
P II V 8 I C A T R E V I I". KV 2 ]. 8 E P I' E M 8 E R

Sfnlyle Model, for Strong Interactions'

ALarr D. Knrscat
Laboratory of Xnctear Stttdies, Cornett UeiMrsity, Ithaca, Itr ero Fork

(Received 24 February 1964; revised manuscript received 1 June 1964)

A simple model is proposed which relates elastic and inelastic processes in strong interactions. It is assumed
that the basic process in strong interactions is meson production. The meson 6elds are calculated from a
Klein-Gordon equation using a Gaussian source function. It is assumed that there are three types of strong
interactions, whose quanta are, respectively, the x. meson, the X meson, and the antibaryon. The sizes of the
three corresponding source functions are inversely proportional to the square roots of the masses of the
quanta. The three coupling constants are taken to be equal. Elastic scattering is assumed to be the diGraction
scattering associated with the inelastic meson-producing processes. We thus obtain predictions for three
phenomena in nucleon-nucleon collisions: the differential elastic-scattering cross section; the differential cross
section for production of particles; the average number of mesons produced as a function of incident energy,
The predictions are in good agreement w'ith all experimental data in the multi-GeV region.

I. INTRODUCTION

HERE has recently been considerable interest in
trying to understand something of the nature of

the strong or nuclear interactions. A simple field theory
of strong interaction is proposed, which explains several
phenomena observed in scattering experiments. Elastic
and inelastic processes are related to each other.

It is assumed that the meson fields obey an equation
of the form

(g+ m')y= p.

The quantity p is the source function for meson fields
which arise whenever two nucleons interact. A func-
tional form of p is chosen which leads to results that
are in agreement with experiment. This source function
is assumed to have three spatial regions, corresponding
to three diferent types of strong interactions. The x
meson, E meson, and antibaryon are the quanta of
these three types of interactions. The three regions
have progressively smaller radii corresponding to the
increasing masses of the quanta.

The wave equation is solved employing the well-
known in-out formalism. This leads to the result that
the probability of producing e mesons is Poisson dis-
tributed. The expectation value of n, which parameter-
izes the Poisson distribution, contains the important
information about scattering cross sections for elastic
and inelastic processes. In fact we obtain predictions
for several different phenomena. (1) The elastic dif-
ferential cross section for nucleon-nucleon scattering.
(2) The momentum-distribution function of the mesons
produced in a high-energy nucleon-nucleon collision.
(3) The multiplicity or total number of mesons pro-
duced as a function of energy. These predictions seem
to be in rather good agreement with existing experi-
mental data in the high-energy region. However, the
data on inelastic processes are not very extensive and
the validity of this model can only be tested by more
experiments on inelastic processes at high energy.

~ Supported in part by a research grant from the National
Science Foundation.

t Present address: University of Michigan, Ann Arbor, Mich-
igan.

There has recently been considerable interest in
finding a simple explanation for the differential elastic-
scattering cross sections that have been observed in
strong interactions. It will be shown that all high-energy
proton-proton elastic-scattering data can be explained
in terms of the simple absorbing model proposed in an
earlier paper. ' It is especially interesting that the size
of the absorbing region is rather energy-independent.
This can be most easily seen by plotting X versus 7- as
was suggested. ' ' This is done in' Fig. 1 where there is
little energy dependence.

The normalized differential scattering cross section

X= (do/dQ, ) (4m-/ko„, )'
has been plotted against the variable —t, ' in the hope
that this would result in an energy-independent curve—
that is, one in which the diffraction peak does not
shrink. There is in fact no reason why this should be so.
An interaction region whose size is independent of
energy does not necessarily result in an X plot which is
independent of energy. As shown by Cocconi et al. '
such plots have considerable energy dependence. A

pure optical model encourages the hope that such a
plot might be energy-independent. However, the pure
optical model which worked so well for lower energy
nucleon-nucleus scattering can not be expected to work
in detail in the multi-GeV region, although it does
successfully predict trends. 4

' A. D. Krisch, Phys. Rev. Letters 11, 217 (1963).' It was independently pointed out that the transverse momen-
tum may be a relevant variable in proton proton elastic scattering
by D. S. Narayan and K. V. L. Sarma, Phys. I etters 5, 365
(1963).

G. Cocconi, V. T. Cocconi, A. D. Krisch, J. Orear, R. Rubin-
stein et al. , Phys. Rev. Letters 11,499 (1963);W. F. Baker, E. W.
Jenkins, A. L. Read, G. Cocconi et al. , ibid. 12, 132 (1964), A. N.
Diddens, E. Lillethun, G. Manning, A. E. Taylor, T. G. Walker,
and A. M. Wetherell, I'~'oceedings of the lP6Z International Con-
ference ol IEigh Ertergy Physics at CE-KV, edited by J. Prentki
(CERN Scientihc Information Service, Geneva, 1963), p. 576.
W. F. Baker, E. W. Jenkins, A. L. Read, G. Cocconi, V. T.
Cocconi, and J. Orear, Phys. Rev. Letters 9, 221 (1962). K. J.
Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J. Russell, and
L. C. L. Yuan, ibid 10, 376 (1963); ll., 425 (1963).

'L R. Serber, Phys. Rev. Letters 10, 357 (1963).
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Thus, one is justi6ed in studying functions of 7 vrhich
are slightly different from X. It was found that by
plotting the function

F=Xe—4 s'n'e= (do/dQ, )(.4s./ko„, t.) 'e '-""" (3)

against r=Ps sin'0 essentially all the shrinkage was
removed. This is shown in Fig. 2 where all experi-
mental data" from '2.3 to 30 GeV have been plotted.
The curve

P' —e-1.40m+ l(j—s.sse-s. sssr+ IO—s.see-l. ssst

is also plotted. Thus, all proton-proton elastic scattering
in the high-energy region can be 6t by the simple sum
of three exponentials in 7-, the transverse momentum
squared.

do (~orat,
&+'»"'&Le s-4s'+10-s sse s s2s'

dQ, 5 kr
+l~s.so&-r. soar] (5)

It should be emphasized that no special signihcance is
given to the term e 4 " '~. It is merely a computational
device used to get all experimental data on one line.

One can obtain a useful picture of the interaction by
projecting out the partial-wave amplitudes from Eq. (4)
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Pro. 1. The normalized differential scattering cross section
X= (do./dQ(4s. /hot, t)' is plotted against the transverse momentum
squared v =p' sin'8. All proton-proton elastic-scattering data
above 10 GeV is shovrn. Some values of incident laboratory mo-
menta are given.
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FIG. 2. The unconventionally
normalized differential scattering
cross section y=s ' "~"(do/dO)
X (4r/kcrto, )' is plotted against the
transverse momentum squared z
=p2 sin'0. All proton-proton elas-
tic-scattering data above 2.3 GeV
are shown (Reis. 3, 5). Some values
of the incident laboratory mo-
menta are given. Equation (4) is
also plotted.
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TmLz I. 1—b~, the partial-wave amplitude and &~, which is
twice the imaginary part of the phase shift, are tabulated for even
integer angular momenta;

I.O-
p'=13 (GeV/c)'

bE xt
p =3.25 (GeV/~)2
1—b) Xg

.2

'0
2

6
8

10
12
14
16
18
20
22
24
26
28
30
32
34

0.957
0.920
0.856
0.760
0.659
0.558
0,456
0.364
0.281
0.211
0.153
0.107
0.072
0.046
0.029
0.017
0.010
0.006

3.14
2.52
1.94
1.43
1.075
0.816
0,609
0,452
0.330
0.237
0.166
0.113
0.075
0.047
0.030
0.017
0.010
0.006

1.191
0.932
0.668
0.436
0.250
0.123
0.052
0.019
0.007
0.003

2.69
1.10
0.573
0.288
0.131
0.053
0.019
0.007
0.003
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FIG. 3. The partial-wave amplitudes, 1—b& are plotted against
the "spatially" scaled values of the angular momentum, for
center-of-mass momenta squared of p'=13 (GeV/c)2 and p'"=3.25
(GeV/c) '.

where b~ ——e ' is the transmission coefficient and X~

is twice the imaginary part of the pha, se shift. The
integrals involved are not elementary but they are
similar to the I,b' encountered previously' )in Eq. (11)],
and can be done by computer. The projection is done
for two different energies: p, '=13 (GeV/c)' corre-

sponding to Pi,b
——29 GeV/c and P, '=3.25 GeV/c'-

corresponding to Pi"b=7.3 GeV/c. Both results are
plotted in Fig. 3 on a scale in which the association
R=l//c has been made. Thus, each angular momentum
is scaled down by the center-of-mass momentum so
that we have equivalent "spatial" distributions. It is

very striking that the resulting distribution is rather
energy-independent.

X~, which is twice the imaginary part of the phase
shift is tabulated in Table I and plotted in Fig. 4, where

the same scaling procedure has been employed as in

Fig. 3. Xg has been interpreted' as the perpendicular
interaction probability density. This is also seen to be
ra, ther independent of energy. In fa,ct, the width of the
distribution changes by less than 10% ivhen p, „, -'

changes from 13 to 3.25 (GeV/c)'.

III. MESON FIELD EQUATION

The above diffraction phenomenon can be explained
in terms of a simple model for strong interactions.
Assume that the basic process in strong interactions is
meson production. This is analogous to the fact that

photon production is the basic process of electromag-
netic interactions. Then the strong elastic scattering
can be understood as the diffraction scattering associ-
ated with these "inelastic" meson-production processes.
Information about the nature of meson production can
be obtained from the diGerential elastic-scattering
cross section. '

We postulate that the meson can be described by a
field g(r) The .field is assumed to obey a relativistic

I2 Ie IOP20 24 28 $2~(P =IS)
4 6 8 IO I2 I4 I6 (P2=M5)

Frc. 4. z~, which is twice the imaginary part of the phase shift,
or the perpendicular interaction probability density is plotted
against the "spatially" scaled values of the angular momentum
for p'=13 (GeV/c)' and p'=3.25 (GeV/c)'

6 This idea is certainly not new. An interesting phenomenological
discussion of the relation between elastic and inelastic scattering
has recently been given by Van Hove. L. Van Hove, Nuovo
Cimento 28, 798 (1963); Cargese Summer School, Corsica, 1963
(unpublished); CERN report 7963/TH. 392 (unpublished).
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equation of the familiar form. ~

(El+222')y(r) =p. (7)

The quantity p is the source function for the production
of real mesons. It arises whenever two nucleons pass
near each other. Thus p will depend on the distance be-
tween the two interacting nucleons, which we denote
by R= (R,T). It will also depend on the coordinate of
the meson field with respect to the center of the source.
The source is centered midway between the nucleons.
This meson variable is denoted by r= (r,t). For sim-

p icl ylicity it is assumed that p is independent of all energies
involved. Thus we have

p= p(r, R)=gp(r, R)—.

The quantity g is the coupling constant of the strong
interaction and p is normalized so that

pd4rd4R =/inite. ---

All detailed information about the nature of strong
interactions will then be contained in the functional
dependence of p on r and R. At present, there is cer-
tainly no theory which gives information about the
nature of the source function. Thus, the best approach
seems to be to return to experiment and look for con-
straints on the form of p. The most important con-
straint comes from the well-known fact that the nuclear
interaction is short range. This implies that p must fall
off rapidly as a function of E., the internucleon distance,
Due to the fact that at high energies the Lorentz con-
traction squashes everything down in the direction of
th motion it seems reasonable that in the parallel (Z)
direction the dependence of p can be well represente
b a 8 function. It also seems reasonable to assume that
p ashas a 8-function dependence on time. The actual inter-
action time is less than 10 '4 sec. Other clues are con-
tained in the fact that the differential elastic cross sec-
tion and the differential meson-production cross sec-
tions seem to drop off as exponentials or Gaussians in
the transverse momentum, p, =p sin8. All this evidence
seems to point towards a source function which is a
double Gaussian in the perpendicular direction.

p(r, R) =- — — e &&"1&'+~1'&~2"8(Z)8(s)5(/) .
(~tr2) 1/2

Of course, the validity of the above formula can only
be tested in terms of the accuracy of the resulting pre-
dictions which will be developed in the following sec-
tions. The dependence on the meson field variable r
cannot presently be too well tested because of a lacl~

of good data on inelastic processes. Thus, it is possible
that new data will indicate that some function other

' This is just the Klein-Gordan equation with a source. It has
been used by many peop&e.

than the G-aussian is more reasonable. The Gaussian
vras chosen to obtain symmetry with respect to the
internucleon variable R

IV. QOLUTION OF WAVE EQUATION

The solution of Eq. (7) can be very nicely given in

terms of the in-out formalism. The usefulness of this
approach was first pointed out by Lewis, Oppenheimer,
and Wouthuysen, ' and has been pursued by others. '
The situation is nicely reviewed in the book by Henley
and Thirring" whose notation we will adopt. The meson

wave function is given by

gout —ging dtr p(r )A(y r)

leik rp ~
—ik rp

= —St——+St-
2$co 21Q)

(13)

The quantity pI, is the Fourier transform of the source
function p(r, R). It is given by

p, ,
= d'r'p (r', R)e

It is now useful to give a Fourier expailsloil of @ and
qP"t in terms of the in and out creation and annihilation
operators. These are AI„AI,~, B~ and Bk~. Thus we have

g3 ~ik r

(j)OU t —S . +H
[2o~ (22r) ')"-'

~ik r

y'"= S2 - +H.c.
[2~(2~)'1'"

Putting these results into Eq. (13) we obtain the
Fourier expansion of the solution

g. yak~ I'

St—— —' Il.c.
[2cu (22r) "]'"

elk r

=- Sk— +H. c.—St, —+H.c. (16)
[2cu(2n-)'] "2 2icu(22r)'

H. W. Lewis, J. R. Oppenheimer, and S. 4Vout:huysen, Phys.
IKev. 73, 127 (1948).' E. M. Henley and. T. D. Lee, Phys. Rev. 101, j.536 (195 ),
Z. Koba and G. Takeda, Progr. Theoret. Phys. (Kyoto} 19, 69

"E M Henley and tA'. Thirring L'clemente&y Quantum F~e d'

Theory (McGraw-Hill Book Company, Inc. , New York, 1962),
/hap. 8, 9, lo,

The 6 function is the difference of the retarded and
advanced 6 functions, and can be written exactly

A(r t) —=6'"'(r 1)—0,'" (rlt)
= S~.(e'"' sin~//cu), —0o (t( co . (12)

Thus we have that

e'" ' "&:inn)(t t')p(r', —t')
alit fill

— d.1rS,
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The 6rst integral can be easily solved. TABLE II. The various parameters that can be calculated
for the three types of interactions.

p 2 2
e "~'~"4k,Ok~ =—(1 e—""'")=

8 6
(3o)

Meson
Mass
GeV

Interaction Slope in Threshold
radius u ~ plot n energy To

F GeV/c ' GeV

However, the second integral can be solved only in
terms of an inhnite series. Fortunately it will be essen-
tially independent of p and thus can be written as a
constant. Thus we have

0.140
0.495
0.938

0.82
0.44
0.32

8.73
2.47
1.30

0.29
1.75
5.64

n(R„p) = (g'/4x)e ~"~"pln4p' inc]—. (31)

Now we can interpret this constant in terms of the
threshold energy for meson production by simply re-
quiring that n(R&,pp) =0. Then we have

n(R, p) = (g'/4s)e ~""lnp'/ps'. (32)

Finally we can obtain an expression for the multi-
plicity or the total number of mesons produced in a
nucleon-nucleon collision with momentum p.

n(p) = O'R,n(R„p)

g p=—ln—27/ RgdRg8
4' ps' s

= (sga)' ln(p'/p, ') .

(33)

p'/po= T/To (34)

We then obta, in the following density functions for the
average Dumber of mesons produced

To obtain useful experimental predictions we employ
the fact that for nucleon-nucleon collisions 2p =MT.
The quantity T is the laboratory kinetic energy. Thus
we have that

ht to existing experimental data, J is taken to be
0.0945 GeV-F. '. The validity of this approach can be
best seen by considering the quantity et=a'/2(Ac)'
This is the slope in a plot of differential cross section
versus 7.. See Fig. 1. This slope is related to the spatial
size of the interaction region by taking the Fourier trans-
formation of the Gaussian in p~

——Qr.We then calculate
and tabulate the relevant quantities in Table II. The
resulting slopes and interaction radii are in fairly good
agreement with the experimental results for elastic
proton-proton scattering. We have included in Table II
a list of the threshold energies for the production of each
meson in nucleon-nucleon collisions.

Finally we choose as our coupling constant g'= 5.6 F '-

for all three types of interactions. This is chosen to
agree with some experimental results which will be
described below. Thus we have only two arbitrary
parameters in our theory, the coupling constant g and
the interaction size parameter J.

We will now show how the expectation valve density
n(R„T) is related to the elastic-scattering cross section.
It has been shown in Sec. IV that the number of mesons

IO

(T)=(lg )'1 (T/To),

n(R„T)= (g'/4s) ln(T/T p) e

n(k T) = (g'a'/16x. ) 1nt 2cVT/(k '+m') je "j"'~'

(35)

(36)

(37)

a,=J/m, , (38)

where m; is the mass of the quantum. To give the best

V. RESUI TS

We now postulate that there are three types of strong
interactions These may be characterized by their
quanta, which are, respectively, the x meson, the E
meson, and the antibaryon. The last two are char-
acterized by the fact that they carry two important
quantum numbers, strangeness and baryon number.
The coupling constant g is assumed to be the same for
all three of these interactions and all three are assumed
to have double Gaussian source functions of the type
given in Eq. (10). However, the radius of the source
function a; is assumed to depend on the mass of the
quantum. In fact, it is assumed that

.Ol—

+296ev

7.25 Ge

i.. . L l. . I.

I.5 2 2P 5 X5
82 (fermis2 )

k'm. 5. Logx), which is twice the imaginary part of the phase:
shift is plotted against Rq' in F' for incident laboratory moments
of 29 GeV and 7.25 GeV. The theoretical curves are calculated
from Eq. (45). The points are the experimental values from elastic
scattering given in Table I.
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0 Pickup et ai.
0 Oabratin et ai.
& Kaibach et ai.
D

This is the X~ which was calculated from the elastic-
scattering experiments in Sec. Ijt:. These results are
plotted in Fig. 5 on semilog paper to display the
Gaussian nature of X~. A good fit is obtained using our
choice of g'=-5.6 F ' for all three types of inter-
actions. However, it is possible that a slightly better
fit could be obtained by choosing different coupling
constants for the E and X interactions. Using g'=5.6,
we obtain from Eq. (36)

IP 100 IOO0
T [Gev]

10000

FIG. 6. The multiplicity of meson production in nucleon-
nucleon collisions is plotted as a function of laboratory kinetic
energy. Experimental points (Ref. 11) for vr-meson production are
plotted. Theoretical curves for ~, E, and X production are calcu-
lated from F.q. (46).

produced is Poisson distributed. Thus the probability
of producing no x mesons is

p (()) e—rr~(Rr, r) (39)

Thus the probability of producing no mesons at all is
given by the product of the three probabilities.

P rrp(0) =P (0)Px(0)Pg(0)
= exp —

I n (R„T)+nrc(R„T)+np(R„T)j.
(41)

The probability of producing one or more particles of
any type is simply one Ininus the probability of pro-
ducing no mesons

P (any number of Particles) = 1—P~rr g(0)
e [n~ tix+ njv] (4—2)

But this is just the probability of having an inelastic
interaction at impact parameter E&. Now recall that
the partial-waves expansion for the inelastic cross
section is

(43)

The quantity 1—e '"~ is also the probability of having
an inelastic interaction at E, Thus we have a simple
relation between the imaginary part of the phase shift
and the expectation value densities.

xt=I, rr, ', ltn„(R„i')+nx (R„T)+nrT——(R—„T)). (44)

Similarly the probabilities of producing no E's and 2V's

are given by

p (())—e aK( Br, T)—

p —(()) e ns~ {Br,T)—

Xt=tgr= 0.50/log(T/0. 29)e

+log(T/1. 75)e t~&'

+ log (T/5 64)e
—(B,LI0.32l ~] (45)

This curve is also plotted in Fig. 5 for 7=29 GeV and
T= 7.25 GeV. The agreement is rather good for T=29
GeV. For T=7.25 GeV, things begin to break down near
the center. There are two reasons why this might be so:
(1) 7.25 GeV is near threshold for antiparticle produc-
tion. (2) For 7.25 GeV, the classical approximation in-

volved in setting I=M~ is poor near the center. This is
because the wavelength corresponding to a particle of
this energy is no longer small with respect to E&.

Using the same coupling constant we can now predict
the multiplicity of the particles produced in nucleon
nucleon collisions from Eq. (35). We have

n (T)= 2.14 log(T/0. 29),

nrem(T) = 0.62 log (T/1.75),
ng (T) =0.32 log (T/5. 64) .

These curves are plotted on semilog paper in Fig. 6.
The experimental results" for m-meson multiplicity are
also plotted. These include cosmic-ray results up to
3500 GeV. The fit is rather good. There are few experi-
mental results on strange particle and antiparticle
production. However, Eq. (46) is consistent with what
results there are."Observing high-energy protons inter-
acting in a hydrogen bubble chamber would be a
powerful test of this theory.

There are also predictions about the momentum
distributions of the secondaries produced. These can be
obtained from Eq. (37) by putting in appropriate

"E. Pickup, D. K. Robinson, and E. O. Salant, Phys. Rev. 125,
2091 (1962); N. A. Dobrotin and S. A. Slavatinsky, Proceedings
of the 1960 International Conference on High Energy Physics at
Rochester (Interscience Publishers, Inc. , New York, 1960), p. 819;
R. M. Kalbach, J. J. Lord, and C. H. Tsao, Phys. Rev. 113, 325
(1959); V. S. Barashenkov, V. A. Beliakov, V. V. Glagolen, N.
Dalkhazhav, Tao Tsyng Se et al., Nucl. Phys. 14, 522 (1960);I. F. Hansen and W. B. Fretter, Phys. Rev. 118, 812 {1960);
E. Lohrmann, M. W. Teucher, and M. Schein, ibid. 122, 672
{1961);A. G. Sarkow, B. Chamany, D. M. Haskin, P. L. Jain,
E. Lohrmann, M. W. Teucher, and M. Schein, ibid. 122, 617
(1961).C. A. S. McCusker and L. S. Peak, Nuovo Cimento 31,
525 (1964).

"R.. I. Louttit, T. W. Morris, D. C. Rahm, R. R. Rau, A. M.
Thorndike, W. J. Willis, and R. M. Lea, Phys. Rev. 123, 1465
(1961.) studied strange particle production at 2.85 GeV.



SI XI PI. F. KIODEI, I" OB. STRONG INTERAC'l IONS B f463

factors of Ac=0.197 GeV-F.

$.88T
8„(p,, T) =2.87 log ~-4.30p~~

p,'+ (0.140)'

1.88T
nx (p„T)= 0.24 log —

Ie
' ""~', (47)

pP+ (0.495)'I

1 SST
r.v(p„T) =-0.06& log~ — —e-& " .'.

(PIs+ (0.938)'

IOOOI=-

et ob.= I le IrIr

PI g
= Ig Q4„'g/C

7T
Ia

+ N (Anti -H gpelonS tarot

included)

There have been few experiments which can be used to
directly test these predictions. However, they do seem
to be in vague agreement with the beam survey data. "'

Cocconi'4 has previously pointed out that these data
could be fit by an exponential in p, while we propose a
Gaussian in p&. It should be noted that the exact va-
lidity of these predictions is to some extent inde-
pendent of the rest of the theory. For this directly in-
volves the dependence of the source function p (R,r)
on the meson 6eld variable, r. This dependence could
be modified without changing the rest of the theory.
Nevertheless the present simple double Gaussian is not
inconsistent with existing experiments. There is no
reason to make it more complex unless more accurate
experiments show that it is not correct in detail.

The inelastic differential cross section for the pro-
duction of charged particles in p-p collisions at 19.0
Gev was recently measured at CERN."Ke have used
these experimental results to calculate the total number
of particles produced by using the equations

a.=-,'(a.++a—),
K=2(E++E ),
S=-2p.

(48)

Thus, the uncharged particles are included. The resulting
data points are plotted in Fig. 7. %e also plot Eq.
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FIG. /. Cross section for the production of 7t, E and X in 19.0
GeV/c p-p collisions. Equation (47) is also plotted.

(47) using the following normalization
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=o't~nl, n(pq, T) = 18.5 mb rl(pq, T) . (49)
dpdQ

The valve of 0-&~zL,= 1.8.5 mb is not equal to the experi-
mental value of o.1~~1,——30 mb. Nevertheless, the agree-
ment for x and E is quite good. Note that the X data
points are below the theoretical curve. This is probably
because the strange antibaryons were not observed ill

this experiment.


