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Constraints imposed by unitarity and analyticity on the high-energy behavior of scattering amplitudes
are studied in detail. The Froiseart bound at nonforward (and nonbackward) angle is improved by two
difterent methods: One is based on the analyticity in complex cos8 plane, and the other on the analyticity
of the partial-wave amplitude in the complex angular-momentum plane. It is also shown that the Froissart
bound at 8=0 or ~ cannot be improved insofar as one does not impose restrictions on the scattering amplitude
other than unitarity and the analyticity in the coso plane. The scattering of particles with spin is discussed
briefiy.

I. INTRODUCTION

A PED years ago, Froissart' has shown that the
combination of the unitarity condition and the

Mandelstam representation with 6nite subtraction im-
poses rather strong constraints on the growth of the
scattering amplitude at high energy. Namely, the scat-
tering amplitude f(s, cos8) (for neutral scalar particles
of equal mass) satisffes the inequalities

( f(s, cos8)
( (C,s(lns)' for 8=0 or or, (I.1)

~ f(s, cos8)
~

(C2s"4(lns)'t2 for 840 or or, (I.2)

the analyticity in the ellipse. ' ' (This is proved by con-
structing counter examples, as is discussed in detail in
Ref. 4.) These results have led us to examine whether
or not it is possible to improve the Froissart bounds if
we assume analyticity in a larger domain than the
ellipse, for instance the entire cut s plane. For the case
8AO or or, we have been able to improve the bound (I.2)
considerably. Our result is4 '

(ins)'"
i f(s, cos8) i &Ce for 8WO or ~. (1.3)

sin'0

for very large s, where s and 8 are the square of the total
energy and the scattering angle in the center-of-mass
system. f is normalized here in a relativistic way so that
da, t/d&=4~ f ~

'/s, o~,~
——(8~/kg&) Imf(s, 1) (0 is the

center-of-mass momentum) .
It was recognized later by Greenberg and I ow' and by

Martin' that it is not necessary to make use of the full
analyticity assumed in the Mandelstam representation
to obtain the bounds (I.1) and (I.2). It is sufficient to
assume that f(s, cos8) is analytic in an ellipse in complex
cos8 plane, with foci at +1 and —1 and semimajor axis
of length 1+n/k' (n: positive constant), and that f is
uniformly bounded in this ellipse by some power of s.
Conversely, it was found that the bounds (I.1) and (I.2)
cannot be improved insofar as one assumes no more than
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For the case 0=-0 or z, it is found that the forward
bound (I.1) cannot be improved as far as one does not
impose restrictions on f(s, cos8) other than the unitarity
and the analyticity in cos0 plane. ~

We should like to emphasize here that these results,
although we have not been able to improve them further,
may not be the best possible ones because we did not
take full account of analyticity and unitarity. In particu-
lar, we disregarded analyticity with respect to energy
and also unitarity in crossed channels. It will be very
interesting to see whether the upper bounds can be
improved further by a proper consideration of these
important features of Mandelstam representation.

The purpose of this paper is to present the results of
our investigation on the upper bounds of scattering
amplitude in as complete and detailed a manner as
possible. We will not only supply mathematical details
to the results published already in our preliminary

4 T. Kinoshita, Acta Phys. Austriaca 17, 56 (f963).' A. Martin, lecture at the Scottish Summer School of Theoreti-
cal Physics, Edinburgh, Scotland, 1963 (to be published).
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reports, but also discuss alternative approaches which
widen our scope and give us a better understanding of
our results. In Sec. II we give mathematical details of
the method used in Ref. 6. In See. III we study the
properties of the partial-wave amplitude as a function
of the angular momentum and show how the results of
Ref. 6 can be derived by an entirely different method.
The scattering of particles with spin is discussed in
Sec. IV. In Sec. V we show why we cannot improve the
forward Froissart bound (I.1) if we assume only uni-

tarity and analyticity in cos0 plane. Section VI contains
general remarks about our results. We also give examples
to illustrate how the upper bounds may be lowered
further if the scattering amplitude is subject to more
speci6c restrictions. Some of the mathematical questions
encountered in our investigation are described in five
appendices.

n. coMPLEX coS6 I x,hmz WIr ROAcH

This section does not contain any new result. It gives
merely mathematical details and general comments on
the method used in Ref. 6 to improve the Froissart
bound (I.2) at ljxed angle different from 0 or m. In
Sec. IIA we give a detailed derivation of some properties
of I.egendre series. In IIB we call attention of the reader
to some general properties of holomorphic functions
which turned out to be decisive in our work. ' In IIC
we coniment on the method used in Ref. 6. We give also
proofs of some assertions already contained there.

A. Some Proyerties of Functions De6ned
by Legendre Series

Throughout Sec. II, C, (r: positive number) will de-
note the disk

~
s~ &r in the complex s plane. E, (for r&1)

will denote the open set (s
~

s= (t+t ')/2, r '(
)
t

) (r}.
This is the elliptical disk with foci at +1 and —1, and
semimajor axis (r+r ')/2

If the sequence of complex numbers c0, a&, ~ . satisfies
the condition

lim sup) a.
~

""=-r-' (r&1)

the Legendre series P a„F„(s)converges in E„,and only
in E„,and dehnes there a holomorphic function

(II.2)

Similarly, the Taylor series Q a„s"converges in C„and
de6nes there a holomorphic function

(II.3)

s We are greatly indebted to Professor M. Zerner (Marseilles
University, France) for having directed our attention to these
properties.

Thus, fol s in E„

oo

f(s) = Q F„(s) u-"-'g(u)du.
2~$ n 0 I

Por each s, consider the holomorphic function of I
E(s,u) = (1—2us+u')-'", (II.5)

dined by the condition uE(s, u) ~ 1 for (u~-+~ in
the I plane cut along the straight line segment from
s—(s' —1)' to s+(s' —1)' '. Now, if s is in E~, we have

)sw(s' —1)'"
(
&E. .

Thus, for each s in Err, the expansion of E(s,u) in powers
of I ', which is known to be

u—a-1F (s)
n=0

converges uniformly for I on I". Consequently we can
interchange the order of integration and summation in
(II.4), and obtain

f(s) =- — E(s,u)g(u)du, a&En.
27ri r

Let F be the domain
~
u

~
& 1 and G be the complement

of the closed straight line segment I=L—1, 1j.We shall
define the one-to-one mapping of 6 onto Ii:

a(s) =s+(s' —1)"' (II.7)

by the condition that s '(s' —1)' ' ~ 1 as
~
s

~

—+ oo . The
inverse mapping is given by

b(u) =x(u+u-')

We shall now prove the follovnng:
Theorem I.Let V be a simply connected and bounded

domain which contains a disk Cg with r &E.& j and has
a smooth closed boundary BV.Let g be holomorphic in V
and continuous on VUciV. Then f is holomorphic in the
simply connected. domain W =IUb(VQF) and can be

' See, for example, I. Bieberbach, Analytische Fortsetzleg
(Springer Verlag, Berlin-ooettingen-Heidelberg, 1955);P. Dienes,
The Tayl0r Series (Dover Publications, New York, 1957), Ghap. X,

Mathematicians have studied the relation betvreeo
the property of the coeScients of a power series hke
(113) and the property of its analytic continuation to
the exterior of its convergence circle. 9 In order to be
able to use their results in the analogous problem for the
Legendre series, we study in this subsection the relation
between the analytic continuation of the functions
(II.2) and (II.3).

(1) Let I' be the circle ~u~ =R with 1&R(r. The
Cauchy formula for the coe%cients of the Taylor series
(II.3) gives

u-"-'g(u) du.



KI NOSH I TA, LOEFFEL, AN 0 MARTI N

expressed as

f(s) = E(s,u) g(u) du, zg W. (II.9)
2xz

Proof: For every s in Biz, we can make use of Cauchy's
theorem and deform the integration path I" of (II.6)
into BV since g is holomorphic in V. On the other hand,
for u on BV, the finite branch point b(u) of E(z,u), con-
sidered as a function of z, is on BW= b(8 V). Thus, for
every u on ciV, E(z,u) is holomorphic and one-valued
for s in W. The holomorphy of f in W follows. Q. E. D.

For every s in W, the two branch points a(z) and
a '(z) of E(s,u) as a function of u are both in V. Let y
be any cut running inside V between the two branch
points. E(s,u), which is one-valued in the u plane cut
in this manner, should satisfy uE(z, u) ~ 1 for

I
u

I
~ co .

The value of E at opposite sides of the cut differ only
by the sign. Thus, if we deform the integration path
8V of (II.9) continuously into a closed path along p, we

obtain the formula given earlier'

I,et 8' be a simply connected and bounded domain
which contains Eg and has a smooth boundary BS'.Let
f be holomorphic in W and continuous on W UNIV. We
have then

h(s) =- I.(s,u) f(u)du, z&Ci(.
2XZ gg7

Put V=fsI IzI &1}Ua(WQG). For every n on BIV,
L(z,n) is holomorphic for s in V (see Appendix A), so
that we get the following:

Theorem Z. If f is holomorphic in W and continuous
in WUciW, g is holomorphic in the simply connected
domain V defined above. For every s in V, we have

(II.15)

I (z,u) f(u) du, sQ V. (II.16)
2xz

The formula of our previous paper'

1
f(s) =— E(s,zz) g(u) du, (11.1O)

1

h(s) =- (1—2us+s')-'" f(u)du,
2

where the integration is along the curve y connecting the
points a(z) and a '(s). This may also be written as

1

f(s) = g(z+—(z' —1)'"cost)dt, (11.11)

where Q„(u) denotes the Legendre function of the second
kind. If we dehne

we have

CO

$t(z) = P z" Q„(u)f(u)du
2x'2 &=0

(11.12)

g(s) = (2z8,+1)h(z) . (II.13)

As is shown in Appendix A, for every s in Ciz, g s"Q„(u)
converges uniformly in the complement of E~, defining
there a holomorphic function L(z,u). We can thus inter-
change summation and integration in (II.12), obtaining

h(z) = -— L(z,u) f(u)du, z+Czz. (II.14)

"E.T. %hittaker and G. N. Watson, Woden' &mclysis (Cam-
bridge University Press, New York, 1952), p. 322.

by a suitable change of variable.
I
See Ref. 6 for an

alternative derivation of (II.11).]
(2) To derive an inverse formula that gives g in terms

of f, we proceed along similar lines. Put I"=b(P); I" is
the boundary of Ez and thus contained in F.„.We have"

2N+ 1
a =— Q (zz) f(u)du,

2Ãz pl

valid for Is I &1, follows easily from (II.16) making use
of (A4). One can also derive, with the help of (A16),
analogous formulas that hold in regions containing
points z with IsI &1.

~. Subharmonic Property of
I f(z) I

and ln If(z) I

We shall now quote some general properties of holo-
morphic functions that play important roles in our work.

(1) If f(z) is holomorphic in a domain D, If(z) I
is

subharmonic in the same domain. Furthermore, if f is
not identically zero in D, lnI f(s) I

is also subharmonic
in D."

By definition, "a real function u which is subharmonic
in D has the property:

(2) Let D' be any bounded domain which is contained
in D together with its boundary BD'. Let h be harmonic
in D', continuous in D'UBD', and h&u on BD' Then.
h&N everywhere in D'.

Property (2) allows us to derive upper bounds for
the modulus

I f I
and for the logarithm of the modulus

ln
I f I

of a holomorphic function f in a domain D when
bounds for these quantities are known on subsets of D.
For example, the maximum modulus principle" may be
derived in this way. As an illustration, let us give a
proof of Hadamard's three circle theorem": Let f be
holomorphic and one-valued in the domain ri&

I
z

I
& r&,

and co~ti~uou~ in zi& I. I
&rz Ass~~e t at If l &zzzi

» T. Rado, Subharmogzc Fumctzons (Chelsea Publishing Com-
pany, New York, 1949), p. 22.

"T.Rado, Ref. 11, p. 1.' See, for example, K. C. Titchmarsh, The Theory of Functions
(Oxford University Press, New York, 1939), 2nd ed. , p. 165.

'4 E. C. Titchmarsh, Ref. 13, p. 172.
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I» lel=ria»d Ifl&m2f« lsl=-r2 Tlie»

(lnlel —lnri) lnm~+(inr2 —lnlel) Inmi
lnl f(e)l &

lnr2 —ln~g

complex s plane cut along the ical axis from —~ to —p
and from p to +~, where p= 1+2m'/k'.

(b) Temperedrtess. There are positive numbers tV and
mo', independent of z, such that

(II.17)
I f(s,s) I

&(s/m')" (II.20)

has a finite upper bound in D. Then n(s) satisfies the
property (2) in D (Zerner's lemma" ). As an (unpub-
lished) application, Zerner finds for the holomorphy
domain of the Regge interpolation in Mandelstam repre-
sentation a result quite similar to that of Bardakci. "

The result published in Ref. 6 is obtained by a method
which makes essential use of (1) and. (2). We shall dis-
cuss it in more detail in the next subsection. Further
use of (1) and (2) will be found in the following sections
of this paper as well as in Ref. 17.

C. Comments on a Derivation of Uyyer Bounds

We shall discuss here the assumptions and the method
used in Ref. 6 to find upper bounds on the growth of
elastic differential cross section at high energy.

We consider the elastic scattering of two spin-zero
particles of equal mass m. To take account of the
unitarity condition, we expand the elastic-scattering
amplitude f in a Legendre series as follows:

gs
f(s,e) = Z(2t+1) (s)P (e),

2k &=0
(II.18)

where s=cos8. The unitarity condition can then be
expressed as

Ima, &la, I2, i=0, 1, 2, " . (II.19)

In the discussion of this subsection, the bound for the
cross section is obtained under the following assump-
tions on f:

(a) Artalyticity For every real s.)4m', f(s,s) is holo-

morphic for e in a domain D(s) of the following shape:
D(s) is the intersection of an elliptical disk F, (see
Sec. IIA), where x (&1) is independent of s, and the

"This lemma was shown to us by Professor M. Zerner. See
M. Zerner, Bull. Soc. Math. France 90, 165 (1962).

' K. Bardakci, Phys. Rev. 127, 1832 (1962)."F. Cerulus and A. Martin, Phys. Letters 8, 80 (1.964).

Proof The. right-hand side of (II.17) is a harmonic
function in ri& I

e
I
&r2 and is equal to lnmi for

I
s

I

= r,
and to lnm2 for lel =r2. Since the inequality (II.17) is
valid for Iel =ri and rg, it holds also for ri& Iel «~.
Q. E.D.

We quote another consequence of (1) and (2): Let
f(s,s) be continuous for z in a domain D and for real
and positive s. Suppose that, for each s, f is holomorphic
in D, and that

n(e) = lim sup Dn I f(s,e) I
/lns]

for s)mo' and for e in D(s).
A few words about these assumptions. We are pri-

marily interested in the amplitudes satisfying the
Mandelstam representation. Such amplitudes fulfill the
assumptions (a) and (b). But these assumptions are
obviously less restrictive than the Mandelstam repre-
sentation: No analyticity is postulated with respect to s,
no crossing, and so on. The very point we wish to
emphasize by formulating our assumptions in this form
is that we do not know how to use the analyticity in s or
the crossing (more precisely, unitarity in the crossed
channel, for example). As to the point that in this sub-
section we do not even assuIne holomorphy in the whole
cut s plane, our motivation is of more technical nature.
Having restricted s to a bounded domain, we do not
have to worry about big I

s
I

values in the formulation
of the temperedness property (b). The only essential
feature of the peculiar form we chose for D(s) is that
x is independent of s. Other details are motivated only
by considerations of convenience. Ke may add that the
limitation to bounded domains seems to be unessential
for our purpose of deriving the asymptotic behavior of
upper bounds for s~~. In fact, in the following sec-
tions the assumption that f is holomorphic in the whole
cut s plane is used in an essential way. Nevertheless, we
have not been able to improve the results of this section
by the use of this more restrictive assumption.

If we define now (see Sec. IIA)

g(s,e) =- (Qs/2k) P (2l+1)a,(s)e',
Z=o

(II.21)

I g(s,e) I
& (s/m')"' (II.22)

for s&mi2 and for s in D"(s), where D"(s) is a closed
subdomain of D'(s) whose boundary has the following
properties: (1) it is outside the unit circle

I
s

I

= 1; (2) its
distance to the unit circle is larger than Cim/gs, where
Ci is some positive number; (3) the distance of each of

it follows immediately from (a) and from Theorem 2
that

(a') Artalyticity. For every real s) 4m', g(s, s) is holo-
morphic in D'(s), which is the intersection of the disk
C, (g) 1) with the e plane cut along the real axis from
—~ to rand from r to—+ ~, where r =p+ (p' —1)'"
=a(p) Ls«(117)j.

Furthermore, we can deduce the following property
of g(s, e):

{b') Temperedrtess. There are positive numbers iV'
and mI', independent of s, such that
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s) s &+i

I ('s) I
&Cp — ln —I&C,

I
(II 23)

m' m'J pj

p and s lii D(p). I,et us call gy~( )
P 'nts of ~(p) whose distance to the b~„„d

we write
)

Rg R r R~ R' X

FIG. I. The portion of D" s) in the(s) in the erst quadrant is represented
y es a e area. C1, C2 and C3 are the circles of Pig. 2, Ref. 6,

vrhich is tangential to both the boundar of D"( )

). * ct illustrates the assertion made R f 6

p h
s ence of nonhero mInImum value fo +p. ) about the existen

in e.
or ot er symbols, see the text.

or 0.

its points to the boundary of D'(s) is smaller than
&m/gs, where C& is some positive number.
The (admittedly clumsy) proof of this statement is

based on the inequalities derived in Appendix B. The
geometrical situation encountered in th
e ~ ~

in .e course of ploof
is shown in Fig. 1. We have

r = 114m/Qs+O(eP/s) .

%e choose now a closed curve 6 in the l h h
'

e s p ane wLiich is
made up of circular arcs of radius E. and. E' centered at
the origin and of segments of rays through the origin at
ailgles ~ happ s & pp with the real axis. (See also Fig. 3.)

ciently large s, and R' and pp (&pcs) are defined by

(x—R')/x= sing p
——(r—R)/r.

Thus
pp m/ps+ 0(m'/s)——

x—R'= xm/gs+O(m'/s) .

5 is inside D'(s) but outside the unit circle for suKciently
large values of s. Since b(h) Lsee (11.8)j is inside D{s
when 6 is inside D'(s), we can write

g(s&s) —— — L2s(N —s)—&+ (~ s)-qh( )d
r

gs 1

h (1—IsI)'
(II.24)

In order to make clear what sort of conclusion we can
draw from the facts recalled in Sec. IIB on one hand,
and from analyticity Lproperty (a) or (a') j, tempere-

remark: For every s, g(s,s) is holomorphic in D'(s= ap .
For every s in D'(~ ), we can define

n(s) =lim sup DnI g(s,z) I/ln(s/m') j.
n(z) is smaller than or equal to Ã' f

' D'or s in ~ accord-
ing to (II.22) .For every s with

I
s

I & 1, n(s) &0 according
to (II.24). Using Zerner's lemma (Sec. IIB), one can
deduce from these inequalities that u(s)&0 for s in

IsI = (note that D'(ap) contains neither
=1 or —1&. In other—). er words, for a given s=exp(i8)
(MO or s.), and for every positive p, there is a
number m3' such that

ve e, ere is a positive

5)~ wh«« is the boundary of g(&)

there js a positive number ~&' independent of s, such

Df/
that (II.22) is va, lid «r every

(s) We have only to choose Ql
D (s) they a«obvious from the

construction. This concludes the roof f g,~)

The advantage we gain by the introduction of the

ering amplitude f derives from the fact that the
n s 01

unitarity condition (II.19) gives the following decisive
inequa ity for every s)4ms and for every s with'

I
s

I
& 1

h(s, s) = — 1.(s,u) f(u)du
2x'b g (Q)

for sufficiently large s and for s inside 6 I see (II.12) and

e6ne now the closed domain h(p) with the bounds, ry
curve I' as in Appendix 8, Fig. 3, where g= m/Qs. Here

e =m/Qs+O(m'/s) and x Ri'= 2ptm—/gs+O(m'/s)
On the other hand, Ri-1=2m/Qs+O(m'/s). Applying
the inequality (94) to IhI, we 6nd that there are
positive numbers C'~, C'4, and m2', independent of s and

(II.25)Ig(s,e")
I
&(s/m')'

for s)mpp (which depends on 0 and N
i e( .10) or(II.11)willrelatetheasym t t' b h

an e'. ow a formula
e asymptotic behavior

of the scattering amplitude & for h
cos to the asymptotic behavior of g on the path

hosen to stay aside Ci (except for the
end points e " and e") where the inequalit {II24)

'
' . However, the preliminary result (II.25) is not

su6icient to carry over the asymptoti b h
f y integration along y. For this purpose we need a
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bound which exhibits a uniformity property with respect
to the integration variable, which is lacking in (II.25).

The way in which we solve this technical difhculty is
given in detail in Ref. 6 and therefore will not be dis-
cussed here. The result we found for g is more precise than
(II.25). It enables us to derive not only upper bounds of

f at fixed angles but also at fixed momentum transfer
t. &0 I t=2k'( cos0 —1); when t is fixed, kl0I —+Itl'" as
s -+4o ).It reads as follows: There are positive numbers
m4' and C', independent of s and 0, such that

C'
I
sin0I

for ~&1-
ln(s/m')

(II.26)
C'(ln(s/m'))'

I
sin8

I

fol I— &r&I,
sin'0 ln(s/m')

I
c(sos") I &

(&-~)'

I g(s,re")
I
&

(II.2S)

holds for s&M~' and fixed negative t.
For the differential cross section, we obtain, for

sufficiently large s, upper bounds

where s& m4' and 0/0 or m. From this it follows, using
(II.10) with a suitably chosen path p, that there are
positive numbers 3f' and C, independent of s and 0,
such that

I f(s, cos0) I
&C(ln(s/m'))'"/sin'0 (II.27)

for s&3E' and 0/0 or x.
Thus far we have been unable to improve the s de-

pendence of the upper bound (II.27) further. As far as
the 0 dependence is concerned, however, we will not
claim that (II.27) is the best bound one could derive
from our assumptions. We simply note that it is good
enough to reproduce the upper bound for fixed negative
momentum transfer t, which is implicitly contained in
Ref. 3: There are positive numbers C~ and. 3f~', inde-
pendent of s and t, such that

(2) The limitation to spin-zero particles does not
seem to be essential. In two further cases, upper bounds
having the same high-energy behavior as (II.27) have
been derived, one for the scattering of a particle of spin
0 by a particle of spin -', (see Sec. IV), and the other for
the scattering of two spin--,'particles. "

IG. COMPLEX /-PLANE APPROACH

The upper bound (II.27) for the scattering amplitude
f(s,z) is much lower than what one would obtain by
majorizing f(s,s) by the sum of the moduli of partial-
wave amplitudes

(v'/2&)Z(2t+&)I ()ll~(z)l
which gives the upper bound (I.2) previously obtained
by Froissart. Presumably this means that there is a
strong cancellation among various partial waves owing
to the fact that Legendre polynomials oscillate with
respect to t at each fixed angle 0 (WO or ir). However, as
was pointed out already, 4 the oscillatory behavior of
Legendre polynomials does not necessarily lead to such
a cancellation unless u4(s) itself has some nice property
as a function of /. In fact, the result of Sec. II may be
understood most easily if 4t&(s) is a very slowly varying
function of t (at least for large t). If this is indeed, the
case, such a property should be a consequence of
analyticity and unitarity satis6ed by the scattering
amplitude f(s,s). In this section we shall therefore study
what kind of constraints are imposed on the l depend-
ence of at(s) by unitarity and analyticity. We show in
Sec. IIIA that a4(s), or rather its unique analytic con-
tinuation into the complex l plane, has a 6nite bound
for all real (not necessarily integer) t greater than C lns
(C: a constant). This result is extended to a small
neighborhood of the real axis (t&C lns) making use of
the Phragmen-Lindelof theorem. In IIIB, we give an
estimate of smoothness of a4(s) as a function of real t and
also describe alternative methods for deriving the 6xed
angle upper bound (II.27) for the scattering amplitude
at high energy.

do, i/dQ& C'(ln(s/m'))'/s sin40

at 6xed 0/0 or x, and

(II.29)
A. Behavior of Analytically Continued.

Partial-Wave Amplitudes
d(r, )/dt& (c"/

I
t

I
')(ln(s/m'))' (II.30)

at 6xed negative t, respectively.
We close this section with the following remarks:

(1) The proof of the inequalities (II.27)-(II.30) is
essentially an existence proof. We have shown that there
must be positive numbers M', C, Ci, . with the as-
serted properties. The emphasis is put on the fact that
they are independent of s, 0, or t. Of course these con-
stants depend on the geometrical dimensions of the
holomorphy domain of f, and of the numbers AT and
mo' that appear in the formulation of our assumptions.
But we did not attempt to work out this dependence.

As is well known, "if the scattering amplitude f(s,s)
satis6es 6xed energy dispersion relation, which we now
assume explicitly, the partial-wave amplitude a4(s) can
be interpolated by two functions a+(t,s) and a (t,s)
which are holomorphic in the half-plane Ret) iV (E is
the number of subtractions to be made). a+(t,s) coincides

'~ H. Cornille, Nuovo Cimento (to be published).
"M. I'roissart, Report to the International Conference on

%eak and Strong Interactions, I a Jolla, California, June, 1961
(unpublished); V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 41, 1962
(1961) I English transl. : Soviet Phys. —JETP 14, 1395 (1962));
A. Martin, Phys. Letters 1, 72 (1962); E. J. Squires, Nuovo
Cimento 25, 242 (1962); G. Prosperi, i'. 24, 9SV (1962}.
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J'roof."Let us consider the integral

sop

wltll GI(s) foi' cvcI1 lIltcgcl' /) tV alld ii (lts) colllcldcs
with gII(s) for odd integer /&lV, If a '(l, s) can be con-
tinued to l=0, we may write f(s,s) as

I(sp,si) =- k(so, si,s)ds,
2xif(s,z) = l(f+(s»)+f+(s —s))

+o(f (s,z) f—(s, —z)), (III 1)
(III.S)

f(z)e"* I'(——)
k(zo, zi,z)=—

(z+ 1)"(s—sit) (s—z,) I'(-,'z)
where

Qs
f+(,-) = Z—(2/+1) '(l, )I' ( )

l,=o
(III.2) where zo, s~, and A. are real and positive quantities to be

determined later. From (III.4) we find

the summation being extended to ag non-negative
integers. f (s,s) is defined in an analogous way.

The unitarity condition imposes the inequality

~

onpri
~~

& t for
'

gg ) integer/,
odd

while the fixed energy dispersion relation and the tem-
peredness condition gives the inequality'

(ii) ~a+(/, s)
~

(j(/+c')~s~e c' ~'~ for Re/&X, (III.3)

where c, c', 3l are constants. The latter condition may
be derived from the formula

3f
II(so,») [(—

2'
dx Jj/I

„P(~'+s ')(~+z, )$ &

(III.6)

On the other hand, I(so,si) can be shown to be the limit
of the closed path integral

R
k(zo, zi, Ip) dy+ k(so—,si, Ecto)eood',

2

when R increases indefinitely taking only odd integer
values. Thus, using the identity

a+(/, s) =-
grkQs

en

Qii 1+ (Ag(s, /)Who(s, t))(//,

I'(—-', )=—/((-', )r(-,' ) si (-', )),
we can write I(s,,s,) as

where A~ and A 3 are the absorptive parts of the scatter-
ing amplitude f(s,z) in I and t channels. In the special
case where Ao and Ag are just ordinary functions (not
tempered distributions), (III.3) reduces to

iII+(/, )i& i

' —" 'i for Re/&&V.

It is seen from (III.3) that ~u-'-(/, s)~ &const for
Rel) X'Qs lns (1V') 1V+—,'gM). However, for Rel
(1V'+sins, the bound (III.3) may go to infinity as
s~+~ except at (even or odd) integer / where it is
bounded by 1 by uni. tarity. Thus it is not at all obvious
whether a+(/, s) stays finite or oscillates violently as
we decrease l continuously along the real / axis into the
region Re/(IV'gs lns. Our first problem is thus to find
out to what extent this possible oscillation of a+(/, s)
along real / axis may be suppressed because of the
analyticity of a+(/, s) in l.

In order to answer this question, let us first state and
prove:

Theorem 3.Let f (z) be analytic in the right half-plane
Res) 0. Assume that f(s) satisfies'the inequalities

oz(s+ 1)"Ã(oz)7'
(III.S)

for real positive z. It can be shown that (III.S) has a
unique maximum for exp(2h. ))3"p' (this is a very con-
servative estimate). Let us adjust A so that this maxi-
mum occurs at a=so, which is certainly possible as far
as s,)p. For sp))p, we obtain

f(«) ~eAz0

I(s„s,) =
(=o+1)"(=o—zi) —,'zoLI'(-'so) j' sin(-,'~so)

f(zi) ~eAZI
+-

(zi+1)"(zi—so) —,'z, LI'(-,'si) j' sin(-', ~z,)

OO ( 1)rtf(2ii)e2An
+2 + ——.=i (2m+1) "(zii—2m)(z, —2)i)NI I'(n) jo

(III."1)

To put an upper bound on the last term of (III.7),
let us examine the maximum of

e~-,'so.
If(s) I

&1 for 5= 1) 2) 3)

Res&0,

where ~ and p are positive constants. (M will be
identified later with s'v. ) Then f(s) is bounded by a
constant independent of M for aQ real values of s
satisfying s) (1+o) lnM, where o is a positive number.

'0An alternative proof may be obtained starting from theI agrange interpolation method. See Ref. 5.

(III.9)
(III.4)

Making use of the Stirling formula, we find that the
value of (III.S) at s=zp is approximately equal to

(1/2gr) e'p(so+1)—~. (III.10)
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We now want to estimate the magnitude of f(so)
using (III.6) and (III.7). For this purpose we choose
si to be an odd integer so that

I f(si)/sin(~si/2) I
is less

than one by (III.4). Furthermore, we require
I
zo —si

I
&1

just for convenience. Then, using if(2n)i&1 and
(III.10), we obtain

2 vrso) 1
I
f(-o)

I
&1+—»n

2 1 =i is()—2m
I I

zi —2e
I

+M(sosi) '»(so+1) &e-.o. (III.11)

We notice that the second term of (III.11) can be
bounded by a Axed number independent of so and s~

since s~ is an odd integer close to so. The last term is also
bounded by a constant C for so& (1+e) ln(M/C), where
e is positive. This completes the proof of Theorem 3.

In order to apply Theorem 3 to a+(l,s) we have only
to change the scale by a factor of 2 to take account of
the fact that a+(l,s) satisfies the unitarity bound at
every other integer. If we ignore the exponential factor
in (III.3) temporarily, we can identify M with s~. Thus
we 6nd that a+(l,s) is bounded by a constant inde-
pendent of s for all real / greater than C lns.

This result for real / can be easily extended to a small
wedge-shaped domain of complex l plane making use of
the Phragmen-Lindelof theorem. "For this purpose, let
us define &=arg(l —C lns). Then we find from (III.3)
that a+(l,s) satisfies the inequality

Integrating (III.14) with respect to l, we obtain

I
a+(l, s)—a+(ly2 s) I

&2C' »s/(l —C lns) (111 iS)

Inequalities involving higher differences can be derived
in a similar manner. All these results show that as / in-
creases a+(l,s) and a (l,s) become smoother and
smoother, as was conjectured.

%e shall now proceed to evaluate the full scattering
amplitude f(s,s) with the help of the inequalities (III.14)
and (III.15). To exploit the smoothness of a+(l,s) in l,
let us rewrite, using the Abel summation procedure, the
partial wave expansion of f(s,z) as follows:

Qs 1
f(s,z) = —P (21+1)bi(s)P,(z),

2k 1—z' t=-o

b)(s) = (a&—a( 2)
(2l+ 1)(2l—1)

(l+ 2) (l+ 1)
(a(+,—a)) . (III.16)

(2l+ 3)(2l+ 1)

Noting that bt(s) is essentially the second difference of
ai(s), we get from (III.14)

C'(lns)'
15()I& for l) C lns. (III.17)

(l—C lns)'

) „~+&„»& (III 12) From unitarity of a&(s), we also have

B. Upper Sounds for the Scattering Amplitude

From the inequality (III.13)we can derive qualitative
feature of the partial-wave amplitude suggested at the
beginning of Sec. III. Namely, using the Cauchy's in-

equalities inside the region (III.13) we can obtain, for l

real and greater than Clns, upper bounds for the
derivatives

C' lns
a"(l,s) (—

dl 3—C lns

C"(lns)'
a+(l, s) &-— , etc.

dl' (l—C lns)'

(III.14)

g'E. g. "Qtcbmaj;sh, Ref. 13, p. 183.

Note that the exponential factor in (111.3) plays an
essential role in deriving (III.12).Thus a+(l,s) is bounded

by s++&&»& on the ray I&I = i2s —e (e&0) and bounded

by a constant on the ray &=0 (by Theorem 3). From
this we obtain

i
a+(l,s) i

&C'
for I&I = iarg(l —C lns) I

(const/lns, (III.13)

using the Phragmen-Lindelof theorem, where C' is a
constant independent of s.

I
b~(s) I

& 1 for all integer l. (Iii.ig)

In addition the b~'s are subject to the constraint

(III.19)

Now we can majorize f(s,s) for fixed s (N&l) using
the bound

I P~(s)
I
(2(~l sin9) '», and using (111.18) for

0&I(2C lns and (III.17) for 2C lns & l & ~ . By a simple
calculation we 6nd

I f(s,s)
I
&C(lns)'"/(1 —s2)"' (III 20)

This inequality exhibits the same energy dependence as
our previous result (II.27). However, its a.ngular de-
pendence is slightly more singular at small angles. If we
try to obtain a bound by the same method for forward
angles corresponding to 6xed momentum transfers, we
find an energy dependence somewhat worse than (11.28).
We believe that this is because we have disregarded
some interference effects between terms of (III.16)
which are certainly present as is seen for instance from
the condition (III.19).

It is possible to avoid these difhculties by using a
somewhat different approach which makes use of the
Watson-Sommerfeld transformation. "%e represent the

~ T. Regge, Nuovo Cimento 14, 951 (1.959).
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scattering amplitude as a 6nite sum plus a line integral
in the complex / plane as follows:

A convenient choice for Lp(8,s) will be

Lp(8,s) =2L(2+8 lns)/8$. (III.25)

gs clns+Lp(p, s)

y(s,s)= g (2/+1)u((s)P)(s)
l=o

gs (2l+1)dl
L~+(E,s)(~i(- s)+I')(s))

Sik sinful

4 exp( I
Iml

I 8)
) P)(cos8) [

(
( I

2/+1 I
sin8)'"

(III.22)

We will now majorize the integral in (III.21). We
shall first note that a+(/, s) satisfies the bound

(g+(/, s)
~
&const&&exp((A+81ns) ~tang~),

for )y~ (2~, (III.23)

where A and 8 are suitably chosen positive constants
and (t =arg(l —C lns). This inequality is obtained from
Theorem 3 and (III.12) in the following manner: Apply-
ing the Phragmen-I indelof theorem to the region

0(@(gi((pic), we obtain

~
a+(/, s)

~

&C'(costi)-~ expL(/V+ p p)(y/@i) lns].

If we choose pi=-', (g+&~), we find

~

g+(/, s)
~

(C'2 (cosP) " exP (iV+ pP)
4')r+$4'

Inequality (III.23) is obtained if we majorize (cos(/)

by exp(tang) and. @/(1+2//~) by tang.
From (III.22) we see easily that for 0&8(m/2 the

dominant contribution to the integrand of (I».21)
comes from the terms containing P((—cos8). Hence,
using both (III.22) and (III.23), we get the following

upper bound for the integral along the path I'
const

(i 2l+1i)'"
(sin8) '~'

3+8 lns
8—- —

i
Im/i (/(Im/) . (III,24)

l.p(8, s)

+ -(/, )(-P(—)—~())j, (I».»)
where Lp(8,s) is a positive quantity to be adjusted later
(8=cos 's), and I' is the integration path along a straight
line parallel to the imaginary axis, crossing the real axis
at the smallest half-integer that exceeds C 1ns+ Lp(8, s).
We note that in (III.21) the contribution from the big
semicircle is ignored because the integrand decreases
exponentially in all directions in the right half-plane,
excluding the neighborhood of each integer point. This
follows from the exponential decrease of a+(/, s) for
Rel +~ Lse-e (III.3)$, and from the following inequality
which will be proved in Appendix D:

Using the inequality

(i 2/+1i)'"&L2(C ins+I p(8s))+1/'"+(2iIm/[)'"
we thus find that (III.24) is less than

Ci(lns)'" C2
-+

8 P(sin8) &~~ 8P2(sin8)i ~&

const(lns) '"
(III.26)

sin'g

Obviously the 6nal result holds also for —,'x&0(.~.
Using the choice (III.25) for I.p(8,s), the unitarity

bound for a((s), and the bound (III.22), we find that
the sum in (III.21) contributes to f(s,z) at most

const(lns)'~'/sin'8. (III.27)

Thus, combining (III.26) and (III.27), we obtain an
upper bound for f(s,s) which agrees completely with the
previous result (II.27). However we now have something
more because this new approach shows that the erst
partial waves with angular momentum /(Clns/sin8
give the dominant contribution to the upper bound of
the scattering amplitude. In this approach we cannot
say that the contribution from the higher partial waves
is less than (ins)'" because each individual contribution
for /~lns is itself of the order of (lns)'~'. However, if we
introduce a smooth cutoff procedure in summing up the
partial waves, we might be able to reduce the upper
bound for the contribution of higher partial waves. In
fact, making use of such a device, Yamamoto23 has
shown that the knowledge of the first Cln's (instead of
C lns) partial waves determine the fixed angle scattering
amplitude within an error of the order of s, where lit

can be made arbitrarily large by choosing C big enough.
It would be interesting to see whether this C ln's could
be reduced to Clns.

do.i/df/(const(lns)'/s(sin8) '. (IV.1)

4Ve want now to consider the case of higher spins. The
erst question that arises is the energy dependence of the
upper bound for the Axed angle differential cross section.
For this purpose the simplest approach might be that
of Yamamoto'4 which leads us to the same s dependence
for fixed angles as (IV.1) for arbitrary spins. However,
it turns out that a more detailed investigation of the
angular dependence is necessary if we want to exhibit
the smooth transition between the Axed angle bound and
the fixed momentum transfer bound.

~ K. Yamamoto, Phys. Rev. 1BS, 3567 |,'1964}.
'4 K. Ypmamoto, Nuovo Cimeoto 27, 1277 (1963).

IV. EXTENSION TO HIGHER SPINS

So far we have assumed that the particles have no
spin and obtained the upper bound for the differential
cross section
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* da(s, s')
Ck'.

dO'
y(s,s) =do. i/de= (4/s)(l f(»s) I'+

I g(s,s) I') (IV 2)
with

We shall 6rst treat the spin-0-spin-~ scattering in D(s). Let us consider the function
detail. In this case the cross section may be written as

(IV.9)

f(s,s) = (V's/2&)r((~+1) «'(s)+«i-(s))I'i(s) (IV 3)

a(s,s) = (V's/2&)E(o '(s) —ii -(s))

Obviously the arguments of Secs. II and III can be
applied without modification to f(s,s), giving

I f(s,s) I &const(lns)'~'/sin'8. (IV.5)

To derive a bound for g using the methods of Sec. III,
we need. the following inequality (see Appendix D)

I
sinePi'(cosg)

I
&Ce~' '~~(1/sine+(I lI/sin&)"'), (IV.6)

where 0 is real satisfying 0(8&+ and Rel&0. Then,
using the Watson-Sommerfeld transformation, one ob-
tains in a straightforward way

&& (1—s')'"Pi'(s), (IV 4)

v here a~+ is the partial-wave amplitude with the total
angular momentum J=f~-,' satisfying the unitarity
requirement

I
«'(s) I

&1.

Again this function is analytic in D(s), and, if we assume
the polynomial boundedness for the amplitudes, we
have Ig(s, s)I &s for s+D(s). In addition, P(s,s) is
subject to a very weak form of unitarity condition:

I P(s,s) I &o,i(s) &o;„(s)&const(lns)'
for —1&s & 1, (IV.10)

where we have used the Froissart bound for the forward
scattering amplitude. "

I.et us consider the domain defined by

I arg((l —s)/(1+s))
I
&n. (IV.11)

This domain, limited by two arcs of circle going through
the points s = 1 and s = —1, is inside D(s) for suKciently
small positive n. Then p(s,s) is bounded by s~ in this
domain. Now, noting that (IV.10) holds for real s in the
interval —1&k&1, we obtain the bound

(1V pi —sy q
I@(s,s) I

&const(lns)' exp I
—(lns) argI

(1+sj )
for s satisfying (IV.11),where we have made use of the
general technique of subharmonic functions (see Sec.
IIB). In pa, rticular, for s in the domain

I g(s, s) I &const(lns)'"/sin'0. (IV.7)
I arg((1 —s)/(1+s)) I &const/lns, (IV.12)

Thus, combining (IV.S) and (IV.7), we conclude that
inequality (IV.1) holds also for spin-0-spin- —', case.

The case of spin--', —spin--', scattering has been investi-
gated by Cornille" using a method which is a generaliza-
tion of the method of Sec. II.His result agrees essentially
with (IV.1).

In principle, there seems to be no dif6culty in extend-
ing these results to the scattering of particles with arbi-
trary spins, although we have not found a general
method suitable for this purpose. Of course, the only
unsolved problem is that of the angular dependence of
the upper bound for the differential cross section, since
the s dependence is already known. We wish to make it
plausible, by the following argument, that (IV.1) will
hold quite generally.

We consider the scattering of particles with arbitrary
spins. Then the differential cross section can be written
in the form"

do(s, s)/dQ=- P C;(s)f;(s,s)f,*(s,s*), (IV.S)

where C s are analytic in z. We shall assume for definite-
ness that the f s are analytic in the domain D(s) defined
in Sec. II. Then do.(s,s)/dQ, as written in the form
(IV.S), has a unique analytic continuation in the domaiii

we obtain the bound

I p(s, s)
I
&const(lns)'. (IV.13)

Applying Cauchy's inequality to a circle inside the
domain (IV.12) centered at the real point s, we obtain

dg(s, s) do. (s,s) const(lns)'

dk dQ
(IV.14)

Although this bound has a better s dependence than
(I.2), it is much poorer than (IV.1) for fixed z (I s

I
&1).

(This is not surprising because we have used unitarity
only in a very weak form. ) However, for 0&1—IsI
&const/s, it is as good as (IV.1).

V. UPPER BOUND FOR FORWARD
SCATTERING AMPLITUDE

In the preceding sections we have seen that unitarity
combined with analyticity and temperedness in the
complex k plane leads us to a considerable improvement
of the Froissart upper bound for fixed nonforward (and
nonbackward) angles. We may naturally ask whether
the forward bound of Froissart can also be improved.
The purpose of this section is to give an answer to this
question. We shaH show that, under the assumptjons
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y(x, s) = a(x,s)s (V.3)

Then P is analytic in Rex) 0 and satisfies the conditions

l $(x,s) l
& 1 for Rex) 0, (V.4)

l P(x,s)!&s* ' for 0(x(1. (V.S)

Our problem is to find an analytic function &t (x,s) that
satisfies (V.4), (V.5) and gives the largest possible
forward amplitude. If l&t&

l
=s' ' (or more generally

cs' '(!Pl(s ', 0(c(1)holdsfor all xintheinterval
0&x&1, our problem is solved because it gives an
example of scattering amplitude that saturates the
I roissart bound. However, it may turn out that, because
of the analyticity requirement on p, ! &It

l
=s ' cannot

be satisfied everywhere in 0&x&1. If this is the case,
we might be able to improve the Froissart bound. Our
6rst task will therefore be to see whether the condition
(V.S) can be sharpened without altering our problem
in any way.

The technical di6iculty here is that the condition
(V.S) is imposed i22side the analyticity domain of @(x,s).

"The following arguments are not affected by this simplifying
assumption.

(i) analyticity in the cut / plane for fixed real
positive s,

(ii) temperedness in s and /, for real positive s,
(iii) unitarity in the s channel, or more precisely:

1&Imat(s) &
l ai(s) l') 0 for integer /,

it is impossible to improve the forward bound (I.1).'
We shall prove this by constructing counter examples.

Our approach is based on the property of the analytically
continued partial wave amplitudes a+(l,s) obtained in
Sec. III that it is bounded by a constant for real l greater
than C lns. It is clear from (III.14) that this constant
may be chosen very close to unity if we consider only
those E which are much larger than C lns for very large s.
Since we are looking for a negative result, we may
simplify the problem by making the more restrictive
assumption

!a+@,s)
l
&1 fo«11 «al i&P.

Similarly we shall replace (III.3) by a simpler condition"

l
a+(i,s) l

( l s exp( —i/Qs)! for Rel) 0. (V.2)

Since the main contribution to the bound (I.1) comes
from partial waves with an angular momentum of order
Qs lns, it is convenient to change the scale from i to

x=-l/(+s lns).

Then (V.2) and (V.1) become

l a(x,s) l &!s'-*! for Rex) 0,
la(x,s)l(1 for x real and positive.

(For simplicity we shall drop the superscripts & from
now on. ) We also introduce the function

To resolve this trouble, let us first look for an analytic
function B„(x,s) which satisfies the conditions

(a) B„(x,s) is analytic in the half-plane Rex) 0 with
a cut running from x=0 to x=xp, where 0&xp&1,

(b) l B„(x,s)!&1 for Rex)0 and !B„(x,s)!=1 for
Rex=0,

(c) !B.,(x,s) l
=s*-' for 0(x&x,.

This problem can be reduced to a typical boundary
value problem by the mapping x~y=(x' —xp')'",
which maps the domain (a) onto the right half-plane
Rey&0. Then, making use of the Poisson formula for a
half. -plane, "we can construct an analytic function

n / i —(2/x) cos '(& —&xo/x)')'&""+x —(x —xo )'/s /i/ /')
B~pqx, s( = s

which satisfies all the properties (a), (b), and (c).
Now the modulus of the ratio &b/B„ is less than unity

on the boundary of the domain (a), as is seen from (b),
(c), (V.4), and (V.S). Thus, applying the Phragmen-
Lindelof theorem to &b/B„we obtain the inequality

ln
l y(x, s) l

& ln
l
B,,(x,s) l

=V„(x) lns

in the domain (a), where

V,(x) = —Ret (2/2r) cos '(1—(xp/x)')'/2
—x+ (x' —xp') '/2$ (V.7)

Obviously V (x) is a harmonic function inside the
domain (a). We shall now minimize V„(x) with respect
to xp to obtain the optimum bound. It is easily seen
that, for any given x, the minimum occurs at xp=2/2r.
There (V.7) becomes

v(x) —= vp/. (x) = —Re! (2/vr) cos '(1—4/2r'x')'/2
—x+ (x' —4/n') '/2]. (V.8)

We notice that, although we did not use condition (V.5)
for 2/2r &x& 1, this requirement is automatically
satisfied by (V.S). As was noted already, V(x) is a
harm022ic function in the domain (a). In fact V(x) is a
slbharmoeic function in the half-plane Rex& 0 inclldirtg
the clt. To show this it is enough to notice that the
Laplacian of V(x) is non-negative in Rex) 0:

6V(x) = (2/x) (4/2r' —x') '"e(2/2r —Rex) 8(Imx) . (V.9)

It can be shown that U(x) is the largest of all sub-

harmonic functions de6ned in Rex&0 satisfying the
conditions (V.4) and (V.S).

Coming back to a(x,s) we obtain

!
i —Re(xr- —4/ s)'/s —(2/x) Re cos '(i —4/xsxs)'/s /U 1p)) ~

which may also be written as

2/2

la(xs)l( exp! —lns ! 1—— dx'
)l

. (U.11)
m'x" // I

"R. P. Boas„L/ntire Functions {Academic Press Inc. , New York,
1954), p. 92.
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It will be interesting to study the solutions of this equa-
tion because they are analytic in Rex&0 and yet they
will have a behavior which is not too different from that
of the right-hand side of (V.11).The solutions of (V.12)
are Hankel functions

with

x' 'H q&" (ix ins), x'/'H, q~" (ix lns)

iX(iX+1)= —(4/2r2)(ins)', i.e., X~(2/2r) 1ns.

We discard H &,
i" because it increases exponentially

fol' x~ + pp .
To construct an analytic example of 4&(x,s) starting

from H;), ('), we need the following properties of H;},(')

This result is certainly an improvement compared
with the original information we have put in. At erst we
knew only that

~
a(x,s)

~
(1 for 2/2r(x(1 but now iind

that, for any x) 2/ir,
~
a(x,s)

~
decreases like some nega-

tive power of s. However, this is not enough to improve
the s dependence of the Froissart forward bound because
partial wave amplitudes may still take large values for
angular mOmenta up tO 1 (2/2r)QS inS.

On the other hand, it can shown that the bound
(V.11) is not the best possible one compatible with
conditions (i), (ii), and (iii) stated at the beginning of
this section. In fact, it can be shown that the least upper
bound M(x, s) of the moduli of all functions g satisfying
(V.4) and (V.S) is a continuous subharmonic function
of x, the logarithm of which is also a subharmonic func-
tion. Furthermore, if lnM(x, s) is harmonic in a con-
nected subdomain G of Rex&0, it can be shown that
there exists a function Qp(x, s) satisfying (V.4) and (V.S)
for which ~pp(x, s)~ =M(x,s) in G. These results are
quite general and applicable to other analogous situa-
tions. Now assume for a moment that ~B2/~(x, s)

~

is
equal to M(x,s). Then, since ln~ B2/ (x,s)

~
is harmonic in

Rex) 0, Imx) 0, we would conclude that B2/ (x,s) is
itself a function P. This is clearly impossible since
B2/ (x,s) is singular at x=2/2r. Thus, )B2/ (x,s)

~

is not
equal to M(x,s).

So, at this stage, we cannot draw any concLusion,
neither that the Froissart bound can be improved, nor
that it carrot be improved. We have nevertheless some
suspicion now that it is the latter that is true. We prove
it in the follov ing by constructing explicitly an analytic
function u(l, s) which satisfies conditions (i), (ii), and
(iii) and has the property lim inf, (04,4/(lns)2)) 0. In
what follows, we shall use (V.11)merely as a guide, a,nd
try to approach it as closely as possible for large energies,
especially on the segment 0(x&2/m. .

The 6rst method is based on the observation that the
right-hand side of (V.11)can be regarded as the numera-
tor of the W. K. S. solution of the following differential
equation:

(d2/dx2+4(lns)2/~2x2 '—(ins)2)P(x) =0. (V.12)

for real and positive ):
(1) H;&, &'&(iy) is purely imaginary

for real and positive y,
(2) )H z& &(iy)

~
(Cph

for all real and positive y, (V.13)

(3) I
H &&i'&,(iy) l

(Cp(&,'—y2)-»4 for 0(y(&i,
or more precisely,

H;&, "'(iy)~ —i(22r) '"
sin(2r/4+X cosh '(X/y) —(X'—y') '")

X (V.14)
(&

2 y2)&/4

for Xp&y&X(1—p), X —+ po, where p is a small positive
number,

(4)
exp((& &r/2) —Rey)

~
H;&, ~'&(iy)

~

(Cp- for Rey) 0. (V.15)
(I &+y I)'"

For a derivation of these inequalities, see Appendix E.
From these inequalities one can easily deduce that

the analyt&c function

(2/2r) —x
F(xs)==C(lns)'/2 —— Hi2;/~ii ."'(ixlns) (V.16)

((2/&r) +x) '/2

satisfies
~&/'(x, s)

~
( ~s'—'~ for Rex)0

as is seen from (V.15), and

~
F(x,s)

~

& 1 fot. 0(x(2/
a.s is seen from (V.13) and. (V.14), provided that C is
taken to be small enough. These properties are the only
ones necessary to get the upper bound (V.11). Hence
the "unitarity" requirement

i
I&'(x,s) i

&1

is satisG. ed automatically for all real positive x. In addi-
tion, from the asymptotic estimate (V.14), we see that
in the interval p(x(2/m. —

p, F(x,s) is of order unity
except when

"2 1/2

—+—(1ns) cosh ' —
i

—(lns) —x' = 222r,
4 m ~x& 71-2

e= integer.

This equation shows that the spacing of the zeros of
F(x,s) is of the order of Ax= 1/lns, or, returning to the
original variable 1, Al =ps.

Thus, for almost all integer values of l less than
(2/2r)gs lns, F is of order unity. However, F may
take both positive and negative imaginary values. To
construct an example of the absorptive amplitude which
satis6es the unitarity condition

1)Imai(s) )0 for integer 1,
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we may therefore choose for x s is obtained by requiring the, t y~'8 a,re equa, lly
spaced:

Imai(s) = $F—(l/(Qs lns), s))'. (V.17) y;= (2i—1)r/2 lns, i= 1, 2,

KI NOSH ITA, LOEFFEL, AN 0 MARTIN

This quantity has the proper analyticity domain as a
function of / and satis6es

~
Imai(s)

~

(s' exp( —2l/Qs),

(lns) V(x) = (lns) p(u) ln — — du, (V.18)
x+1

p(u) = ((4/m') —I')"'/~M.

This is obtained by integrating (V.9) with the help of
the Green's function (2m) ' ln~ (x—u)/(x+u) ~. Intro-
ducing the function

p(v)di,

we can rewrite (V.18) as

x—m(y)
(lns) V(x) = (lns) ln dy,

x+e(y)
(V.19)

where N(y) is the inverse function of y(N).
In order to find P(x,s), holomorphic in Rex) 0, such

that (lns) V(x) is an asymptotic (loosely speaking) ex-
pression for ln

~ p ~
when s ~ +~, we shall assume that

y(x,s) is of the form

n
(x—x;

' kx+x;
(V.20)

where x s are real numbers satisfying 0(x,( (2/m) and
r is a positive integer. We have chosen this form because
it is holomorphic in Rex&0 and also satisfies the condi-
tion (V.4). From (V.20) we obtain

ln~y( =rg ln (V.21)

We want to approximate the right-hand side of (V.19)
by a suitable choice of x s. To each x; we can associate
y;=y(x;). Then, Eq. (V.19) suggests that the best choice

which is a particular case of (III.3). Finally, since
Imai(s) is of order unity for almost all l less than
(2/x)gs lns, the sum Po"(2l+1) Imai(s) is of the order
of s ln's.

As was noticed above the density of zeros of F(x,s) for
real x less than 2/m increases with increasing s. This
suggests to us an alternative approach to our problem
of finding an analytic function P(x,s) which is as close to
expL(lns)V(x)) as possible. Namely, we may try to
simulate the discontinuity of expt'(lns) V(x)j across the
cut 0(x(2/m by a distribution of zeros of P(x,s). For
this purpose, it is appropriate to write (lns) V(x) in the
following form:

2/m'

With this choice of x; s, it is possible to show that
there is a constant C such that

m (x—xg)'
4(x,s)=~ III'-i kx+x;i

(V.22)

satisfies the conditions (V.4) and (V.5). To guarantee
the positiveness of p(x, s) on the positive real axis, r
should be restricted to a positive even integer. Further-
more, we 6nd that (V.22) saturates the Froissart bound.

In this paper we have tried to obtain upper bounds
for the high-energy scattering amplitude assuming that
it satisfies the Mandelstam representation and the
unitarity condition but without making any further
assumptions, More specifically we have only used the
axed energy analytic properties of the scattering ampli-
tude and unitarity property in the inequality sense.
Considering the small amount of information we have
used, the results seem to be rather strong. However,
from a practical point of view, they are so weak that
they do not allow a crucial test of the theory by com-
parison with the experiment.

As far as the fixed angle upper bound is concerned,
we do not liow whether the (lns)'~' behavior can be
improved further by our method or not. Even if some
improvement were possible, we feel certain that the
upper bound carrot be better than a positive constant
since we do not take into account in our approach the
fact that most (or even all) subtraction constants are
not arbitrary. ' "On the other hand, one can show by
other means that under the same assumptions the
scattering amplitude can be as small as exp( —cps lns)
for 6xed angles. '~ Furthermore, this seems to be rather
close to the actual behavior of the scattering amplitude. "

We now want to comment on the forward scattering
amplitude. First we want to emphasize that our result
may not be the best possible upper bound because we
did not take into account full analyticity and unitarity.
In particular we disregarded analyticity with respect
to energy and also unitarity in crossed channels.

Next, we note that the examples (V.17) and (V.22)
which saturate the Froissart forward bound have been
given in terms of the analytically continued partial-
wave amplitude. Therefore, the angular dependence of
the corresponding scattering amplitude f(s,s) is not easy
to recognize. It would be interesting if one could con-
struct an explicit example of f(s,s) which saturates the
Froissart bound at @=i. On the other hand, it is not

"A. Martin, Phys. Rev. Letters 9, 410 (1962)."J.Orear, Phys. Rev. Letters 12, 112 (1964); T. Kinoshita,
ibid. 12, 257 (1964).
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A, (s,0) &Cs(lns)(ln 1ns) . (VI.3)

This may be proved in the following manner.
From (VI.2) we find that A, (s,t) is positive and in-

creasing in the interval tI &(& to, where to is positive.
Thus we get

difficult to find an example in which f(s,1) s ins. One
such example is the following":

f(s, 1+t/2k') =~C(lns)s'+"" "o '&'", (VI.1)

where to is a positive number. This expression has ob-
viously the correct analyticity domain in which it is
bounded by C(lns)s&'+~"' and for a suitable choice of C
it satisfies"

Remi(s) =0, 0(Imai(s)(1.
A characteristic feature of this example is that all
derivatives of Imf with respect to t are positive for
—~ &t&to.

More generally one can show that, if the absorptive
part of a scattering amplitude A, (s,t) satisfies the
inequalities

A, (s,ti) &0, [(d"/dt")A, (s,t)],=„&0, (VI.2)

for all n and some fixed negative ti, A, (s,0) has an upper
bound of the form

rather strong, the actual physical amplitude might well
possess such a property.
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APPENDIX A: GENERATING FUNCTION L(s)u) OF
LEGENDRE FUNCTIONS OF THE SECOND KIND

1. Definitions. We shall first recall some well-known
ocul.as.29,30

For u in G (complement of the closed straight line
segment I=—[—1, 1j) we have

l
t

l
(A, (s,t))'& (A, (s, t,'))'dl'(s' „(SA,(s,o) (VI.4)

for ti(t(0. Using the Froissart bound for A,,(s,0) and
the positiveness condition (VI.2), we obtain

In partlculal

' &-(y)
Q.(u) =- -- dy.

2. y Q—p

(A2)

l A, (s,t) l
(s(lns)'

for t in the circle lt —til & ltil. Combining this with the
temperedness requirement

(VI.S) (one-valued in G, —& 0 as lul~~). On the other hand,
for y on I and ls l

&1, we have

l
A, (s,t) l

&s~ (1—2ys+s') '"= Q s"I' (y)
n=o

(A3)

«r l~
—~, l &

I
to —til~ we obtain

l
A, (s,t) l

(s ln2s (VI.6)

in the circle
l

3 ti
l
(

l
ti i+con—st/1ns, with the help of

the Hadamard's three circle theorem. "On the other
hand, the positiveness requirement together wi. th in-
equality (VI.4) show that

l
A, (s,t) l

& (sA,,(s,0)/~)'", (VI.7)

for
l
t —t&

l ( l
ti

l

—r. Then, applying again the Hada-
mard's theorem to the three circles

(the square root being equal to 1 at s=0). For every s
with

l
s

l
& 1, the series is uniformly convergent for y on

I. For
l
s

l
(1 and u in G we define

j. I

J.(s,u)= — (u—y) '(1—2ys+s') '"dy, (A4)
2

where the square root is chosen in the same way as
above. Obviously I.is holomorphic for

l
s

l
(1and u in G.

%e have

L(0,u) =Qp(u) .

For every fixed s with
l sl &1, we find that

J(su) ~0 as lul~~. (A6)

l
t—f,

l
(

l
ti

l +const/lns, ~ E. T. Whittaker and G. N. Watson, Ref. 10, pp. 320-321.

and adjusting r in an appropriate way, we obtain the Higher Traescendentu/ Flnctions, edited by A. Erdelyi
(McGraw-Hill Book Company, Inc. , New York, 1953), Vol. 1,

desired result (VI.3). Although assumption (VI.2) is p. j54.
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Inserting (A3) in (A4), and using (A1), we obtain

L(s,u)= g s"Q (u)
n=O

for lsl (1 and u in G. (A7)

2. Analytic Continuation of L. We shall now consider
analytic continuation of L from the domain

I
s

I & 1,
u&G, where it is given by (A4), to a larger domain. In
particular we are interested in the convergence domain
of (A7).

An obvious way to make analytic continuation of
(A4) is to carry out the integration. We thus obtain

1 u —s+tI (s,u) =—ln
(u' —1)"' (AS)

Iargsl &zr,

F(v,u)=2(u' —1) '"(5—z ') 'in', (A11)

which is holomorphic and one-valued in the v plane cut
along the negative real axis from 0 to —~. It follows
from (A11) that F(v ',u) =F(v,u) which means that F is
independent of the determination of t Lsee (A10)].Thus
F(v,zz) is equal to a holomorphic and one-valued func-
tion L'(s,u) in the s plane with the cut

I'(u) = {s=u+(u' —1)'"r r real aild & 1}.

I.' is actually some determination of the right-hand side
of (AS) so that L I.' is of the form 2hzri/t, —h being some
integer. Since J —L' at a=0, however, k must be equal
to zero. This means that

L(s,u) =F(s,u) . (A12)

We have thus obtained the result: For u axed in G,
L(s,u) is holonzorphzc in the s plane cut alozzg I'(u). At
the point s on I'(u), one finds from (A10), I'A11), and
(A12) that

L(s(1+z0),u) L(s(1 iO—),u)—
= 2zri(1 —2us+s') "'-(A13)

where t= (1—2us+r')'" and u(u' —1) '"—& 1 for

I ul —+~. We still have to choose proper determination
of the square root and the logarithm.

At first we 6x u in Q. Put

v= (u —s+t)(u' —1)—'".
The mapping (s,t) ~ z is a one-to-one mapping of the
Riernann surface of the points (s,t) satisfying t'=1
—2us+s' onto the complex v plane. The inverse map-
ping is given by

r =- u —-'(n' —1)'"(v+z-'),
t= ', (u' —1)'"-(v—z' '). (A10)

In terms of v the right-hand side of (AS) can be written
as 2(uz —1) '~'(zt —v ") ' inn We now 6x in' by the
condition

I.(s,n) =-

F (u)
(x—s)

—'(1—2ux+x') —'"dx (A15)

Dor the determination of square root, see (A13)$.
Consequences: (a) The series (A7) converges for

I
s

I
(

I
u+ (u' —1)'"

I
. (b) llm sup„„

I g (u) I

' "=
I
u-

(n' —1)'~'I . (c) For a fixed s, the series (A7) converges
uniformly for u in every closed domain in lu+(u'

1)'nl & Isl. If lsl &1, this last domain is G. If Isl &1,
this domain is the exterior of the ellipse with foci at +1
a,nd —1, going through the point (s+s ")/2.

3. Analytic Property of L in u for Fixed Values of s.
If Is I (1, L is a holomorphic function of u in G by
de6nnition. In order to get an insight for other values of
s, we make the following construction. Let p be any
smooth arc (without double points) connecting —1 and
+1 in the u plane. I et h(y) be the (open) complement
of y, including the point ~. If we construct a set
{sl(s+s ')/2Qh(y)}, we find that it consists of two
disconnected parts. Let D(7) be the part that contains
s=O. For u in A(y) and s in D(y), define

L,(s,u) =— (u —y)
—'(1—2ys+s') '"dy (A16)

2 7

(square root= 1 at s= 0). Then L~ is holomorphic in the
simply connected domain {(s,u) I s&D(y), uEA(y) }.
Furthermore, for s in a certain neighborhood of 0 and u
in a certain neighborhood of ~, L~ coincides with I., as
is seen by continuously deforming y into I.Thus, I.~ is
an analytic continuation of I.. Now, for 6xed s with

Is I & 1, choose y so that the union of y and I forms a
closed curve without double points, with (s+s ')/2 in
its interior. Then I. is holoinorphic in the u plane cut
along y. The discontinuity of I. at the cut can be read
out of (A16).

APPENDIX 8' UPPER BOUND FOR THE MODULUS
OF THE GENERATING FUNCTION I.(~,u)

IN CERTAIN DOMAINS

We start from the integral representation (A15) for
I-(s,u). For our purpose, it is convenient to deform the
path I'(u) to I', (u) = {x=(u+(u'—1)'")r', r' real, (1}.
Then we obtain

L(s u) = (nr' —s) 'L(r' —1)(r'—zo
—')] '"dr' (81)

where (u' —1)"-'(1—2us+s') ' ' is real and positive.
Thus, L has a branch point at s=u+(u' —1) '"=a(zz)
Lsee (11.7)j. Furthermore, for every large positive F.
there is some positive constant 3I=M(-u) such that

IZ(s, u) I
&tlat lsl-'lnlsl

holds in the domain of the cut s plane satisfying
,
's

I
&R.

Thus
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for u in G and s in the plane cut along 1'i(u), where w

stands for a(u) =u+(u' —1)'" Lsee (II.7)]. Remember
that a is a one-to-one mapping of G onto lull &1. The
right-hand side of (81) is thus a holomorphic function
of w and s in

I
w I & 1 and in the s plane cut along I'i(u).

Let us 6rst consider the domain D, in the (s,ur) space
winch consists of ui on I'i (uo), uo+6, and s in the domain
,4 (complement of the shaded domain shown in Fig. 2).
For (s,vr) in this domain and for r'&1, we find that

Ir' Vii 'I &r' Iuil—

Iur' —=I = lu'I lr'I I1 s/u'r'I &—"Ru

where p =Min( (R—r)/R, sing ) . Using these inequalities,
we get

j
I

E,(s,u) I
&- (Rr') 'I (r' —1)(r' R') j—' 'dr'

]

which may also be written as

Rt R

Fic. 3. The portion of D{@)in the hrst quadrant is represented
by the shaded area. The closed curve 6 is characterized by E,8' and po. 8i, Ei', p and p are defined by 0 &ii & t, ii = (8—Ail/&
= {E.'—RI')/R'= sin P.

in Fig. 3, inequalities (82) and (83) gives

IL(s,u) I &(1/2u)»(p+1)/(p —1), (84)
1 1 p+1

I
f-(s,u) I

&-Po(p) =—»-
p 2p p

(82) where p=-,'(R+R '). The meaning of p is explained in
Fig. 3.

where p=b(R) = (R+R '),/2 Lsee (II.S)J. Notice that,
when ui is on I'i(uo), u is a hyperbolic arc with foci at
+ 1 and —1 which goes through uo.

Next we consider the domain Di of the (s,vv) space
defined by I

ui
I
&ri&1 and

I
s

I
&r& where 0(r2«i. We

obtain in a similar manner

ri p+1
I
I (s,u) I

& ln——,
2(r, —ri) p

—1
(83)

where p now stands for b(ri). Notice that when
I
ui

I
&ri,

Q is in the complement of the elliptical disk E„,.
As an application of these inequalities, let us consider

the following problem. I.et d be a closed curve without
double points, situated outside the unit circle lsl =1,
and made up of circular arcs centered at the origin and
of segments of rays through the origin (see Fig. 3). For
ui on or outside of 6, and for s in the domain h(p) shown

1 "p(x)
g(s) =— — dx, (C1)

with xo& 1.I'or definiteness, assume that p is a complex
valued function of the real variable x and satisfies the
condi. tion

x—
'Ip(x)l dx( ~ (C2)

(in Lebesgue's sense). Thus g is holomorphic in the s
plane cut along the real axis from xo to ~.

We now consider a function f which is constructed
from the function g of (C1) according to the prescription
of Theorem 1 (Sec. IIA). Let V be a domain of the type
described there. Inserting (C1) in (II.9) we get

APPENDIX C: ILLUSTRATION TO SEC. IIA

%e shaB illustrate the formulas obtained in Sec. IIA
by applying them to functions of the type frequently
encountered in dispersion theory.

Let us consider

f(-)=—.
21l 2 (j p'

" p(x)
duK(s, u) — —dx

FIG. 2. m'P=+{10),
[wo/ =R&t,
(R. A is the closed
complement of the
shaded area.

S~nce we can And a positive number 3f such that

IE(s,u)(x —u) 'p(x)
I
(cVx—'I p(x) I

for I on 8V and x& xo, and since
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31we can vmite
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onding to the f function (C )&eg uunct~~n corresp
where

s =— x —-- (x—u) '1C(z u)duf(z)= - dxp(x) --- x—u po(*) = (1—2gx+x') '/2o(g)dg (C7)

x& xc, K(z,x) can be written asFor every 6xed x&xp, s,x

E(z,x) =— '"(n z) 'A—'9 y

=(x+x ')/2=b(x) to ~ (the
e . Inserting this in (C3),s t are non-negative). Inser insquare roots are

we obtain

00

f(z)=-
+Q

dx(x'+ 1)—'"p(x)
00

X (~ ] )
—1/2(~ y

—iz)—ids

le. Sinceafter a c ahange of variab

I(*'+1) '"p(x)
I
&x 'lp(x)

I

a gQ

is readily evaluated by
s to the exterior of the c

res ect to I is rea i
closedthe residue calculus to e

curve BV; it gives E s,x .

QO

(C3fz=-—) =-— dxp(x)E(z, x) .
Q

(Cg)

(C9)
where

p(x) = (2xa.+1)po(x) .

the formula (C5) and the converse

tions. e
ex en

bl bh ' ati6iy.f -.h g.---d distributions w'

d formulas, one
h hRgg

hL dpolation o
of some temperef isa Mellin transform o s

heie p).

B AND sinBPi'(cosB)OUNDS ON P~(cos ' BA
AND COMPLEXFGRO&6&-

F r rea t e uality is well known":For real l the following inequa i y

PQ

x) is continuous annd con-for almost all) x&xo. If po(x is n

d x~~, an easy ms~xp an s

1 "p(x)
g(z) =— dx,

QQ

f —1/2~—1s—1 '/2(v —y 'z) 'l &C(w-

in thier integration ranges, we
'

rfor x and e

change ethe order of integra ion

()
(C4)

((2l+1) sin8)'/'

0

i'=;+;/, (cos8) =-
p

coshP u)du

1/2(2(cosu —cos8))

- l = '+Pi w—e-have"On the other han. „ for l=

~ (D2)

=-b(xo) to ~, where,for all s in t e p ah lane cut from yp=- xp

for (almost all) p&yo,

a — 2 x—1—x')—'"p(x)dxa (g) = (2g—x——x (C5)

ran el t e). a(g) is de6ned byl transform of Abel type . u g(integra ran
(II.'/).

Conversely, if o- g is e

I
g(z) =—(2z8,+1) (x—z)

—'po(x)dx (C6)
7r

rier Integral and Certaznle N. Wiener, The Fourier n eg"Se fo exa p, , e neg
of its A pplicaiioss (Csm g

' '
. ~s ew

e, le

p.. I3, Theorem Xir.

SQ

V 'I a(V) I
de&

VQ

d A15), the expression(II.15), (II.16), andwe get, using

It is not di cu'ffi lt to majorize this:c, 2 )'/2e~ "~'/(l Xl sin8)'". D3cos8)l&2 2 s el1' *,+;& c

as l goes to infinity. T ere o on

men-Linde of conditions in t eatis6es the Phragmen-Linde o c
'

esa ls
between arg(i+-, =
than a xe6 d constant indepen en
Hence we have

) I/2
l
1'i(cos8)

l
&CeC ~'~'~'/(l 2l+1

l
sing

ex
'

a bound for sin81'i'(cos8). StartingNext we consider a boun or si

(D4)

Functions of Mathematzcalnd F. Oberhettinger, Functzons o"W. Magnus an . '
Functzons o
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74, 5i, 52.



EWER. GVSCATTERING AMPLITUDE

om32

l(l+1) Pr i(cosg) —P)+i(cosg)

2l 1

we can easily obtain

This may be easily majorized since

C
~
Q((cosg) ( & for real l,

(l sing)'"
(D10)

~
singP)'(cosg)

~

&,) ( C(~ 2l+1)'"e~™~'/(sing)'", (D6)

for lar e l making use of (D4). However, this botuid

bound, let us express P~ ~
—I'~+& as follow '"",

I'(. )(cosg) —P(+t(cosg)

2v'2 ' sin[(l+-,')p7 sinpd@

(cosQ —cosg) '"
2v2 e sin[(i+st)&7 singd@

vr s (cosQ —cosg)'"

2&2 ' sin[(l+ sr)&7(sin@—sing)dg

(cos$—cosg) '"

e ('+&)tdt

(cosht —cosg)'" (l+-', )(1—cosg)'"
(D11)

e sin[(l+g)$7dp)

s (cos(t —cosg)'"

CeI xml j 8

(( Iml
)
sing)'"

.(l sing)'"

for cow,plex I,

for real. L.

' »n[(i+-. )&7d4

s (cosP—cosg)'" (~ i~sing)'"

Ce/ Iml/ ~

Hence we obtain

Application of Phragmen-Lindelof techniques yiel s

P»n(s( —4))~ '"
»n[(i+a)07 «sl(4+8)l .

(CejImL]8

'd th ond term. APart from a ~P, ,(c()sg) P,+,(c()sgLet us first consider t e secon
numerical factor, it may be written as

(sing

l (/lf j (D14)

Integrating by part, we see eas' yasil that it is less than

(C/~l+-,'~)e

To estimate the first tenn of (D7), we have to study

and 6nally

~

singP('(cosg)
(

g geIIml)8 +I
sing (sing]

Rel) 0. (D15)

Majorizing it by

' sin[(l+ s)&7dg

s (cosg —cosg)'"

E: BOUNDS AND ASYMPTOTIC EXPRES-
H; &'&(i ) FOR LARGE REAL

POSITIVE 2 AND Rez)0
e%e start from the Sommerfeld representation'4

e e(rm((ed'

s (cosQ —cosg)'"

Hg, ("(is)=-
7r

e
—z cost+)t(vr/2 —t)dI (E1)

it is not dificult to prove that it is less than

( ) & "-z aostl ooeht2+), (~/2 lr)dt (E2)

~ ~

Let us rs rea6. t t t the case where s is real and positive.
Since the integrand decreases extremey rapi y

00 ~
—'s &Ret&-,'s.), we can displace the path

C ~'~'~e/([ Iml
~

sing)'".
of integration to the»ne Re~=~„
obtainUnfortunately this is not enoug . H

~ ~

h. However, for real /

we may use"

' sin[(l+ s)p7dg

s (co&—cosg)'"
oo e—{&+$) td]

(D9)
(cosht —cos8)'" (H;),")(is)

~
&

(s costi
(E3)

Since coshtz) 1+s(tz)', we can reduce this to a Gaussian
integral and obtain —z gost1+X(n. /2-tI)e

s S heri les de Legend're et FonctionsL. ObIn, once o p g
Spherotdales (Gauthier-Villars, Paris, , o .
(281)j.

~E. Jahnke and F. m e, u. E d Table of Functions (Dover Pubhca-
tioas, New York, 1945), p. 148.



KI NOSH I TA, LOKI FEL, AN 0 MAI'TI N

«ch (X/z)

Irnt «O
1r 2

Fzo. 4. The t plane for
real s satisfying 0(.z &A..
The integrand is less than
unity in the unshaded re-
gions I, II, and III. The
dashed line represents an
integration path convenient
for calculating B;),(I).

we obtain easily

H;i, i'&(iz) —i(27r) "."
sin(-';7r+ X cosh '(X/z) —(X'—z') "-')

X—
(g2 z'2) 1/4

6&3/X& 1—6,

(E5)

In the region 1—e((z/X)(1, one can find an upper
bound of H;qi" (iz) by using the contour

Re( =x/2 . X i/'— =

Imt= cosh '(X/z)

Ret—-—vr

and cosh '(P/z)(Im/(+ ™~,

alid &/2 —
A,

' & Ref (Jr,
and 0(Ilrl/( cosh ' (A/z),

If we restrict ourselves to s&X—X'", we can choose
x-/2 —ii ——X'/ /z3. Noticing that

the rest being symmetrical with respect to the real axis.
This gives the inequality

~H, i, '"(iz)
~

(C/X' ' for 1—e(z/X(1. (E6)

we then find

costi) (-,'~—ti) —-et(-', x—ti)', For s close to zero, one can easily convince oneself that
the saddle-point method still gives a reliable bound
except that the phase might be in error. Thus we have

~
H, i, &'&(iz)

~
(C/gX for z/P (e. (E7)

~H, ,&'&(i;.) I &(C/~' ') expP7 /z —X~ (1—(Z/z))j.

Hence

~
H;, &»(i:)

~
& (C'/~' 3) expr —V '(1—(~/z)) j&C"/~' "

fol z) X—Xi/3. (E4)

If we choose 27r /i 1/X, —this ——simple treatment gives
also the bound

~

H i, &'&(iz)
~
&C(X&~)i/'-

for z(X—X' '. However, as we shall see, this can be
considerably improved.

For s('A we have to study more carefully the inte-
grand of the Sornmerfeld representation (E1).In this case
we find that the integrand is less than unity in regions I,
II, III, and greater than unity in regions IV, V, VI
(see Fig. 4). To optimize the bound on H;&, &" we have to
integrate along the dashed line which goes through the
two saddle points Ref=-', ~, Imt= +cosh '(X/z). Then,
applying the method of steepest descent, we can find a
bound on H, ),

(" and also an asymptotic expression for.
fg.~(&)

The method of steepest descent gives an asymptotic
expression of H;/, '" only for e&(z/X) &1—e, this con-
dition being necessary to guarantee that the saddle
points are at finite distance and do not coincide. Then

This checks with the upper bound obtained by the
power-series expansion at s= 0.

I et us now investigate the complex s region with
H.ez& 0. Integra Ling the Sommerfeld integral along
Re)=0, we obtain

~

H i &(iz)
~

(Ce" /e i"j('Re~)

For Res =0, we can still use the Sommerfeld repre-
sentation if the limits of integration are taken to be

m./2+i~ and 7r/2—i~. T—hen, if we put z= ix, we
find a unique saddle point at sint=i(X/x), namely
Ret=0 and Imt= sinh '(X/x), which leads us to

~
H i, I'&(x)

[
&Ce"~"/(Xi'+x') "4

This bound is valid for x&0 as well as for x&0 because,
H;&, &'&(iz) being purely imaginary for real and positive
z, we can apply the Schwartz reQection principle along
the line Ilns= 0, Res&0. Then we find that the function

H; '(ii )('Az+z)" 'e " 'e--
satisfies the conditions of the Phragmen-Lindelof
theorems in the range ——,'m (args&-,'z. Hence we obtain

~H, i&'&(iz)
~

(Ce' "e ""/(~X+z~)'" (E10)

Res&0, X real and ))0.
More details on these bounds will be found in Ref. 35.

"A. Martin, Nuovo Cimento (to be published).


