. A. Shaffer (private communication)."T.Kinoshita, J. Math Phys. 3, 650 (1962).
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FiG. 5. Virtual photon diagrams: Stiickelberg formalism.

where

crt'f' m.m„

2 2Z' M Ei,X~~II,M &C02

g~„E„,co~, co2 are the energies of e, p, , P„s„, respec-
tively. p„p„, p„-, p, are their four momenta. Without
confusion we may use the same letter to denote the
particle and its spinor.

After performing a mass renormalization, we And that
353 is proportional to the bare matrix element Hap.

Consequently, we may by means of a coupling constant
renormalization set M3 ——0. Both M4 and Ms are pro-
portional to m,m„/M', and so can be neglected:
M4 ——M5 ——0. After coupling constant renormalization

Ms 8(k——'/M') ln(X'/Ms) (ey~avt) (vs', att) .

This term must be retained as we have not so far
specified the size of the cuto6. Use of the Dirac equation
renders both M'7, Ms of order m,m„/3II', and thus to
our approximation M7 ——iV8 ——0. Use of the standard
reduction methods yields

Ms.———0(2p, k/M') ln(m. '/M') (ey avt) (vsyaats)

after renormalizing the coupling constant. Similarly

M,s.—— e(1y—k'/M') Pln(X'/M') 1j(ey—avt) (vsse. ats) .

For this diagram however we may rot renormalize the
coupling constant since it is possible that the sign will

differ when we calculate beta decay. Use of the Dirac
equation leads us to M» ——0. Similarly, M]p~=0. After
coupling constant renormalization,

M„=—0(u /M )1 (~ /M')(. ~'. )(.— v. ~).

Similar considerations as were applied to M &p, lead us to

M„=8)ln(X'/M') —1j(ey~a») (vyaats) .

The two remaining diagrams (13a), (13b) are an
order of magnitude more dificult to calculate than those
so far considered. A four-sided loop integration has been
done exactly by %u" for the case when all four sides of
the loop are scalar mesons. His answer involves 192
Spence functions. " This function, written L(x), is
de6ned by

ln. (1—t)
dt

n=l g2

where

Mp —— (ey avt)(vsse ats),
1—(k'/M')

P= —4sr 0/tr.

Fortunately, because of the approximations we can
make, our answer is somewhat simpler. The integration
can be done by an iterative method. "Combining both
contributions,

2p8'pv m. f k ( k p, p„-) m,m„
+I &+ T+41 1+

2p, .p„

2Pe
'
Pv 2Pe' Pv mv mv X 2P6' Pv

ln + ln ——,
' —ln +2 ln (ey avt)(vs' ats)

q2 ~2 g2 ~2 ~2 m 2

2mv 2pe'pv 2 4pe'pv —mv 2pa pv
ln (eqavt)(vsa'ts)+ 1+ ———ln (eqavt)(vsqats)

g m~2 2 2
g

2 SZ p,
2

where T= 2(co+ lnx) (&o+inx —2co&)—2 lnx 1n(1—x)+2I (x)—2L(1), q= p,—p„, a' = -,'(1+its) to = ln(m„/m, ),

» A. C—T. Wu, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 33, No. 3 (1961).
'o W. Spence, An Essay onLogarithmic Tran, scendents (John Murray, London and Archibald Constable and Company, Edin-

burgh, 1809).
"D. Bailin, thesis, Cambridge University Library (unpublished).
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co&= ln(X;„/m, ), and x= 1—q'/m„'. The variable x is the decay electron s energy measured in units of its maximum
possible value: 2'm„.

We can now sum the contributions to evaluate the virtual photon matrix element AM~.

k'~— g
=8

~

1+
~

3(1—cu)+2(&d+lnx —1)(~+lnx —2~&)—
1—s

lnx —2 lnx ln(1 —x)+2I.(x)—2I.(1)

2m„2p, p„2f 4p, p„m„'—2p, p„
X (ey avI) (v27 atI) —ln (eqavI) (v2a'u)+

~
1+ ln —(eqavI) (v2qap)

q2 m 2 q2l q2 M' p

We see that this result is just that of Behrends et al.
multiplied by the shape-dependent factor [1+(k'/M')].
It is of interest to note that just as in the four fermion
case the cutoff dependence has canceled. This is not
especially surprising though, since all we are saying is
that with the PartI'cular coupling constant renormaliza-
tion we have used we can make the muon decay result
cutoff independent. It will be seen that we have retained
terms from diagrams (1), (2) (Fig. 4), which could have
been omitted as a coupling constant renormalization.
This was done simply for ease of comparison with
Behrends et al.4 So long as we perform an identical
coupling constant renormalization for the nucleon case,
it makes no difference. We must now compute the transi-
tion probability ~MO+AMv~'. After performing spin
summations, and integrating over the phase space of the
neutrino and antineutrino, we obtain for the virtual
photon contribution to the transition probability

Ev(x)dx= [fm„'/96(2Ir)'M ]dx{[x'(3—2x)
—CX'(X—2)+—,', C'X4(5 —2X)]—(n/2Ir)

X[{(co+lnx —1)(&v+lnx —2co&)+3(1—or)

+1—lnx —2 lnx ln(1 —x)+2I.(x)—2I.(1)}
X[x'(3—2x) —cx'(x—2)]+3x' lnx] }

where c=m '/M'

After coupling constant renormalization we have

2p, k m' k' —p, k
MII ———0 ln + —ln—

~2 ~2 ~2 ~2

X (ey avI)(v2y„atI) .
Similarly,

M„=—8[in(X'/M') —-']
X{[-,'[1+(k'/M')]+ (k' —p k)/M']

X (ey avI)(v2y ay)+(1/3P)(eP„avI)(v2kau) }.

As before, we may not perform coupling constant re-
normalization in this case. Since the electrodynamics of
the boson do not enter into diagram (19) one might
expect its contribution to equal that of diagram (13) in
the Stuckelberg formalism. However, this is not quite
true since we are using different powers of the cutoff in
the two cases. To obtain M» from JIt/I» one simply
replaces ln(lj, '/M') by ln(X'/M') ——,'. Thus, summing for

W=
V

(b) Proca Formalism

There are six virtual photon diagrams which con-
tribute to muon decay in the Proca theory. These are
shown in Fig. 6. We must now use a cutoff cubed (vs= 3)
since this is required to secure convergence of diagram
(16). We have, therefore,

M„+MIg ——0[1+ (k'/M') ][ln(X'/m, m„)
—2 ln( m, m„ /P;„') +3](ey avI)(vg ~au).

Diagram (16) is in fact quadratically divergent, but
after mass and charge renormalizations we are left with

M, s
——g(k'/6M') ln(X'/M') (ey~avI) (v2/~aJIL) . FIG. 6. Virtual photon diagrams: Proca theory.
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the virtual photon matrix element in this formalism

19

Mv .O.a —Q M
i=14

Stiick. +0
6M2

1 ) X' 3
(t,P„a») (v,&a1 ) I

ln
M2

k' k' —p k k' —p k 3 k'
(ey av, )(v,y.al )

3P M' 2 M2

For reasonable values of X, M we may neglect
O([k'/M'7 in[a'/M'7) and we have then

Proca g~ Stiick.

= 8)[-',—1n(}~'/M') 7(ay avi) (v,y.ap) .

The difference between these two matrix elements corre-
sponds simply to a coupling constant renormalization.
Thus as far as the shape of the virtual photon contribu-
tion to the spectrum is concerned the two formalisms
yield identical results. Ultimately, when we consider the
lifetime of the muon it is possible that this term will

make some distinction between the two formalisms. For
the moment, Pv(x) which we have written down pre-
viously represents the virtual photon spectrum shape
in either formalism.

(c) Bremsstrahlung Diagrams

%e must now consider the inner bremsstrahlung
process"

p, ~ e +v,+v„+y.
This is necessary in order to remove the infrared diver-

gence which is present in the virtual photon spectrum.
In the Stuckelberg formalism there are eight diagrams
which contribute. These are shown in Fig. 7. The
photon's four momentum is E, and its polarization
vector is e'"), the X is usually left understood.

We obtain

3f20,= P 8e, y Qyq V2'y~CP kq —M
p.+K—m.

where

t'ef' m,m„

(2%') E8EvMiM22Eol

X~(p„p. p, p—; K—), —k, =—p„p, . —
Also

M2p p
= —(Iv/M') (es[1/ (P,+K m, )5 (P.+K—)avi)

X (v2klap) (k12 M2)—1

M2i, ——q(ey avi)

X (vga.a[1/(P„K m—,)5—ey)(k, ' M')—

k2 ——p,+pv.

Use of Dirac's equation shows that to our approximation

M2gb=0,

M, g. ——p(ey av, ) (v,y.ap) (ki2 M')—
x(k22 —M') 'e (ki+k2),

and

Also

M23 (V/M )(t&avl)(v2kla1t)(kl M )

&24=0.
The total bremsstrahlung matrix element is then

24

Mrs= Q M;,
i=20

PJQ. 7. Bremmstrahlung diagrams in Stuckelberg theory.

'~ The possibility of directly observing vector meson effects by
a study of this process is the subject of a separate paper. D. Bailin,
Nuovo Cimento (to be published). R. C. Brunet, Nuovo Cimento
30, 1317 (1963}.

and the transition probability
~
Mr&

~

' is what we must
calculate.

Since we are working only to order k'/M', we have
1

+2 Re(Mgp f+3II2t f)(M2ot, +3II22 +M23) .
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The transition probability is computed by averaging
over initial spin states and summing over final spin
states. Included in the latter is a sum over the polariza-
tion vectors of the photon. To handle the infrared prob-
lem consistently we must give the photon a small mass
X;„.' We must therefore sum. over the three polarization
vectors possessed by a vector meson with nonzero mass.
The summation takes the form

3

P p„&"&p,&"& = g„.+—E„E,/X;„'.

P(
2.0„
l.9
l.8
l.7
l.6

1.5

l.4

1.3

The e„&"& satisfy

e E=O and c'= —1

In our case the matrix element has the form

so that

E,l]trpl2= —IMI2+(1/~ 2) IM +I ~

However,

M K=O.

This is expected on grounds of gauge invariance for a
zero-massed photon, but is, in fact, exactly true" even
when A; WO. It can also be shown to be true for the
case of the four fermion interaction. So we have that

l.p

0.9

0.8

0.7

0.6
0.5
0.4
0.3
0.2
O, l

0.2 0 4 0.6 0.8 I.O

P, l~rpl = —l~l .

After the remaining spin sums have been performed we
must integrate over the phase space of the neutrino and
antineutrino, and also that of the photon. We obtain
finally for the contribution from the bremsstrahlung

FIG. 8. Bremmstrahlung diagrams
in Proca theory.

FIG. 9. Corrections to bare spectrum resulting
from vector mesons.

process in this formalism

I'r p(x)dx
= [nf m„'/(2')'M 96]dx([(3—2x)x' —cx'(x—2)]

X [2((o+Inx—1)(2 In(1 —x) —Inx+co —2u()
—2L (x)+2L (1)—(2(1—x)/x) ln(1 —x)]
+(5/3) (1—x) '+ ~~ (Inx+~ —1)(1—x)

X[5+17x—34x'+
~~ c(5+13x+49x2 —43x~)]}

It should be noted that if one puts c= (m„/~)2= p, one
does not quite recover the expression given by Berman. '

In the Proca formalism there are just three diagrams
which contribute to the bremsstrahlung process. These
are shown in Fig. 8. Since the electrodynamics of the
boson do not enter into diagrams (25), (26), we have

M25='JLE2O~+M2py
&

~26 Mmls+~215 ~

To our approximation we have

~» = (v /~')(pv ~~i)(p2vp~~)

X[ (kpl+k2)g~p k2pp~ k]~pp],

It turns out that the additional terms in this formal-
ism do not supply an appreciable contribution in our
approximation, and consequently the expression given
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It is unlikely that even the most sophisticated experi-
ments currently possible could detect the electromag-
netic boson effects.

We may integrate the spectrum over all values of x
to obtain the lifetime.

5r„'= ro
—' 1+-',c+-',c'+——n' ~(1+5c)

-5.0-
BERMAN Z

c' n /25
r„=ro/ 1——,'c—— 1——

/

——7r'
/

25 2~I 4 )
-6.0-

FIG. 10. Electromagnetic corrections to the
spectrum shape.

previously represents the bremsstrahlung contribution
to the transition probability in either formalism.

So the net result is that the shape of the decay elec-
tron's spectrum is independent of the vector boson
formalism employed. Combining the contributions of
the virtual photons and the inner bremsstrahlung
process, we obtain the total corrected transition
probability:

p(x) dx = [f kg, '/96(2v-) 'M']x'dx[3 —2x—cx(x—2)
+—,', c'x'(5 —2x) +(n/2v. )f(x)7,

where

f(x) =2[3—2x—cx(x—2)]R(x)+(6—6x) lnx

+[(1—x)/3x'7[(ar+lnx)(5+17x —34x'

+-,'c[5+13x+49x'—43x'7) —22*+34x'],

f 1—x
g(x) = —2L(x)+2L(1)—2+~1 l+2 ln

x

—lnx(2 lnx —1)+[3 lnx —1—(1/x) ] ln(1 —x) .

We are using the notation of Ref. 6. The infrared diver-
gence has disappeared, of course; as it stands the spec-
trum diverges at x=1. The correct procedure is to
replace ln(1 —x) by in[1 —x+(Ax/e)7, where Ax is the
experimental energy resolution measured in these units.
The change in the bare spectrum due to the presence of
vector bosons is shown in Fig. 9. Figure 10 shows the
effect of the bosons on the electromagnetic corrections.

We may calculate the effective value of the Michel
parameter for the spectrum. Using a least-squares fit in
the range 0&x&0.95, we obtain, after some labor

p,n ——4+0.3387c+0.2532c' —(n/2v )[47.99—8.165c].

For the largest possible value of c=0.0458,

p, gg
= ~3 —0.0393.

7'p is the lifetime calculated in the absence of electro-
magnetic corrections. It involves of course the coupling
constant which is at present not determined. Note that
the /ifetime is unaltered if one lets the mass of the elec-
tron become zero. Although the spectrum depends
logarithmically upon m. (through ~) the dependence on
co is removed when one integrates over x. Actually this
is just a verification of a general theorem of Kinoshita. "
It does, however, provide a useful and independent
check on the spectrum we have obtained.

Now,

ec+c'/25 (2.76X10—'.
Consequently, —Ar/ro(2. 34%%uo when one includes both
radiative and nonradiative corrections. The change in
the lifetime which we are calculating here is, of course,
the correction arising from the change in shape of the
decay electron's spectrum. Corrections due to the
coupling constant cannot be considered until we have
dealt with beta decay. Consequently the numbers we
have given are the same for both formalisms.

4. ELECTROMAGNETIC CORRECTIONS TO NEUTRON
DECAY AND NUCLEAR BETA DECAY

We have seen in Sec. 3 that the e8ect of the bosons
on the decay electron's spectrum shape cannot explain
all of the muon's lifetime discrepancy. Indeed the elec-
tromagnetic effects have little or no effect upon the
lifetime. What effect there is is due to the nonradiative
correction to the bare spectrum induced by nonlocality.

However, it is still conceivable that the bosons can
explain the discrepancy. As was remarked before, in
order to calculate 7-p, the bare lifetime, we must first
know the coupling constant f, or more precisely f'. This
is assumed to be the same as the vector coupling con-
stant for nuclear beta decay. If the bosons have a
significant effect upon the beta decay calculation, then
this will affect f which is calculated f'rom the observed
beta decay lifetime. And consequently the theoretical
value of the muon lifetime will be changed because of
these corrections to the coupling constant. Actually, the
process used is the 0+ —+ 0+ decay of 0'4.

To calculate the corrections to nuclear beta decay
one treats the nucleus as a collection of independent
nucleons. Corrections due to nuclear physics can then
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be estimated afterwards. ""We must therefore consider
what effects the bosons will have upon the decay of a
single nucleon. This is the problem to which we now
turn.

We assume that the interaction of the mesons with
the nucleons is given by

&r=j y +g q

where

n Oa) n

2 =f4 V-a'7&, a"= -,'(1—Lips) .

—if' ) nz,M.M„q'"
M'4m' (E,E E„eire

X(ey av, )(py a"n)8(1V P p, p„)—. — —-
Ã, I' are four momenta of neutron and proton. E„,E„,
and M, M„are their energies and masses, respectively.

Complication arises because in this process we may
not take the boson's mass M as being large compared to
those of the other particles involved. Indeed 3II may
well be less than M„.Fortunately many of the diagrams
we are led to consider diR'er only in that they have a
nucleon current replacing the muon current. The matrix
elements of such diagrams can be written down at once.

(a) Stiickelberg Formalism

For the Stuckelberg formalism there are nineteen
virtual photon diagrams which contribute to neutron
decay. They are shown in Figs. 12 and 13.They are com-

FIG. 11.Neutron decay via a vector meson. k= ~p

~' W. M. MacDonald, Phys. Rev. 110, 1420 (1958).
M H. A. Weideiimuller, Phys. Rev. 127, 537 (1962).

iP„,i' are the field operators for the neutron and proton,
respectively. The rules for Feynman diagrams which
follow from this interaction are completely analogous to
those already written down for the lepton currents. So
we will not repeat them. The number L, is about 1.25
for neutron decay. The Feynman diagram representing
the decay of the neutron, in the absence of electro-
magnetic effects, is shown in Fig. 11.

n-+ p+e +v, .

The calculations for this process are simpler, in one
respect only, than those for muon decay. Because of the
small difference of the neutron and proton masses we

may neglect al/ terms of order k'/M', where k= p.+p;,
as before,

k'/M'= O(ns, '/M') (10 '.
Thus the bare matrix element is

(20)

=A
P

FyG. 12. Virtual photon diagrams: Stiickelberg formalism.

pletely analogous to those arising in muon decay and
we have labeled the diagrams accordingly. It should be
noted that in this process we have both charged particles
in the final state, whereas in muon decay this was not
the case. This difference occasionally has an important
effect, as we shall see.

By a simple substitution

Mr+Ms ——Ogln(X'/m. M„)—2 ln(m, Mv/g; )+—,'7
X (ey a») (7~y.a"n),

where now

serif' p nz M„M„q'"
0=

~ ~

~(AT P p, p). — — —
2 (27r) 'M' (E,E„E„(vi)

Using the same coupling constant renormalization as
was used for muon decay Ms=0. Just as for muon
decay, &4=M5 ——0. Coupling constant renormalization
and neglect of k'/M' imply, Ms ——0, Mq ——M, =0,
Mg =Kgb ——0.

Diagram (10) (Fig. 5) is the first one which differs
essentially from its counterpart in muon decay. Our
previous approximation is no longer valid. We may,
however, set k=0 without neglecting significant terms.
By virtue of a freak cancellation we are left finally with

Mien= —0/ln(lis/Ms) —17(ey~avi)(py a"n) .
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For simplicity in doing the integrals we have assumed
that L=1, or e"=c. Although it is possible that the
pseudovector coupling can induce a contribution to the
vector coupling by means of the electromagnetic effects,
there is good reason to believe that this assumption
does not, in fact, affect the results appreciably. "

Kith this assumption

M13ll M t/{ L4p, PJ31 4J33+8J
X(ey av, )(py an)+2(ep avi)(pP, J32y a/3)

—2(eP J32y avi)(py an)},
M133=9{L1+6J1+6J23—J33](4,'y avi)(py an)

+6(ePa») (p J»an) 2(ePa—v,)(p J34a23) },
where

M' 11 17 co' co' co' 3'
6J, =ln ——+———+ — + l) ln

20 ~0 20

n
()30)

Fio. 13. Virtual photon diagrams: Stiickelberg formalism.

Dirac's equation allows us to set 3f&0&=0. Coupling
constant renormalization implies M11——0. Diagram (12)
(Fig. 5), like (10), must be recalculated. Setting t'3=0
we obtain finally

M 12 =0{Dn()1'/M')+ (1——,'&u) 1n&u —(4~ &u2) '/2t(w—)]
X(ep av )(pp a"n)yL —1y(-,'~—1) in~

+ (ad M') ' 't(41)](—e(P/M p) av, ](pa "23),

where

( a&4 3(u3 12 16 2
+ i

——+ —~2+—(u t((V),
20 5 5 5 (43' —(o2)1/2

1 1 4l1 1
J21= -+ ——+- 1»~

M„' 6 12 2/

(
2(o 4) 2t((u)

+ — +
12 3 3/ (4a) —(u2) '/'

P 3 Cl1 1 4l/ Cll

J22= ———+ ——+—
~

1n(o
Mv2 8 12 co 4 24/'

4 2(u' (v') t((g)
+ ld+

3 3 12) (4(v —(o2)'"

and

40=-M2/M 2)0.277
1 31

J23=—— 4d+——
~ + inca

6 120 20 (40 6 4
t(/d)=tan ' —tan 1

(4'—~2) 1/2 (4~ ~2) 1/2

The form we have written assumes that ~(4. Should it
turn out that co)4 we use the correct logarithmic con-
tinuation of the inverse tangent. That is

2 ~+ (~2 4~) 1/2

—t((u) ~ —ln
(4~ ~2) 1/2 (~2 4~) 1/2 ~ (~2 4 ) 1/2

/'13 cu4 8 4' 2t(co)
CO

(60 40 15 15 (4~—~2)'/2

Jdg= —2a)& ln
4M'M iyi 1+P

1—P ) 2P
+-,' ln' —22r2 —2Li

1+P &1+P

P co —2 2p, P
J32—— — in~+2 ln

2M'3l „' 2 3f~'

+1+(4cd —a)2)1/2t((u) + ln
2M2Mvi Pi 1+P

As before, diagram (13) (Fig. 5) is the most difficult
case to hand'le. Since the invariant center-of-mass energy where p is the three momentum of the electron and

of the electron and proton is above the normal threshold =Ill &
some of the integrals we encounter have singularities in
the range of integration. This means that the amplitude
for the process is complex.

Actually, we may throw away the imaginary part of
the integral because it never contributes to the transi-
tion probability. " Consequently, we will only write
down the real parts of the integrals in all that follows.
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J33—
1 1 3—to 4—5co+to'

—+ 1nco+ t(to)
M ' 3 6 3(4co—to')'~'

js4 = L
———co+ (———co+—cos) into

M„'
+(—~+-'~' —k~') 2t(~)/(4~ —~')'"j

1 7 to co co co

&ss=——to+—+ +
~

into
6 10 5 2 2 101

t
co 4 7 13 2 2t(to)

+
~

———co'+—tos ——(o
(10 10 10 5 (4co —co')'"

We may now combine these contributions and wehave
for the total virtual photon matrix element in this
formalism

13
Stuck

p

When this is done we see that this matrix element is
independent of the ultraviolet cutoff. This is of course
only after we have performed mass and charge renormal-
izations. Nevertheless the result is somewhat surprising
since this is rot the case for the calculations using the
conventional theory. ' In its place, however, we have a
dependence on the mesons' mass Ã for which we may
not take the limit M~ ~. Consequently the limit
3f—& does not yield the answer obtained using the
point interaction. "In a sense therefore, the boson mass
M has provided a cutoff which renders the over-all
answer Rnite. It may be that by a suitable choice of

n

FIG. 14. Virtual photon diagrams: Proca theory.

gauge for the photon propagator one can carry through
the whole calculation so that the cutoff appears only in
the "charge renormalization" diagrams. " It is not
obvious that this can be done because we have four
diagrams which are at present cutoff-dependent.

Finally, after performing spin sums and integrating
over phase space, we have for the virtual photon con-
tribution to the transition probability in this formalism

2( 2p l 1) 1+p 2p, P 3co

p+ —
~

ln +2 ln + 1——into+ t(to)
P ( I+.P ) Pj ] —P ~„2 2 (4to —co2)&~~

34) 12'

where
Ep

=3E„—j/I„.

tr 2 1—P Mv 9 1 1—P
Pv(E,)dE,= EP(E,—Eo) dP, 1——4co~+—co& ln —ln +—+—ln

47rsM' 2s. p 1+p m, 2 2p 1+p

(b) Proca Formalism

The six diagrams which contribute when one uses the Proca formalism are shown in Fig. 14. In fact we only
need to calculate one diagram: (18).

M&4+M» ——Hgln(X'/m, M„)—2 1n(m.3fv/X;„')+3j(ey av&)(py a"rt), M rs —M/7 —0,
M'rs —— g((ey avr) (—IIyua"e) $~ ln(X'/3P) —1—rsco+ (—'co' —co+ ra) into+ (sr co—1)(4to —to') ' 't(to) $

+Le(P/3II, )av, ](Pa"rt) Lssto+ (——'s&o'+-', co+ 1) into ——', (2co+ 1)(4co—co') '"t(co)j) .

As before, we may set M» ——M» so long as we replace ln(X'/3P) by in(X'/3P) —s. Then combining these matrix
elements we obtain

19
Q~vPr. oca—

i=14

"See S. M. Berman and A. Sirlin, Ann. Phys. 20, 20 (1962)."D.B. Pearson and J. C. Taylor, Nucl. Phys. 37, 689 (1962).
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QMvProca QMvstiick. — g{(p+~gvi)(7i+ g~)t o in()&/M&) &&+(1&& o&+o) in&+(Zoo 2)(4& &&)i/&((&)7

+fe(P/M„) avi7(Pa"n) [ 1+—-,'~+ (~—ooi') 1noi+-', (1—~) (4o~—o~')'"t(oi) 7}.

It should be noticed now that although this matrix element is not cutoff-independent the cutoff enters with
exactly the same coefficient and sign as in muon decay. This means that we can drop this term in bo/h processes and
regard it, along with other terms like this, as a renormalization of the coupling constant. In this way the cutoff
has dropped out of the Proca formalism in just the same way as it was removed from the Stuckelberg formalism.
With this renormalization we shall have for muon decay

Proca g~ Stiick.
V V

and for neutron decay

d Mv '"' AMv '"—'" = 0{(e—y "avi) (@ymca"e) [9/4 ', oi+—(—,'oi' -,'is+—$—)1no&+ (-', oi —2) (4oi—oi') '"t(oi)7
+[e(P/M„)avi7(pa+)t 1+o~o—+(oi—o~o ) 1noo+o(1—oo)(4oi —coo) ~ t(oi)7}.

Finally, for the virtual photon transition probability we have

P ""'(E)dE =P '"'" (E )dE +(f'/47r'M')E '(E E)'dE (n—/2~)
y L2 —~~oi+ ( ~bio —goi/4+ oo) inM y (~goi —11/6) (4oi —oi') '~'/(oi) 7.

(c) Bremsstrahlung Diagrams

The eight inner bremsstrahlung diagrams which contribute in the Stuckelberg formalism are shown in Fig. 15.
However, to our approximation the total bremsstrahlung matrix element,

24

Mrs= Q M';,
i=20

is just the same as for the case mithout vector bosons. Similar considerations apply to the diagrams in the Proca
theory; these are shown in Fig. j.6. Then the bremsstrahlung contribution to the transiton probability in either
formalism is

Pr~(E,)dE, =
~f4 2(Eo—E ) 28 4 Eo Eo +6EeEo—31E 1+P

E '(E, E)'dE, 4o&~——4 ln + + ln +
SX4M4 nt,. 3 3 E, 12PE,o 1—p

1
—X 2'~ ln

1 P1 P— 2(Eo——E.)' 1—Pq (1+P~—ln ln +L
~

—L~ ~+2L(P) —2L(—P)
1+P 1+P E,m, 2 3 5 2 )

%e now combine the contributions of the virtual and bremsstrahlung photons. Following Kinoshita and Sirlin'
we make the approximation of neglecting the electron's mass wherever this does not lead to a spurious divergence.
This means we set P= 1; then writing x=E,/Eo, we have for the Stuckelherg formalism

f4 n Mv 7 2ir' (1—x 3 1—x
P '"'(x)dx= -Eo'(1—x)'x'dx 1+—3 ln ——+2ir' — +4(lnx —1)

~

——+ln
4ir'M4 2ir 2Eii 2 3 k 3x 2 x

(1—x)' (4(1—x) (1—x)' 1—x) 3co 12&v —3oi'
+ lnx+0~ —3+ +4 ln ~+—lnoi+ ](oi)

6x2 x ) 2 (4oi —ohio)'~2

where 0= ln(2Eo/m, ).
In the above expression the 2m' term is just the

Coulomb contribution given by the F function. "
Since this term is included in the ft values it will

henceforth be omitted. Integration gives for the lifetime

(i ')si ci, =i o '{-1+.(n/27r)$3 ln(M„/2Eo) —7.81

+-,'or 1noi+3(4or —oi')'"t(oi) 7}.
27 J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics

(Johr1 Wiley @ 50ns, Inc. , New York, j.952), p. 680.

For the Proca formalism one has

(i ') p.o. = 7 o '{1+(n/27r) $3 ln(M„/2Eo) —5.81—-', oi

+ (o'oi'+ 4'oi+o ) lnoi+ ('ooi+ 7/6) (4oo —oo') '~'t(oo) 7}.

Just as for the muon decay case the lifetime again
satisfies Kinoshitas theorem. " But this was obvious
earlier since the dependence of the transition probability
upon 0 is identical to that obtained using the conven-
tional theory. As remarked before we may not take the
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TARSI.z I. The muon lifetime discrepancy.

No vector mesons
Stiickelberg

3f=1.3M„M=M~
Ploca

M = 1.3M„ ilf =JI~
No Corrections
Muon decay radiative corrections
0'4 radiative corrections
Nonradiative: screening
Nonradiative: vector bosons
Nuclear physics
Discrepancy

i.65%
0.42%
1.7%
0.265%
0—1.17%

+2.865%

1.65
0.42
1.78
0.265—0.45—1.17

+2.50

1.65
0.42
1.43
0.265—2.75—1.17—0.155

1.65
0.42
1.69
0.265—0.45—1.17

+2.40

1.65
0.42
1.2
0.265—2.75—1.17—0.385

limit M —+ ~. However, for large values of or the radia-
tive corrections behave like

6 in(M/M„),

which should be compared with 6 in(X/3f~) obtained
previously. So that the boson mass is indeed an effective
cutoA. This result was also obtained by I ee using the
P-limiting formalism. "

Now we are ultimately interested in the beta decay
of 0", since this is the process used to determine the
coupling constant. To obtain the radiative corrections
for this process one simply inserts the relevant value of
Ep. Bardin et al."have calculated Ep for 0"

Ep "=1.8126+0.0014 MeV.

Using this number we can calculate the electromag-
netic corrections to the lifetime for three values of co. We
take or=0.277 which is the smallest possible value, or= 1
corresponding to M =3f„,and or = 1.7 which corresponds
to M=1.3M„.

Then for the Stuckelberg formalisms

1 3

or=1 0

or =0.277:

hr/r p
—1.7——8%,

/r p
= —1.6.6%,

A7 /r p
—1.43——%,

and for the Proca formalism

or 13
or=1 0

GD =0.277:

Ar/r p
= —1.69'%%uo,

Ar/r p
—1.54——%,

A7/r p
—1.20%——.

These values should be compared with the value
A7/r p

—1.7%——obtained using the conventional theory.

5. THE MUON LIFETIME DISCREPANCY

The situation with regard to the muon lifetime is
somewhat confused. In the first place the experimental
value is uncertain seeing as how the latest measurement
by I'arley3P has not yet been published. We base our
conclusions on the previous value obtained by Charpak
et ul."The corrections to the nuclear matrix element are
not completely decided"'4; we use the later value of

v e

(20b)

n (24)

FIG.. 16. Bremsstrahlung diagrams in
Proca theory.

(22 a) n (22b
C27)

FIG. 15. Bremsstrahlung diagrams in Stiickelberg theory.

"T.D. Lee, Phys. Rev. 128, 899 (1962).
"R.K. Bardin, C. A. Barnes, W. A. Fowler, and P. A. Seeger,

Phys. Rev. 127, 585 (1962).

30 F.J. M. Farley, T. Massam, T. Muller, and A. Zichichi, Pro-
ceeCings of the 196Z Conference on High Energy Physics at CERE
(CERN, Geneva, 1962), p. 415.

3'A. Charpak, F. J. M. Farley, R. L. Farwin, T. Muller, J.
Sens, and A. Zichichi, Phys. Letters 1, 16 (1962).
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Weidenmuller. '4 Nonradiative effects due to electron
screening, nuclear electromagnetic form factor effects,
E-capture competition and second forbidden matrix
element corrections seem to be agreed upon. " All of
these effects are included in Table I.

It is fair to say that a vector boson car explain the
current muon lifetime discrepancy, although its mass
should not be much greater than 500 MeV. If the indi-
cations from CERN' that M =1.335„are confirmed, we

32L. Durand, L. F. Landowitz, and R. B. Marr, Phys. Rev.
Letters 4, 620 (1960).

can only conclude that a sizeable discrepancy still re-
mains to be explained.
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Blam R. DEsAz

Depariraent of Physics, UniMrsity of Wiscoasirs, 3Iadisoa, Wiscoas&s

(Received 10 December 1963; revised manuscript received 14 February 1964)

At a sharp resonance the phase of a Regge residue P(t) should be essentially a multiple of 2sr. The value
it takes determines to a large extent the falloff rate of P and of the reduced residue y =P/v" for t &~ 0. If f0 lies
on the Pomeranchuk trajectory and if the phase there is 2sr then it turns out that y(t) falls off exponentially
for small —t with a width comparable to the one deduced from the widths of the high-energy di8raction
peaks, and for large t, y(i)—has a power fall-off. On the other hand, if the phase at f' remains small then
the width is at least an order of magnitude larger. The latter case is indicated on the basis of the potential
theory results. However, it is possible that the former may be a purely relativistic phenomenon peculiar
to the Pomeranchuk pole in which case the Regge-pole hypothesis would be consistent with the high-energy
experiments.

for large —t.4 Potential theory results, however, indi-
cate that near a resonance the phase should stay small
and not approach 2m. ' If this is assumed to be true also
for P then we find that it is impossible for y to achieve
a diffraction-type behavior; the width turns out to be
at least an order of magnitude larger than the experi-
mental values. This would strongly suggest that the
pole-hypothesis is inadequate and that perhaps other
singularities in addition to the commonly assumed poles
play an important role.

Consider elastic x+ scattering with s the square of the
c.m. energy and t the square of the momentum transfer.
We shall take BeV as the unit of mass. For large s, the
contribution of a Regge pole with position n(t), to the
scattering amplitude Az(s, t) is given by

2~—' (sr) '"(2o.+1)I' (-, +n)
Az(s, i) = pz-

r(I+ )

4 Even if fo turns out to be 1 or 3 /see W. Frazer. S. Patil, and
N. Xuong (to be published) ] the essential points of this paper will
not change provided that there exists a 2+ particle on the I"
trajectory at a higher mass (&2 BeV).

5 A. Ahmadzadeh, thesis, University of California (un-
published). The results, based on Yukawa potentials, were com-
municated to me by G. F. Chew.

* Work supported in part by the U. S. Atomic Energy Com-
mission.

' More precisely, 2arr+O(a r). For a sharp resonance, as«1.' B.R. Desai, Phys. Rev. Letters 11, 59 (1963).' References to the earlier theoretical work are given in Ref. 2.

[NITARITY implies that a Regge-pole term

p(i)/I —(i) (I)
near a sharp resonance at i=is a~(ip) =t satisfies the
relations Pg= I' (the width of the resonance) and
pz«p~. Since psr is positive at te, the latter condition
implies that the phase of P must essentially be a multiple
of 2x at a resonance. ' This is a strong restriction on the
phase; the value it takes, namely, =0, 2x, etc. , deter-
mines to a large extent how fast P or rather the reduced
residue y (see below) falls off for t(0. The behavior in
the negative t region is of some interest since it was
pointed out recently' that if p of the Pomeranchuk pole
(P) showed a sharp diffraction-type fall off for small t, —
then the Regge-pole approximation' may still be ade-
quate in explaining the high-energy behavior of scat-
tering amplitudes. The question of shrinkage or absence
of it can then be understood in terms of appropriate
linear combinations of P with other important poles. '
We shall show below that if f' lies on the I' trajectory
and if the phase is 2m. at ty then one obtains an exponen-
tial type falloff for small —t, with a width comparable
to the one observed experimentally, and a power falloff


