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Normalization of Bethe-Salpeter Wave Functions and Bootstrap Equations*
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The normalization condition for Bethe-Salpeter wave functions is derived directly from the integral
equation for the Green's function. The result agrees with, but is more general than the usual one which
requires the existance of a conserved current. An application is given to the derivation of bootstrap equations.

2. NORMALIZATION

Consider the integral equation satisfied by the two-
particle Green's function, and the accon1panying Bethe-
Salpeter equation

G =GiGs+GiGsIG;

near a bound-state pole

G=~.@./(ps —m. s)

+terms regular at P'=(Pi+Ps)'=sst, '. (2)

Vfriting the product of one-particle Green's functions as

le")62——K ',
this gives the Bethe-Salpeter equation

(3)

(We suppress all irrelevant indices and integration vari-
ables, and usually drop the over-all energy-momentum
8 function without change of notation. ) It is useful to
consider the Bethe-Salpeter equation off the bound-
state mass shell, viz. ,

Q, =X,K 'I@„

for arbitrary P; the eigenvalue X,(P') satisfies

).(~.s) =1.
For a given P we have& in addition to Eq. (3'),

y, =X~.IE-';

(3')

1. INTRODUCTION

HE usual way to normalize a Bethe-Salpeter wave
function makes use of a conserved current:

Integrating the time component of such a current over
all space gives a quantity which is known a priori, e.g. ,

nucleon number or electric charge. In this paper we
show that the normalization condition can, in fact, be
derived quite simply without reference to any conserved
current. As a result, we can, for example, handle bound
states of neutral mesons just like any other bound states.
In Sec. 2 we derive and compare the two methods of
normalization, while in Sec. 3 we show how the nor-
malization condition plus the Bethe-Salpeter equation
can be employed to derive bootstrap equations.

there follows the useful orthogonality relation

@.K@s = d'qrb. (P,q) K(Piq)res(P, q)

= 0 for ).(P)WXs(P) . (4)

Writing G as an expansion on the solutions of Eq. (3'),

Now,
y.Krb. tea), '(m. ')/BP„j =2iP„.

). '=y.I@./y. E-y.

is an extremum for variations of p„, so that

y.Ky.LB).-'(m. ')/BP„g
y.(aI/ap„)y. —y.-(BE/Bp„)y. ,

and the normalization condition can hnally be written in
the form

2P„=i&.9(K I)/BP„)0.. —
Vfe will now show that this general expression, Eq.

(6), agrees with the usual result which assumes existence
of a conserved charge. Following Klein and Zemach'
(see also Mandelstam'), we observe that introduction
of an interaction with an external electromagnetic
held A„,

leaves the form of Eq. (1) unchanged, while all its terms
become functionals of A „.Since

G '=E—I,
BG/BA „=—Gi'„G, with I'„="o(E I)/8A „. —

However, we can also consider 8G/8A„ in terms of the
constituent particle (renormalized Heisenberg) field
operators'.

BG/». -'(o
I T(ib(1)f(2)i,f(3)4(4)) I o).

In the standard fashion, we let, times 1, 2 ~+ oo, times

and. using Eqs. (1), (3'), and (4), we obtain

G= Z.L~.~./(1 ))~—.K~.]
Comparison of this result with Eq. (2) in the neighbor-
hood of P'=m ' fixes the normalization

' A. Klein and C. Zemach, Phys. Rev. 108, 126 (1s6'7).r* Supported in part by the U. S. Atomic Energy Commission. ' S. Mandelstam, Proc. Roy. Soc. (London) A23$, 248 (1NS).
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3, 4-b —~, to find the bound-state poles and wave functions. .

BG!BA„=".Q (0l2'g(1)P(2)i lP, )2 8 (P' .—')d'P(P, lg„lP', ')
a, a'

X2m 8+(P"—m. ')d4P'(P', a'
l
T{bP(3)g(4) ) l 0)

=i' 2 [4'a(P&&l,)&lP',+')4 /(P' —m ')(P"—m ')]+terms regular at P'-=m ' P'-'=yg, '
aba

Factoring the 6 function out of the right-hand side of venient way. Employment of the variation
Eq. (8) and comparing the results with Eqs. (2) snd
(7) gives

(P I (P I")IP'—')=~1 (PP')~ in our variational principle

BN(E-7)~]=o
But for a state of unit charge,

so that we have

(P,~l q„(0) lP,~)=2P„,

2P„= ietb,—1'„etb,

leads to the coupling constant equation

bc P r g efy ~bc7 ay eef/y IbcE ay ~bc

A generalized ladder approximation,

This is the normalization condition as it appears in
Ref. 1; for comparison with Eq. (6), we must evaluate
the right-hand side of Eq. (9) more explicitly. For
coupling with a zero-momentum electromagnetic Beld,
any operator 0 which can be written as a sum of graphs
satisfies

80/W „=Q e,(BO/Bq„'),

where ei is the charge and g„' the momentum of each
hne, and the summation is over all lines and all graphs.
In our case, integration by parts and the relation

~(@.(E—7)e.) =o
then gives

y. LB(7c I)/W jy.=y.(B—/BP„)(EI)y. . .—

Agreement with Eq. (6) is thus established.

y/Ibc ef P. i gbiegcife bc, ef

is introduced in which the vertices are assumed to be so
calculated that we obtain exactly the same equations if
particle b or c is considered as the bound state, and can
identify

ga '=gabe ~

This yieMs the relation

efi
gabe ~ ~abc gaefgbiegci f ~

e, f, i

Here we have defined

Dab."=Ir ..er"/&. bc'-

3. APPLICATION also,
E =y'Ey';

Pb'=mb'-', PP=m, "-:

0 "=g "~«""(P pb p)
(10a)

I ~ b E«*'"']nb'= b" , .'= .'= 1 b' -(10h)
V,b,. being an angular factor normalized in any con-

YVe now derive from the Bethe-Salpeter equation and
the normalization condition equations for a class of
bootstrap models. These equations express the coupling
constants and masses of the particles (bound states) as
functions of the coupling constants and masses. Ke re-
store the hitherto suppressed indices which characterize
the constituent particles forming the bound state:

~.(P,V)=~."(P.,p.,p.)—
Using any convenient momentum factor U b, which

could appear at an ib —b fb+c vertex to contract the
(suppressed) spinor, vector, etc.. indices of ct, ", we de-
fine the coupling constants g„" from the residue of
@ "at

Dabc 1 abc (77abcI beef et'a ,]pb'=mbe, yc'=mc' ~

The dependence of D,b, 'f' on a comes only from the de-
pendence on P„(which in the preceding section was
called P).

The mass equation follows directly from the nor-
malization condition. In the c.m. system, we have
simply

2m. = i(B/BP.,)[y.(E 7)y„]—
=i P( .g)b'( / BBP)K' .b—i Q g. b,gb;,

bc, e,f, i

Xg. fg f(B/BP„,)Ibf"', (12),
employing the same approximations as above. Equa-
tions (11) and (12) form a convenient starting point for
many bootstrap models, especially in discussions of the
bootstrap origin of symmetries. '

'R. E. Cutkosky, Bull. Am. Phys. Soc. 8, 59j. I'1953); Carnegie
Institute of Technology Report NVO-10565, 1963 I'unpublished).


