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Asymptotic Behavior of the Scattering Amplitude and Normal 4trtd

Abnoii11al Solutions of the Bethe-Salpeter Equation*
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An integral equation for a scattering amplitude is considered in the ladder approximation. It is assumed
that two scalar particles having mass ns exchange scalar photons except for the Qrst step, in which a scalar
meson having mass 2m is exchanged. The exact solution to this equation is found in a compact form in the
case of zero energy. Asymptotic behavior of the solution is investigated in the crossed channel. It is shown

that the leading term and the second leading term in the asymptotic expansion in t exactly correspond to the
normal solutions of the Bethe-Salpeter equation with n =k+1 and those with n =3+2, respectively, where n
is the principal quantum number.
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QME years ago, Regge' established„ in the uon-
relativistic potential theory, that the asymptotic

behavior of the scattering amp/itude in the crossed.

channel is closely related to the bound-state solutions of
the same Schrodinger equation. 'Field-theoretical ex-
tensions of his analysis have been made in two direc-

tions; one is the 5-matrix theory based on the assump-

tion of the Mandelstam representation, ' and the other
is the oB-the-mass-shell theory based on the Bethe-
Salpeter formalism. ~' In the latter approach, Bertocchi,
I'ubini, and Tonin4 have shown, in the framework of the

multiperipheral model, that the leading asymptotic
behavior of the scattering amplitude is determined by a
homogeneous equation, which is equ. ivalent to the
partial-wave Bethe-Salpeter equation. The present
author" has shown that the equivalent result can be
obtained by using the perturbation-theoretical integral

representation, and extended to almost completely

general case as far as scalar particles are concerned. It
remains unsolved, however, which solutions of the

Bethe-Salpeter equation are related to the leading

asymptotic behavior of the scattering amplitude, and

furthermore it is unknown whether or not silnilar be-

haviors are true also for nonleading tenens in the

asymptotic expansion of the scattering amplitude. These

problems are especially interesting because the. Bethe-
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Sa,&peter equation has abnormal so]utions" which have
no counterparts in the nonrelativistic potential theory.
The purpose of the present paper is to investigate these

problems by using an exactly solvable example.
Ke consider the elastic scattering of two scalar par-

ticjes having mass m in the ladder approximation. Ex-
changed particles are assumed to be scalar and massless.
This model is particularly interesting because we know

the complete set of the solutions to the corresponding
Bethe-Salpeter equation. '0 But, unfortunatejy, the inte-

gral equation for this model has no solution because of
the appearance of infrared divergence. '" Hence we

shall replace the massless particle by a massive meson

only in the inhomogeneous term of the integral equa-
tion. Then we can exactly solve the integral equation in

terms of the perturbation-theoretical integral repre-
sentation. In the next section, the exact solution is
presented in a con&pact form in case of zero energy
(s=0). The asymptotic behavior of the solution in the i

channel is investigated in Sec. 3. It is shown there that
the leading term. and the second leading term in the

asymptotic expansion in t precisely correspond to the
normal solutions of the Bethe-Salpeter equation with

n=l+1 and those with m=i+2, respectively, but the

third term does not correspond to those with n= k+3.
Some remarks are made in Sec. 4.

2. EXACT SOLUTION

We consider the following integral equation:

(ns' —t/) (rrr' —tt)f (t/, w, /)

where the notations are the same with those in Ref. 6.
The Fepiman amplitude f(n, rr/, 1) has the following

"G. C. Wick, Phys. Rev. 96, 1124 (1954);R. E. Cutkosky, ibid
96, 1135 I'1954).

"K.Nishijirna, Progr. Theoret. Phys. (Kyoto) 14, 203 (1955).
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integral iepresentation:

z (y,z)

f~ — ((&—y)Ll(&+«)(~' —«)+I()—«)(~' —~)j+v(«' —«)
—«)'

(2.2)

It ls convenient to introduce a variable x through

y= (1+x)—'. (2.3)

4(x,z) =-1+2~

Then the weight function z)(y,s)—=P(x,s) satisfies the

following integral equation:

foi exa1Tlplep

a2(s)=2 4X(1—s'),
az(s) = —2—9.(1—s'),
a4(s) = 2—9.(1—s')+2 '9 (X—2) (1—s')'.

Thc gcllcral for lli of a~ z(s) ls found to bc

(2.12)

where

xlC{z,x') x'P (x',s')
dx'- —, (2.4)

(1+x')ll'+ x"p (z')

(-1)-(»-j)!II P.—I(i+1)j
(1—s')'",

2""'"L{j+1)'7i'(» —2j) '

(2 1"

E(s,s') —= (1as)/(1as') for z~~s',

p(s) =—m' —41 (1—s')s.

(2.5)
where L»/21 denotes the largest integer not greater than

»/2. The proof of (2.13) is given in Appendix A.
Substituting (2.13) together with (2.8) in (2.7), we

have

The integral equation (2.4) can be solved most easily
0(x,z) =-1+Z 2 " 'L(S+

by expanding P(x,s) in powers of x:

P(x,z) =—Q a„(s)x".
71m

X g p.—I'(i+1)]II;(x)(1—s')'+I (2.14)

ao(s) =1,
al(s) =0. (2.8)

In order to obtain the general form of a„{s),we shaH

hereafter confine our consideration to the special case in

which
"I"hus

where
The cocfhcients a„(s) are determined successively. The
6rst two are evidently given by

( 1) (" j)'
gn+2

2 +2 j««({» 2j) (

(»+j)! x "+»+'

g~eI 2

= ('x)""(1+ix) ' '. (2.15)

(2.9)

and for simplicity we set m= j.. Then using the Taylor
expansions (2.7) and

II 9—(+1)3
)

.

P(x,z)=1+ P ({j+1)j' - 8(2+*)—

(2+x)—'=-' Q (—1)"(»+1)2-"x,

f1olli (2.4) wc obtain 'tllc lcclll'. rcllcc fol"11111!a

(2.10)

(»!)'

g t z(i+1)—X]
co g~0 x2 1 z2

8(2+x)
(2.16)

a„+2(s) == ——
8(»+2)

Since (2.16) is a hypergeometric series, one finds

P(x s) =F(—v v+1 1 —P~-'(1.—z')/8(2+x)]) (2 17)

&& L r, (—1)" '( —+1)2 "'" ( ') jL~(
v—- (X+-4I:)'('——,', . (2 18)

r=o

(»& 0) . (2.11)

By using (2.11), a„+z(s) can be calculated successively;

Namely, we obtain

z (y,s) =Ii( v, v+1; 1; —L(1—y—)'(1—s')/8y(1+y)])
=P«(1+P(1—y)'(1 —s')/4y(1+y) j)«(2.19)



where I', stands for the Legendre function of the 6rst
kind.

3. ASYMPTOTIC BEHAVIOR

The behavior of p(y, s) near y=0 can easily be ob-
tained by using the well-known formula

P(a,b; ~; u)
= EP(.)P(b-a)/P(b)P(. —a)]

&&(—e) 'P(a, 1—c+a;1 b+a —u ')
+ Li'(~)r (a—b)/I'(a) I'(~—b)]

&(( u) —bF(b, 1 c+b—'1 a+b—'u '). (3 1)

slumbers, and C. denotes the Gegenbauer polynomial.
The solutions with ~=0 are called normal solutiops, and
the others (s=1, 2, ) are called abnormal solutions,
which have no counterparts in the nonrelativistic po-
tential theory. It is easy to see that the leading term of
(3.2) precisely corresponds to the normal solution with
n= k+1 when v is identified with e.

In order to discuss nonleading terms, we must find the
asymptotic expansion of f(v, w, t) itself in the t channel.
I et

I.~l

(1—y)~y Z b~ Pfy ~'/LA+(~+R)y]' (3 6)

~(2+1)
V (y,s)=

Li'(v+1)]'-, 8y(1+y)

r 8y(1+y)
XF~ —., —., —2., —

(1—y)'(1 —s')

=C(1—s') "y "(I+biy+b2y'+ ),
with

C=—2- 1(2v+1)LI"(,+I)]-,
bi =—vP —3+4(1—s')—']
b = L (9 —1)—12( —1)(1—s') '

+16(v—I)'(2v —1) '(1—s') ']

We want to 6nd the asymptotic expansion of I in powers
of E.. Since

3'
dy — -=O(R ') for b) 0, (3.7)

LA+(~+R)y]

Pf "+&y =-;I'(—v+ j+1)I'(v—j+2)
t A+ (8+R)y]'

(3.3)
we easily obtain

XA "+' '(8+R)" ' ', (3.8)

(3 2) it is possible to replace the upper limit of the integration
range in (3.6) by infinity. Then using

For v)1, the integration over y in (2.2) should be
de6ned by taking Hadamard's finite part Pf as was done
previously. '

The asymptotic formula (3.2) indicates the existence
of Regge poles at p —1, v —2 s —3 . . Our problem is
to compare (3.2) with the Cutkosky solutions" of the
Bethe-Salpeter equation. The zero-energy Cutkosky
solutions with e= /+1 are

[v] ls

1=2 Z Z (»—»-i)1'(—v+ j+1)1'(v—j+2)

I'(v j)
X II k—jA—v+ j—2 Rv—i—l'o (3 9)

I'(v —b) (b —j)!
with b i=0. Now, the asymptotic expansion of f(v,w, f)
in t can be calculated by setting

g (s) (1 s2) nC nr~+q (s)

with eigenvalues

X= (n+~)(n+~+1).

(3.4)

(3.5)

A = 1 ', (1+s)—v -', (1 s)—w—ie-,
—

8= —A+4,
E= —t 7

(3.10)

Here s, e, l are conventional notations of quantum from (2.2) and (3.2) together with (3.3).

f(v,v. ,t)=-', I'(—v+1)I'(v+2)C (1—s')"Cs A " '( 3)" '+4( ——1) A=" '+—
i

1— iA
" '

2(v+1) k 1—s'j

where A is given by (3.10).

2
X(—t)"-'+8(v—1)(v—2) A " '+——

I 1—— —
~A

" '
v+1( 1—s'j

1 v —1 2(v —1)'+-
I k(v+1) — + ~A

" (—&)" '+ . , (311)
v+1& 1—s' (2v —1)(1—s')')
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As is shown in Appendix 3, the normal solution of the
Bethe-Salpeter equation with n=l+2 (apart from a
solid harmonic) is explicitly given by

(1—s2)" n
dz +-

A ~+2 2 (n+ 1)

We have considered the case s=0. It should stnctly
be dis ished from the case of vanishing total
momentum. In the latter case we have ~= m in addition
to E=O, so that the denominator function in (2.2) be-
comes independent of s. The elastic forward scattering
in the t channel corresponds to this case. From ( .
we obtain

1 (1 s2) n 2(] s2) n 1—
GS (3.12)

f(~,o, t) =2
The correspondence between (3.12)~ and the coefficient
of —t) ' in (3.11) is exact when v is again identified
with n. It is noteworthy that if we consider the expan-
sion of f(w, 721,t) in terms of Pi(cos8) instead of t, where
t 21——cos9) then the above precise correspondence
cannot be obtained.

0 ~

As for the coefficient of (—t) ' in (3.11), the precise
correspondence to the normal solution with n=l+3 is
realized on y in e rs1

'
th 6 t two terms. The Cutkosky func-

tion 'o „, 2(s) is much disturbed by the presence of an

the former (see Appendix B). Henc,ence the coeKcient o
~a~. Instead, the last two3 "does not reproduce g 0, 3,s, .

terms in the coe cien ofB
' t f A ' are just proportional to

2, , 1(s)~g

4. REMARKS

In this paper, we have obtained the exact solution to
e of &~2.9~ but our analysis can, in principle,

be extended to more general cases. The genera iza ion o
e @2m is interesting because then we can in-

vestigate the improper limit p —+ ~. urth
can get rid of the difhculty of degeneracy in the Bethe-
Salpeter equation i e s'f th olution in case of s~0 is found.

~(—~ ~+1 3&2 —(1—X)'/8r(1+&))

t:(1-~)(1-)+.(4-t)-' i

If we consider the on-the-mass-shell case ~=@=,
h th attering amplitude exhibits infrared iver-

gence. In perturbation expansion, the term o or er
be aves i e n, wh i'k ~1 8j" where 8=v—j.. The exact solution
(1—w)2f(v v, t) behaves like 8-" as is seen from (3. ),)

where 1 is given by (2.18).
Wh is a positive integer, the exact solution (2.19)

becomes a rational function of y. Hadamard s 6nite pe art
is not well defined for a negative-integral power o y
unless then the coefficient vanishes. Therefore f(v,w, t) is
divergent in this case. This is physically reasonable be-
cause this in6nity corresponds to a bound-state pole at
s=0 of the Feynman amplitude.

Very recently, Tiktopoulos and Treiman" have ob-
tained an upper bound for the leading asymptotic be-
havior of the scattering amplitude in the ladder ap-
proximation. Their bound exactly coincides with our
exact result t ' with (2.18) apart from the coeflicient.

APPENDIX A: PROOF OF (2.13)

llowin inte ral formula:

2n+2+k 1. 1C1(1+s)"+'+'(1—s)"+~&+'

2'+'
~=o (n+ j+1)(n+k —j+'1)

On the other hand, J„o can be rewritten as

2n+2+k n!k! &o/2) (—1)'(n+k —l)!
2a+1 (nyky1) t 1-o (n+l+1)!(k—2l)! '-o 2!tk —2l—2 !

&Qyg Rcgr I$4 @844 ($964)~~ Q, f+tQpoQIQQ Q,QB S. 8. TfclIQRQ„+$.

We shall fiist prove the fo g g

nlkl ii'l2] (—1)'(n+k —j !1

ds't R ss' '"+'+" 1—s" "=-', 2n+2+k

'de of (A1) b I„1,and the right-hand side of it by J z.with e&0 and &+0. We denote the left-hand side o &, y „I,

(1+ ')"
si2m+2+o ds~ + (s~ «)

(1 sl) F2+1.—1

&'+'&~&' 'i dl (1+I)"
2 i2)~2m+2+ a +n

0

(A1)

(A3)
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, ) d(A3) .y ti d-'P" .(e both expression A2 and M'e 8

o corn are the coefFicients of
1 s +(1—Z . lilc

and (1 s))—s&~ it is sufhcient t p

1 sn))+j+I 1 s) ))+k—)+I

ient of A4) in (A3) isfor '& ~~k/2). Since the coeKcien o (

n!k! ) (—1) '(n+ k —l)!

n . — t —,! k ——l)!'(n+k+ l )! t~. (n+l+1) .(j—l) .( —j—
we have only to prove the identity

(A4)

(AS)

n!(n+k l)!j!—(k —j !

! k+1)!(j—l)!(k—j—l)! (n+ j+1)(n k —j 1(n+l+1)!(n+k '. j— . —' — !

b E can be written as'd f (A6) which we denote yThe left-hand si e o

a(a+1) . (a+l —1))& b(b+1) (b l—1

c (c+1) (c+l—1)&( (n+l+1)!

(A6)

a= —j, b= —k+ j, c= nk— ,—

dsob (a,b; c; so)

= (n+k+ 1) ' ds(1 —s)"F(a,b; c; z) (A9)

0

the h ergeomeiric diQerential equation,Since F satisfies t e yp
'

ial e uation,

s(1 s) (d'F/ds')—+Pc (a+ s—
we have

dF

ds'

(A1O)

1—s " ab ds(1 s—)"F. —ds —(1—s)"+'+fc—(a+b—n)s)( —s) }

Since (AS) leads to c=a+b n, , y-—n,A11 yields

= a —— — n 1 ds(1 s)"F ab ds—(1 —s) "5)'. — (A12)

ds(1 —s)"F=
(n+1 a) (n+1 —b)— (A13)

—
(—1)"(n+1)

+ 1 ri )))-
2" gem~]

a~s()= ---— a~2(s') LR(s,s'))"+'.
2" —2a, a in (A14) yieldsSubstitution of (2.13) for as, aa, , a in

t-hand side of (A6). Thus (A1) has been es-Ag in (A9), we obtain the right-hand side oSubstituting (A13) together with Ag in, t-hand side o

y2 13 y ma
'

tion starting rom 2.8 . The recurrence formula . w'2.11 with
tablished.

(2.13) by matherriatical induction starting rom . . e rNow we shall prove 2.13 y ma

A14)

(2.8) leads to

(—1)"X
a))i aa„.~(s) ==- —— 1))/2""I:(j+1)~)')(1- ) )t.R(.,j —)2 )+& R s s) I+2 (A1 &)ds'((n+1)+ Q (A„, ii P,—i(j 1

' j
j" 0
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(m-.j)!
(n »—i 1—')

~-»' j!(»i—2 j)!
n 2j—2—(r+ j)! n—2i—2

(n 2—j 1—)
j3 r=o yt

Ke make use of the well-known formula

(r+j)'
(r—1) '=

(A16)

- (i+~—1)!

(i—1)!

1 (»+»i)!

~+1 (»—1)!

which can easily be veri6ed by mathematical induction. Then

1 - (»—2j—1)X (»—j—1)!

j'- (j+1)X(»—2j—2)

(n —j—1)!

(j+2)X( —2j—3)'-

Thus

(n- j)!
(j+2)!(n —2j—2)!

(A18)

a~, (s) = ( 1)ny i

2"+'(»+2)
ds'{ P ((n —r+1)!g $X—i(i+1)]/2"(r!)'(r+1)!(n—2r)!)(1—s")")LE(s,s')]"+'. (A19)

0

Now, we apply the integral formula (A1) to (A19), and get

with

(—1)") i I2i (—1)'(n—j)!8;
a-+.(-)= —2 — (1—")'",=»"(j+1)t(» —2j) '

(—1)"
—gfI Z —i(i+1)].'~r!(r+1)! '-o

(A20)

By mathematical induction, we can easily prove

(—1)'
8y= g P—i(i+1)].

j'(j+1) '=i
Substitution of (A22) in (A20) yields

a~.(s) = (—1)" 2 ((n- j)!II I ~—'('+ )]!-+'+'I-(j+ )!]j.(n-2j) t)(1—")+ .
j=o s=o

Thus (2.13) has been proved.

(A23)

APPENDIX 8: ZERO-ENERGY CUTKOSKY SOLUTIONS

The Cutkosky solutions are represented as"

n—l—2 g'-i(s)

(1 ', (1+s)s—-,'(1 s)w—-i e]—" "+'— — (B1)

(» —k+1)!(n —j—I—1)!
g". i(s)--=- -==-=- 2

2(n k) y-o (» j+1)!(» k I 1) t

ds" I R(s,s')] "g'„„&(s'),

where E(s,s') is defined by (2.5).

a art from a solid harmonic. In case of zero energy, g'.~i——g„„iis given by (3.4) for any /. The eigenvatues of X are
given by (3 5) which is independent of /. The other weight functions g~.~i, (k&0), satisfy inhomogeneous integralJ)
equations:
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n(n —l—1) ' n(n+1)
g'o- (s) =- ds'[R(s, s')]"-'(1—s")"+— ds'[R(s s')]" 'g'p. t(s').

2(n —1) r 2(n —1)
(83)

The homogeneous part of (83) is satisfied by g i „r t, but it is an odd function of s so that it is quite harmless. By
making an ansatz

g'p„t(s) = cp(1—s') "+ci(1—s')" ',
we can easily obtain

n(n —l—1)
g'p. t(s) = [(1 s2)n 2(1 s2)n 11

2 (n+1)
(85)

As for g'0„» the homogeneous part of the integral equation for it is satis6ed by g'2, „2»which is an ever function of
s. Hence, we can no longer 6nd a solution of the type

as is easily checked.
cp(1 —s')o+cr(1 —s')~ '+cs(1—s')" ' (86)

PHYSICAL R EVI EW VOLUME 1. 35, NUM HER 68 21 SEPTEMBER 1964

Unitary Symmetry and Hyperon Leptonic Decays*
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The consequences (beyond the rsI = s and It I= 1 rules) of the most general form of the hypothesis that the
weak-interaction currents transform like components of SU3 octets are discussed. These are presented as
relations between the AS=1 leptonic decays of and and those of Z and h.. The only prediction for the
branching ratios 8 of decays which can be compared to present experiments is

It(- z Ir+e +o)+8(" z Zp+e +o)((105&0 2)X10 '

As yet the comparison is inconclusive. One additional relation among the leptonic decays of hyperons is found
if the particular model of Cabibbo is assumed. Applications of these considerations to the determination of
induced couplings are made.

r. INTRODUCTION

l
'HK success of the unitary symmetry model for

strong interactions has led many authors to
suggest possible properties of the weak-interaction
currents with respect to the SU3 transformations. ' '
Practically all the proposals include the hypothesis
that each of the nonleptonic weak currents which are
coupled to leptons (or to intermediate bosons) transform
hke components of some octet. The main purpose of the
present note is to discuss those experimentally obsen-
able consequences that follow from this hypothesis
alone and so are common to all the proposals. The
present discussion is limited to leptonic decays of

*This work supported in part by U. S. Atomic Energy Com-
xlllsslon.

'M. Gell-Mann, California Institute of Technology Report
CTSL-20, 1961 (unpublished).' N. Cabibbo and R. Gatto, Nuovo Cimento 21, gT2 (1961).

'N. Cabibbo, Phys. Rev. Letters 10, 531 (1963); see also
8 d'Espagnat and . J. PrentJd, Nuovo Cimento 24, 497 (1962).

4 John M. Cornwall and V. Singh, Phys. Rev. I etters Io, 551
I'i963).

hyperons, which are particularly suitable for testing
this hypothesis. There exist sixteen possible leptonic
decay amplitudes, of which twelve should be observable
in the absence of selection rules; the other four either
compete with the electromagnetic decay of the Z' or
are intrinsicaHy very rare because of their small energy
release.

We 6rst review in Sec. 2 those selection rules that may
follow from postulating transformation properties of
the weak currents with respect to strangeness, isotopic
spin, and G. These selection rules, which are well known
but not well verified experimentally, provide eight
relationships among the sixteen amplitudes. In Sec. 3
we discuss the consequences of the most general form
of the octet hypothesis, which provides four additional
relationships. The further hypotheses that can be made
in an invariant way assuming perfect SU3 symmetry are
discussed in Sec. 5; they lead essentia, lly to the model
of Cabibbo, which provides one additional relationship
when only hyperon leptonic decays are considered.

The weak interaction responsible for leptonic decays


