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nt s' —s(MP+Ms'+rttP+rrts' 2—tsP)+ (MP —MP) (rrtP rr—ts')
Cospt= —= (A1)

(A(s,MP, MP) 6 (s,mP, ms') )'t'

&2 ss s(Mss+M42+rrt12+srt22 2ts 2)+ (M42 M 2) (rn 2 rn 2)
Cosgs= —=

Ps (g(s Ms M42)g(s ntP srt22) jl/2

where the symbols are defined in Fig. 5 and Eq. (1). If the two parts in Fig. 8 are now put together to form
the transition in Fig. 7(a), and if p is defined to be the angle between Mt and M4, then

cosf= cos(fr+$2) =cospt cosmos
—L(1—cos'pt) (1—cos'ps) j". (A3)

We now look at Fig. 5, and express t in terms of s, cosg, and the M,
l= (1/2s)( —s'+s(MP+Ms'+Ms'+Me') —(MP —Ms')(M '—Ms')+co&t 6(s,MP Ms')5(s, Mss, M ')]'"} (A4)

(A2)

Substituting (A1)—(A3) into (A4) and replacing s, l and the M; by x, y, and the x, according to Eqs. (9a),
(9b), there results Eq. (11).

The remark at the end of part 8, Sec. III can also be easily veri6ed. For x outside both the intervals

Lt,—&x&L»+ and L» &x&Lss+, then cosg& and cosmos defined in (A1) and (A2) are both larger than unity
in magnitude. Therefore, by (A3), so is cos&, and y+ does not lie in the physical region ~cosg~ &1.
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A study is made of the depolarization of polarized, relativistic fermions (spin —,) passing through matter.
The final polarization of the projectile shows two features, (i) a rotation of the polarization vector so that
it does not have the same direction as the initial polarization with respect to the initial or final momenta:
rotation; (ii) an unpolarized component so that the magnitude of the polarization has diminished: shrinkage.
We consider the scattering of the incident polarized fermion oB unpolarized target electrons and nuclei
to lowest order in'. Whereas to this order no polarization can be produced, i.e., the magnitude of the polari-
zation vector cannot increase, the magnitude of the spin vector can decrease if the target has spin. General
formulas are presented for the spin--, particles scattered electromagnetically from an unpolarized target with
arbitrary spin in terms of form factors. Numerical results are presented for processes (i) and (ii) in the
cases of positrons and muons scattered by unpolarized electrons. Process (ii) is proportional to t' (for small
momentum transfer t). If one expands the expressions for the polarization phenomena keeping only the
linear term in t, then the shrinkage (ii) vanishes and the rotation effects (i) all reduce to those for the pure
Coulomb scattering case. (As is well-known the depolarization due to Coulomb scattering is negligible for
small-angle scattering. ) However, if one is concerned with particles scattered into a sizeable solid angle, then
(a) the rotation etfects in, e.g. , positron-electron scattering become enormously larger than that given by
Coulomb scattering; (b) they become strongly dependent on the relative orientation of the incident polariza-
tion vector: much larger rotations occur for transversely polarized beams; (c) one cannot omit the contribu-
tion from the annihilation diagram compared to that from the direct one-photon exchange; (d) and most

important the depolarization due to shrinkage is con&parable to the rotational effects. In multiple scattering,
the shrinkage is a cumulative effect whereas the rotational contribution to depolarization is a random
walk process.

I. INTRODUCTION

&~ETAILED knowledge of the depolarization of
polarized, relativistic fermions (spin —,) passing

through matter is of current interest. Our theoretical
studies (which neglect bremsstrahlung, see Ref. 21) do

~ Supported in part by the U. S. Air Force through Air Force
Once of Scientific Research Grant AF-AFOSR-62-452.

t Supported by U. S. Atomic Energy Commission.

not explain the large depolarizations found in the experi-
rnents of Dick et a/. '' However, our results show a

'L. Dick, L. Feuvrais, and M. Spighel, Phys. Letters 7, 150
(1963); S. Bloom, L. A. Dick, L. Feuvrais, G. R. Henry, P. C.
Macq, and M. Spighel, ibid 8, 87 (1964); L.. Dick, L. Feuvrais,
L. DiLella, and M. Spighel, ibid. 10, 236 (1964).' However, we do get agreement with the small p depolarization
observed experimentally. Polarized muons suGer negligible de-
polarization in slowing down from ~70 to ~10 MeV in any
type of moderator (D. D. Yovanovitch (private communication) g.
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number of very interesting features which have not
been explicitly discussed in previous calculations. ~'
(In particular, keeping only the lowest order term in
the momentum transfer variable, ' t, throws away all
the effects of the spin of the target electrons or nuclei. )

We will be concerned with the scattering of an in-
cident beam of polarized, relativistic fermions off an
unpolarized target (the final state of the target is not
observed). The simple lowest order (in. cr) processes we
calculate cannot, of course, produce polarization, i.e.,
increase the magnitude of the polarization vector of
the projectile (see Appendix). We wish to emphasize
strongly, that even to this order in n the final polariza-
tion state of the projectile shows both the following
features: (i) a rotation of the polarization vector so
that it does not have the same direction as the initial
polarization with respect to the initial or final momenta;
(ii) an unpolarized component is produced so that the
magnitude of the polarization has diminished. The
production of this unpolarized component is due to
the interaction with the randomly oriented spin of the
target. We wil1 distinguish these effects by calling (i)
rotation, and (ii) shrinkage.

A rotation of the polarization vector can take place
in scattering from any kind of target (spinless, with
spin polarized or unpolarized) but a shrinking can
occur only when the target has spin. Then the random-
ness of phase present in the target system produces
a final state of the projectile which has a random com-
ponent. A well-known result in scattering theory is that
the Born approximation cannot produce polarization in
the final state if the initial state (of both spin-s par-
ticles) is unpolarized. r We find the interesting result that
the Born approximation can shrink the polarization
vector of the projectile.

Our results follow directly from lowest order per-
turbation theory and illustrate rather nicely (and
perhaps pedagogically) some familiar principles of
quantum mechanics and relativistic kinematics. A re-
view of the relevant spin formalism is presented in
Sec. II. Presenting things as simply as possible we
start in Sec. III with a discussion of the scattering of a
fermion from a nonidentical unpolarized target by one-
photon exchange. This example includes the scattering
of muons from electrons and elastic or inelastic scatter-
ing of muons, electrons or positrons from an unpolar-
ized (or spinless) nucleus. It demonstrates both the
shrinking and rotation eGects. In Sec. IV we give the
analogous formulas for electron-electron (Mgller) and

'M. E. Rose and H. A. Bethe, Phys. Rev. SS, 277 (1939).
L. J. Weigert and M. E. Rose, Nucl. Phys. Sl, 529 (1964), have
given a general discussion of polarization phenomena for electron-
nucleus scattering, emphasizing the effects of nuclear structure.

~ G. W. Ford and C. J. Mullin, Phys. Rev. 108, 477 (1957).
' C. Bouchiat and J. M. Levy-Leblond, Nuovo Cimento (to be

published).
' H. Olsen and L. C. Maximom, Phys. Rev. 114, 887 (1959).
~ We have in mind only Hermitian interactions.

positron-electron (Bhabha) scattering. Because of the
complexity of the formulas, we present in Sec. V some
numerical results obtained from the analyses of Secs.
III and IV. A brief discussion of multiple scattering is
given in Sec. VI.

The fractional decrease in magnitude or shrinkage
of the incident polarization vector for small t (and
sizeable incident laboratory energy E) is proportional to

P/E4 for longitudinal polarization;

P/E' for transverse polarizations.

If we expand all the polarization phenomena expressions
keeping only the linear term in the momentum transfer
variable t, then the shrinkage vanishes. In addition
the rotation eGects all reduce to the pure Coulomb
(no energy loss) scattering case: the fraction of the
incident polarization vector in the scattering plane
which does not follow the scattering angle in a single
collision is given by' /see Eq. (29)j

where nz is the mass of the projectile. The particular
conditions of the Dick experiments, ' namely slowing
down of 50-MeV positrons to 10 MeV in a Be absorber
and observing only the positrons in the very forward
direction, allow us Lusing (2)j trivially to make an
upper estimate of the depolarization. This estimate is
orders of magnitude too small to explain Dick's results.
This result (that for small scattering angles the de-
polarization due to Coulomb scattering is negligible)
is known. ' 5

On the other hand, if one accepts particles scattered
into a sizeable angle, then (a) the rotation effects in
Bhabha scattering become enormously larger than that
given by the Coulomb scattering; (b) they become
strongly dependent on the relative orientation of the
incident polarization vector with respect to the incident
momentum: much larger rotation for transversely than
for longitudinally polarized beam; (c) one cannot omit
the contribution from the annihilation diagram com-
pared to that from the direct one-photon exchange;
(d) and most important the depolarization due to
shrinkage is comparable to the rotational effects, i.e.,
one gets a real decrease in magnitude of the polariza-
tion vector and not just a change in direction. These
results are all made evident by the numerical calcula-
tions presented in Sec. V.

We include in an Appendix, an expression of the
polarization resulting from the most general possible
collision of a spin- —, particle with an arbitrary, un-
po]arized, target. This shows both the limitations and
the general features of the results obtained with the
Born approximation.

' We use units A=c~ j..
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a2 and a3 are normal" to y:

I to, I,ooj

FxG. 1. Projectile with initial four-momentum pI and polariza-
tion a is incident along x axis and scatters by angle 8 in x-y
plane to p~ and a~.

and

a '= (PI EI 0 0)/ns

a2'= (0,0,1,0),
a,I (0001)

a+= (p~, E~ cos8, E~ sin8, 0)/rn,

a+=(0, —sin8, cos8, 0),
as~ ——(0,0,0,1) .

(10)

p= 2 (1+avs). (3)

The polarization four-vector a satisdes the subsidiary
condition

a p=O,

where p is the four-momentum of the particle (with
mass m). In general,

II. REVIEW OF SPIN FORMALISM

For a spin--,' particle we shall describe the polariza-
tion by the usual covariant density matrix

Since we will be considering scattering processes only
to lowest order in 0,, the magnitude of a cannot increase.
Then for this situation (see Appendix for the more
general relation) we can express the transformation of
u into c"by the collision process in terms of

~11 ~12 0 ~1
~21 ~22 0 ~2 ~

. 0 0 3533. .I'3 .
The fact that M12 and 3f21 are not zero represent what
we have called rotation. Shrinkage is given by the
expressions

0&u2& —1, S&0, z=1, 2, 8 (12)

where @2=—1 corresponds to complete polarization.
These relations are simple generalizations of the familiar
2&&2 matrix operator —,'(1+P.e), 0& (P)'&1 which de-
scribed an arbitrary mixture of polarized and unpolar-
ized spin--, particles. This expression holds relutivzsti-

cally but only in the rest frame of the particle where
a= (O,P).
It:;:, The polarization vector a can be expressed as a
linear combination of three Ldue to condition (4)j
orthonormal four-vectors a;:

3

a=+ P;a;,

where a; reduces to a unit space vector in the rest
frame of the particle. The familiar covariant spin pro-
jection operator can be written

Z = —,
' (1aa,ps) .

Consider a two-body scattering process, Fig. 1, where
the incident particle with'

pI (EI pI 0 0)—
in the laboratory system scatters to

where
Si——1—(Ãii2+Msis)'",
S2= 1—(Msis+M222)'",

53= 1—M33.

(13)

p~=l p~'=
i

(E~'+up~' cos8')
(1 u2)if2

'

1
(p~' cos8'+uE~') —,p~' sing, 0 ~, (14)

(1 u2)1/2 j

The M matrix and hence the rotation depends on the
coordinate system Pone could of course find a coordinate
system different from (10) such that M is diagonalj.
One must be careful to work in the laboratory system in
particular for the problem of tnultip/e scattering (see
Sec. VI). It is possible and sometimes convenient to
work in the center-of-mass system (see Sec. V); how-

ever, considerable care must be taken in dedning the
directions of polarization. The connection between the
laboratory system and the center-of-mass system, c.m. ,
is as follows. The laboratory and c.m. frames are
related by a Lorentz transformation along the x axis
with velocity u. Denoting the c.rn. quantities by primes
we have

ps'= (E~,p~ cos8,p~ sin8, 0). (g)
also

Then we choose our a; such that a1 is parallel to y and

'Our metric is 1, —1, —1, —1, and ys'=+1 We use (—) in
Eq. (5) for electrons, (+) for positrons. Superscript I(F) denotes
initial (final) states.

"R. P. Feynman, Qgantum E/ectrodynamics (W. A. Benjamin
and Company, New York, 1961). See also: L. Michel and A. S.
Wightman, Phys. Rev. 98, 1190 (1955).

However, two successive Lorentz transformations not

"The a; are just Lorentz transforms of unit vectors in the rest
frame of the particle. The functional form of Eqs. (9) and (10)
is the same in the c.m. system, however, all quantities are primed,
i.e., a, etc.
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u;~=—La;~'. (16)

in the same direction are equivalent to a single Lorentz
transformation plus a rotation so that" Juj~' is not
parallel to ps as is required by our definition (10) of
a&~. There is an additional rotation E. in the x-y plane
relating u;~ and c;"'.Let

]—q2 (pr pE)s (21)

mass M with arbitrary spin but unpolarized. The Gnal
state u of the target is arbitrary (elastic or inelastic)
but experimentally unmeasured. Given ui we are in-
terested in determining u~ as a function of El, E~ and
the scattering angle 0, or the momentum transfer
variable

r+ g~

a2~ =EL
83

Gy cos8
u2" ' —— —sinb

.ca~'. . 0

then it is easy to show that
Equivalently we have seen that we may calculate the

s1nb 0 a~~ cross section do/dQ(ag, a;r) for initial spin of projectile
in "direction" a and final spin in direction a . This

0 i. .a3~. is given by
where

2u ( 1~D= 1+u' cos'8'+ —cos8' —u'I 1——
Iv"i

cos8= L1+ (u/s') cos8'j/D,

sinb= (—u/v') (1—s's)'"(sin8')/D,

initial spin of target
and al1 n

&p IJ.I
)*( l~ Ip )

1
(22)t2""

der 1—(a' a') "-&p'a'I i.I
p'a")*&p'a'"

I i I
p'a'&

dQ t'

and. s'=p~'/F~'. The polarization M matrices are The second-rank tensor,
related by the same rotation R:

T &p. l
J.lu)*&ul J.

l p.),
and thus:

t.P y l P y'~

I'2~ =R I'2~'
pg pgi

initia1 spin of target
and a11 n

must be constructed from the four vectors pr and. q.
Since

Note, however, that S;=S . Let do/dQ(a;~, a;r) be the
diBerential scattering cross section for initial spin in
"direction" a;r, Eq. (9), and final spin in "direction"
aP, (10), then

(do/dQ)(a ~ a') —(do/dQ)( a~ a')—
(do/dQ)(ag, a )+ (do/dQ)( —a;~, a ~)

the most general form of T„„must be"

T„„=g„„G+pr„pr, F, (23)

where G and F are functions of 1 and q pr. Noting that
the projection operator for the state lpa;) is (for an
electron)

L(P+m)/2m j-,' (1—a,ps),

t p'+my lr1 —a
lv„

2m J 2 iIII. DEPOLARIZATION PHENOMENA DUE TO
GENERAL ONE-PHOTON-EXCHANGE

DIAGRAM (p~+m~ p1 a,~ys~-
xl 2m) 2 )In this section we treat the general one-photon-

exchange diagram shown in Fig. 2 where p and a,
Eqs. (7)-(10), represent' the momenta and polariza-
tion vectors of the polarized electron (positron or muon)
projectile. Pr is the initial momenta of the target of

The expression for positron scattering can be obtained
by the substitution rule Pr ~ —P~ and a;"~—a;r.
Contracting (23) and (24) we obtain

I In calculating do/dQ(a;~, a,r) one projects out the
we have for the tensor describing the projectile

spin in direction a;~, e.g., by using the projection
operator (1+a+ps)/2. j

do 1—(a ~ a r) ~ — [G(2m'+t 2ms(a var))+F(2—(pr. pr). (p ,.pr)+sM'1 —(a~z a,r)(2(pr pr)(pz pr)+rsJ.lysi).
dQ P 4m'

&'(p'a )(p 'a')—+1(pr'a~')(pr'a )+2(p'pr)(pr'a' )(p 'af')+2(p pr)(p'ar)(pT aJ'))] (25)

"E.Wigner, Rev. Mod. Phys. 29, 255 (1957).
"Y. S. Tsai, Proceedings of the International Conference on Nucleon Structure, June 1963 (Stanford University Press, to be

published).



8 1392 I 0 0 I N GS, SHAK, AN 0 TSAI

As expected, the cross section (25) for electron-nucleus scattering is the same as for positron-nucleus scattering.
We see that the spin-dependent terms of one-photon-exchange cross section, (25), are bilinear in a;~ and a, r.
Thus& summing over &a,~(+a;r) leaves (25) independent of initial (anal) spin orientation. Hence, as expected,
the one-photon-exchange process cannot be used as a spin polarizer or analyzer.

The polarization M matrix elements, (20), are

M'=LG{—2 '( *' '))+F{—( " ')2(P'P )(P"'.P )+ 'M"t -M'—(P' ")(P' ')+t(P ')(P ')
+2(p'Pr)(pr a")(P'a r)+2(p'Pr)(P'a')(Pr a')) j/LG(2m'+t)+F(2(p'Pr)(p'Pr)+ 'M't)-j (26)

The simplest effect to demonstrate is the shrinking for
an initial polarization normal to the scattering plane:
The element 53, from (9) and (10) is given by

Gt
(27)

G(2m'+t)+F(2(p' pr) (p~ pr)+ 'M2t)-
For elastic scattering from a spinless target or elastic
Cou)omb scattering we have

G=O, (»)F=F(t).
Hence S3=0. It is easily shown that S~ and S2 are also
zero, i.e., Coulomb scattering preserves the magnitude
of the polarization vector. The component of the polari-
zation vector in the scattering plane rotates, lagging
the (lab) scattering angle 8 by an amount I8:

m(Er+E~) sin8
sinP= Mrg= —M2r ——

, (29)
(2ErE~+ ',t)-

I independent of F(t)). Equatior. (29) shows that in the
nonrelativistic limit we have P=8, i.e., the polarization
vector Pr preserves its direction and magnitude; in
the high-energy limit p= 0, i.e., rotation of Pr is exactly
equal to the scattering angle; for small-angle scattering

P =8(~/Er) . (30)

When the target has spin, GWO and I Pr I ) I
P~I for

any nonforward scattering. For the case elastic scatter-

FIG. 2. General direct one-
photon-exchange diagram.

P, 0
I

G=-,'tG ',

F=2I G„m—
4M' i

(
4'~ (32)

where G, and G are the electric and magnetic nucleon
form factors. In terms of Ii ~ and F2, we have

G,=Fr+ (Et/4M')F2, (33)
G„=Fr+ZF2,

where E is the anomalous magnetic moment. At high
energy we see that the shrinkage S3 is

S, t'/(E')' (34)

IV. DEPOLARIZATION IN MUFLLER AND
BHABHA SCATTERING

Mgller and Bhabha scattering involve only one in-
ternal photon. However, these two processes contain
diagrams, Figs. 3 and 4, which do not belong to the
class of diagrams considered in Sec. III. In the ex-
change diagram of Mltller scattering and the annihila-
tion diagram of Bhabha scattering the incident particle

p and the scattered particle p~ do not belong to the
same charged line. Hence, one cannot write down an
equation such as (23).
j: For positron-electron scattering, the cross section for
the initial spin in direction a; and Anal spin in direc-
tion u;" can be written as

ing off a proton target, Eq. (25) can be written as

Ga
(ata r),.

dQ
~2pg 1

(31)
2MPr )Er+M (PrE~/—P~) cos8$ t2

where the bracket
C ) is the same as in (25) with the

substitutions

do n'(p~)' 1 s'+(s+t)' 1 (—(a",arr) = —4m''(s —m') +—
I

(s+t)' —4m'
I)dQ 2m'Pr (Er+rrr) (E~ m) t' 2 — ts k

1 (t2+ (s+t)' 1 25g2

+—
I

—4m'(t —m') + (a;~ a') —(Ns —4m') ——{s(s+t)+2ntmt —4rrt')
s'k 2 t2 ts S

)I
+2(pr a,~)I —{2(pr arr)(pz. Pr) ~s(pz ar))+ {(2(.pz, Pr)+~a)(arr .Pr) ~2(arr. p. z))+ (arr.pr-

(tm ts s'

/1
+2(pr a")I {2(p a')(p'p. )+-t(p'a'))+ {t(pr a')+(s —~')—(p'. a'))+—(a pr) I, (35)



DEPOLARIZATION OF SPIN-$ PARTI CLES

TAsrE I. S;, r;, and do/ztQ for Bhabha scattering. Boldface quantities represent contributions from Fig. 3(a) alone. Incident positron
energy Ez and energy loss hE are in units of zzz„wherea sthe cross section has units n'/m, z A. ll quantities refer to the laboratory system.
The integers after the commas denote the powers of 10.
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0.11, —7

0.18, 0
0.12, -1
0.87, —3
0.83, —5

0.62, 0
0.12, 0
0.24, —1
0.51, -4
0.50, -6
0.51, —8

0.69, 0
0.20, 0
0.16, —1
0.14, —3
0.14, —5
0.17, —7

066, 0
0.13, -2
0.13, —4
0.75, —8

0.11, 0
0.10, -1
0.85, —3
0.83, -5

0.95, 0
038, 0
0.93, —1
0.20, -3
0.20, -5
0.20, -7
097, 0
o.'56,

'
0

0.63, —1
0.56, —3
O.SS, —5
0.55, —7

097, 0
0.50, -2
0.48, —4
0.48, —8

0.16, 0
0.40, —2
0.37, —4
0.36, —8

0.63, 0
0.12, 0
0.24, —1
0.51, —4
0.50, -6
0.50, -8
0.69, 0
0.20, 0
o.'a6,' —1
0.14, —3
0.14, —5
0.14, —7

067, 0
0.13, -2
0.13, —4
0.13, -8
0.48, —1
0.13, -2
0.13, —4
0.13, -8

046, —1
0.13, 1
0.11, 2
0.96, 4
0.10, 7
0.10, 9

0.32, —1
0.56, 0
0.18, 2
034, 4
036, 6
036, 8

045, —1
033, 3
039, 5
0.40, 9

041, 1
031, 3
039, 5
0.40, 9

0.33, —1
0.15, 1
0.13, 2
097, 4
0.10, 7
0.10, 9

0.21, —1
063, 0
0.21, 2
034, 4
0.36, 6
036, 8

0.35, —1
034, 3
0.39, 5
040, 9

056, 1
0.33, 3
0.39, 5
040, 9

where s and I are the usual scalar variables

s= (p'+p&)' (36)
I= (p~ pr)'=—4zzzs s t——

and pr, p~, ps are physical four-rnomenta of the
particles (energy component) 0). The contributions to
(35) from the one-photon-exchange diagram, Fig. 3(a),
from the annihilation diagram, Fig. 3 (b), and the inter-
ference term can be identifted by a denominator 1/t',
1/s', and 1/ts, respectively.

The corresponding expression for the Mltller scatter-
ing can be obtained by making the following substi. tu-
tions in the [ ] of (35):

to M by a rotation. On the other hand, the shrinkage
elements S; are the same in both the laboratory and
the c.m. frame; this is not true, however, for any
arbitrary Lorentz frame. ) Clearly it is much simpler
to work in the laboratory system in treating multiple
scattering. The r; allow us to give a maximum for the
depolarization in multiple scattering. "

The Ave quantities S; and r; were determined for
polarized positrons scattering o6 unpolarized electrons
by numerically evaluating (35). The calculations were
performed using double-precision arithmetic on the
Stanford 7090 computer. LWe note that for large
incident energy one gains more accuracy by evaluating
cross sections in the center-of-mass system and then—ps~ ps', a;s'~ -a;r, s~g. (37)

V. NUMERICAL RESULTS AND DISCUSSION

The cross section and the polarization matrix M
/of Eq. (11))completely characterize the single scatter-
ing by one-photon exchange from an unpolarized target.
Instead of numerically tabulating matrix elements of
M, we computed the quantities r;,

FIG. 3. Bhabha & s 4F

scattering of polar-
ized incident posi-
tron o8 unpolarized
target electron.

(4)

, 4

tb)

r;=1—M;; i=i, 2, (38)

and 5; Lof Eq. (13)j. The three S; give directly the
shrinkage or decrease in magnitude of the incident
polarization vector for a single scattering. They allow
us to give a minimum for the depolarization in multiple
scattering (due to the particular scattering process
being considered). The r; give us the fraction in the
laboratory system of the incident polarization vector
in the scattering plane which does not follow the
scattering of the particle. (We stress again that M',
the corresponding matrix in the c.m. frame, is related

'4In the literature are many calculations of depolarization
eGects in a single scattering; however, estimates of the depolariza-
tion in multiple scattering based on these can sometimes be
misleading. For example, using estimates of depolarization in the
c.m. frame of the collision (without using the rotation of Eq. {19)j
or considering only the component of final polarization in the
direction of the incident particle may tend to over estimate the
depolarization effects. Consider small-angle Coulomb scattering
where Eq. (30) holds. At high energies, the polarization direction
clearly follows the direction of motion. On the other hand, at
low energies, zN/E~1, and the direction of polarization remains
fixed in the laboratory system {parallel to its original direction).
Thus, in multiple scattering, at high energies it is more reasonable
to estimate the depolarization using the r; but at low energies it
is better to consider the components of the polarization along
fixed directions in the laboratory system.
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pt', a

also

S,=2 (m,/E')'
S,=1 for i=2, 3.

(a)

FrG. 4. Mpller scattering of polarized incident
electron oB unpolarized target electron.

performing the transformation (17) to the laboratory
system. $ The results are presented in Table I. We
give separately the contributions from the direct one-
photon-exchange diagram Fig. 3(a) (denoted by bold-
face) as well as the full results from the direct, annihila-
tion and interference terms. %e have

s= 2m '+2Erm,
and

t= —2m, hE,
where dE is the energy lost by the positron,

The results of Table I for individual scatterings may
be summarized as follows (again all quantities refer to
the laboratory system):

It is interesting to examine the above conclusions in
the limit that m —+ 0, comparing them with our notions
of helicity conservation: (a) The helicity argument for
a massless particle only concerns longitudinal polari-
zation. (b) St does approach zero for m/E~O re-
gardless of AE. (c) On the other hand, St~ 1 for
d,E~ Er me—ven for m, /E —+0. This is due to the
f'ollowing: For 180' scattering in the c.m. and m/E= 0,
the direct amplitude preserves the helicity of the
positron while the annihilation amplitude reverses the
helicity of the positron, The relationships between the
initial and dnal helicities are shown in Fig. 5, and can
be understood simply in terms of angular momentum
conservation. jAlso this follows from the m/E=O,

f = s, I=0—limit of Eq. (35).j Since these amplitudes
are equal in magnitude and do not interfere, it follows
that the 6nal state of the positron is unpolarized.

Calculations for polarized muons scattering off un-
polarized electrons were performed using (26). Here

For small energy loss 6 E/m, «1 (and E&)m,):
(1) To lowest order in t,

r; oc t/s', i = 1, 2

and

s= m, '+m„'+2m, Er

—t= 2m, hE.

St ~ fs/s',

S;ecfs/s' i=2, 3.

The maximum energy loss is

&E = 2rN, Pr'/(m, s+m„'+ 2m,Er), (41)

(2) In general the condition for the asymptotic ex-
pressions (39) to be valid is simply 6 /Em, «1. How-
ever, in the case of r2, it also depends on s: for sizeable

( E)l'6 E/m, '-1
(4o)

(3) The numerical values for r, in the asymptotic
region are independent of i. Indeed they, as well as
the one-photon exchange r;, reduce to the pure Coulomb
result, Eq. (2).

(4) The S; are a factor larger than the one-photon-
exchange contribution S; even in the asymptotic region.

(5) Again even in the asymptotic region the S;
(and S;) are a factor larger for the transverse polari-
zations 2 and 3 than the longitudinal polarization 1.

(6) For sizeable energy loss hE/m, )1

s,=s,»s, .

(7) The longitudinal quantities rr, Sr are small com-
pared to ri, Si.

(8) And most important, S; is comparable in mag-
nitude to r;

(9) Finally for DE=Er—m

S;=1

which nonrelativistically is 4m, /m„(E —m„). The re-
sults are presented in Table II. For the same incident
kinetic energy and same energy loss, the maximum
depolarization along the direction of motion, "

r~ is
much greater for is than for e+. Note LEq. (41)j that
the maximum energy loss for muon-electron collisions
is constrained by kinematics to be small.

"DIRECT" "AN NlHI LATIQN"

Before Collision Af ter Collision Before Collision After Collision

e+

(a)

FIG. 5. Pictorial understanding of depolarization of longi-
tudinally polarized incident e+ scattering by 180' in c.m, system
oif erlpolarised e in the limit ra, /E -+ 0. The direct interaction
(a) conserves helicity so by conservation of angular momentum
only the (+) helicity state of the e interacts. The intermediate
state of the annihilation interaction consists of one photon so
that in (b) only the (—) helicity state of the e interacts. By
angular momentum conservation, the helicity of the e+ Qips and
amplitudes for (a) and (b), which are equal in magnitude, do not
interfere. Hence the anal positron is unpolarized.
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TABr,E IL S;, r; and der jdQ for muons scattering off electrons. Er and tsE are in units of sn„whereas the cross
section has units n'jm, e. All quantities refer to the laboratory system.

350

300

270

230

4.0
2.0
1.0
0.1
0.01
0.001

3.5
2.0
1.0
0.1
0.01
0.001

2.0
1.0
O.l
0.01
0.001

1.0
0.1
0.001

0.4
0.1
0.001

015, —3
013, —4
0.18, —5
0.92, —8
0.84, —10
0.84, —12

025, —3
027, —4
0.34, —5
0.16, —7
0.14, —9
0.14, —ii
0.79, —4
0.79, —5
0.30, —7
027, —9
0.26, —11

015, —4
0.48, —7
0.40, —11

033, —5
010, —6
0.77, —11

0.16, —3
0.13, —4
0.24, —5
022, —6
0.23, —7
0.23, —8

025, —3
027, —4
0.46, —5
0.41, -6
0.44, —7
0.44, —8

0.79, —4
0.10, —4
0.94, —6
0.10, —6
0.10, —7

0.18, —4
0.18, —5
0.19, —7

077, —5
0.63, —5
0.79, —7

0.93, —4
017, —4
0.41, —5
0.40, —7
0.40, —9
0.40, —11

0.13, —3
025, —4
057, —5
057, —7
055, —9
0.55, —11

0.43,
0.86,
0.82,
0.82,
0.82,

011, —4
0.11, —6
0.11, -10
0.20, —5
016, —6
0.17, —10

r2

0.10, —3
0.17, —4
0.47, —5
025, —6
023, —7
0.23, —8

0.13, —3
025, —4
0.69, —5
0.45, —6
0.44, —7
0.44, —8

0.43, —4
O.il, —4
0.99, —6
0.10, —6
0.10, —7

0.14, —4
0.18, —5
0.19, —7

0.64, —5
0.63, —5
0.79, —7

011, —3
017, —4
0.36, —5
0.32, —7
031, —9
0.31, —11

0.13, —3
025, —4
0.50,
0.42' —7
0.41, —9
0.41, —11

0.43, —4
0.73, —5
057, —7
0.56, —9
0.56, —11

0.98, —5
0.71,
0.69, —11

018, —5
0.99, —7
0.95, —11

0.10, 0
0.68, 0
032, 1
037, 3
037, 5
037, 7

0.88, —1
0.46, 0
0.24, 1
028, 3
029, 5
0.29, 7

027, 0
0.16,
021, 3
021, 5
021, 7

012, 1
017, 3
0.17, 7

0.65,
0.12, 3
0.12, 7

VI. DEPOLARIZATION IN MULTIPLE SCATTERING

Let us summarize the results of our calculations
(which take into account only graphs 2, 3, and 4) as
they pertain to multiple scattering. "Although the nu-
merical results of the previous section make it c1ear
that for very large momentum transfers the depolari-
zation can be appreciable, we are going to argue that
this has little eQect on the slowing down of high-energy
beams of positrons or muons. In particular we shall
conclude that under the conditions of the Dick
experiment the polarization should be practically
unchanged ' ' "

In general, the multiple-scattering process can be
treated either by Monte Carlo methods or by solving
the Soltzmann equation. For elastic Coulomb scatter-
ing alone, the Boltzmann equation, including polariza-
tion eGects has been solved by Toptygin. ""The full
Boltzmann treatment, using our Eq. (35) and the
direct, one-photon exchange with the nucleus (Eq. (25)j
is extremely complicated. However, such a rigorous
treatment is not necessary; it is quite easy to show that
there is only negligible depolarization by the one-photon
processes just mentioned. We are now considering the

"H. Olsen and L. C. Maximon (Ref. 6) have considered the
depolarization due to the emission of a single photon.

"The depolarization in this energy range is also small for
transversely polarized positrons or muons."I.N. Toptygin, Zh. Eksperim. i Teor. Fiz. 36, 488 (1959)
(English transl. :Soviet Phys. —JETP 9, 340 (1959)g.' The effect of the "Coulomb" part of the Bhabha scattering
(i.e., using Eq. (30) onlyg on the depolarization has been con-
sidered by C. Bouchait and J. M. Levy-LeBlond, Ref. 5.

following experimental situation': Longitudinally polar-
ized positrons of energy 50 MeV which slow down
to 10 MeV in a Be absorber but remain within 8'
of their original direction of motion.

First of all, for small energy loss AE, all the polariza-
tion effects in Bhabha scattering reduce to those of
Coulomb scattering t just a rotation of the polarization
vector, cf. remark (3) of Sec. Vj. As is well known, for
small-angle scattering, these effects are small and the
numerical results in Table I illustrate this. Another
feature which Table I shows is that for a given total
energy loss, there is a much greater loss of polarization if
the energy is lost in a few collisions than if the energy
is lost in many small-angle collisions although the
differential cross section tells us that the former
process is much less likely than the later. " Let us
consider an estimate for the polarization loss which
uses a Axed, average energy loss per collision (jsE). In
Be, (AE)&100 eVso The maximum longitudinal de-
polarization in such a collision is of order 10 "and in
loosing 40 MeV there are required 4X10' such
collisions. Thus, the "average" loss of polarization in
passing through the medium is very small ( 10—4).
The one-photon-exchange process considered leads to

~9 For example, if a 50-MeV positron, longitudinally polarized,
loses 15 MeV by a single collision the maximum depolarization
in the longitudinal direction is r1——0.015 and the shrinkage is
0.013. H instead this energy loss takes place in 30 collisions
averaging 0.5 MeV then we have the loss of polarization in the
longitudinal direction is less than 10 '.

'~B. Rossi, High Elergy Particles (Prentice Hall, Inc. , Engle-
wood Clifts, New Jersey, 1952), Chap. 2.
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completely negligib/e depolarization for the slowing
down of a 50-MeV positron to 10 MeV."

On the other hand, there are cases where the de-
polarization eGects will not be small and we shall
conclude with a few remarks concerning them. As
noted above, we have omitted the effect of higher
order processes such as bremsstrahlung which will
have to be included. The equation (35) for depolariza-
tion in the one-photon exchange will also be modified,
especially at lower momentum transfers and for slower
projectiles because the electrons in the absorber are
initially in bound states rather than free-particle states,
i.e., a Coulomb field is present.

It is not immediately evident whether the "shrinkage"
or rotation effects are going to account for most of the
depolarization. The rotation of the spin through an
angle g in a given collision gives an rms angle qÃ'" in
E collisions; however, if the "shrinkage" in a single
collision is e then E such collisions give a shrinkage

lV~. In other words, if the scattering process cannot
polarize but can only rotate and shrink the polarization
vector then the rotation is a random walk process but
the shrinkage is a cumulative effect. (In our previous
estimates, we have treated both eBects as cumulative
and so obtained an upper bound to the depolarization. )

For large momentum transfer collisions there is
large depolarization, regardless of the energy of the
incident particles. Thus if the experimental setup is
such as to select particles which have undergone high
momentum transfer scatterings, there will be considera-
ble depolarization. The numbers in Table I also show
the general feature that the depolarization of a longi-
tudinally polarized beam (direction 1) is less than that
of a transversely polarized (directions 2 and 3) beam.
Also, for a given energy loss the depolarization is
larger, the lower the initial energy. "When the multiple-
scattering depolarization effects are large enough to be
significant, a much more careful treatment, possibly
the full Boltzmann equation, must be used; it is not
sufhcient to consider only the average momentum
transfer and polarization loss. This is because only
experimental conditions which select large momentum
transfer scatterings will show any important depolari-
zation eGects. Such collisions are much less frequent
than those having low momentum transfers so the
fluctuations will be much larger. The simple approxi-
mation which considers only a succession of equal
"average" collisions will not hold. We note also that the
small-angle, Coulomb approximation to the cross section
and polarization terms Lthat is, the expansion of Eq.

"C. Bouchait and J. M. Levy-LeBlond, Ref. 5, have made
numerical estimates of the depolarization due to bremsstrahlung
using the results of Ref. 6. For the experimental conditions of
L. Dick, Ref. 1, they obtain a depolarization of about 7%. How-
ever, this may be an overestimate, see Ref. 14. Thus depolariza-
tion due to bremsstrahlung, apparently the most important
process, is much too small to explain the experimental result of
Dick et uL

(35) in powers of tj will not be good in the high momen-
tum transfer region where there is large depolarization.
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APPENDIX: THE POLARIZATION IN AN ARBITRARY
REACTION OF A SPIN-a PARTICLE

We now consider the most general scattering process
whereby a spin--', particle of momentum pr and spin
direction a, hits an unpolarized target of momentum

pr and another spin--', particle of momentum p~ and
spin direction a;~ is measured in the final state. All
other details of the final state are to be ignored. For
the cross section, a;~ and a, can appear at most
linearly so we have:

(dor/dQ)(a, ",a,r)=A+b a;r+c a,"
+ (a,')„(a,~)„f„„. (A1)

Now a;~, a;~ are axial vectors and do. is a scalar. In
order to conserve parity (we shall always assume this)
A must be a scalar, b and c pseudovectors and f a
tensor. Because only one of the final particles is de-
tected, the only independent vectors we have to con-
struct b, c, f are pr, p~, p&. We see immediately that
the only possible candidates are:

b ar=a ~ mB 7

c a ~=a" mC

(a').(a").f"
—(aI, Ps) (aE.PI)F, t+ (g I,, Pr) (aE.PI)Fs. ,

+(a, p )(a, pr)Fs+(a; pr)(a, pp)F4

+ (a,r. I) (a,z.N)F s (A2)

where we define e„=e(is,p,p,pr) = e„.„p„p, (pr),
and A, 8, C, Fj, are all scalar functions of the energy

(p +pr)', the momentum transfer, (pr —p~)' and the
quantity (p~ —pz)'. We have eliminated the form
(a;r a,~) since the four-vectors pr, p~, pr and n are all
independent and we can thus construct the tensor g„,
from bilinear combinations of them.

If we choose the basis set a I a ~ i= 1, 2, 3 defined
in Sec. II Eq. (6) et seq. then this general scattering
can be written in either the c.m. or laboratory frame
aS22 r23 ~

"A matrix of this form was discussed by S. Chandresekhar,
RadeaA se Transfer '(Dover Publications, Inc. , New York, 1960},
p. 37, Eq. (201}.In this Appendix our object is to obtain the
form of this matrix for elastic or inelastic collisions, using sym-
metry properties alone. For spin--, particle scattering this matrix
was also considered by %. H. McMaster, Rev. Mod. Phys. 33,
8 (1961).It should be noted that in this reference everything is
treated only in the c.m. system. Also Eq. (48) of this reference
erroneously states that polarization can be produced from an
unpolarized initial state in Mgller scattering.

~ See also the second article in Ref. 3 where general features
of direct one-photon-exchange processes are discussed.
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PP Mii M 12

P2 M21 M22
P; 0 0

. 0 0

0 ()
' 'yI P I'

0 0 yI P2I
(a21 22)(as~ 21)Fs (as~ n)C ~1 P

(as'~)a
(A3)

M;, = (a I)„(a;~)„f„„ i, j=1, 2. (A4)

The Qux of particles in the beam is &P, and we have used
22' 12=122' 122= 0, Gs' p = Cs' pr'= Cs p =0 fol 8 = O' 8;

Let us call the square matrix on the right-hand side of
(A3) M. Striking out the last row and column of M
gives a matrix closely related to the matrix M of Sec.
II, Eqs. (11) and (20). All quantities appearing in
Eq. (A3) are Lorentz covariant, however, there is the
usual rotation of coordinate axes describing the final
spin I which is defined by Eq. (18)j when one trans-
forms from the c.m. to the lab system. This notation
makes it clear that, in general, the effect of a scattering
is to i22duce a polarization (C terms) in addition to the
rotation and shrinkage eGects discussed in Sec. II of
this article. Since there can be a Anal-state polarization
in the direction n when there is no polarization present
in the initial state, the term "shrinkage" is not ap-
propriate, but the unpolarized component can still be
calculated by subtracting the magnitude of the polari-
zation vector, a~, from 1. Because the term 8 in Eq.
(A3) is not zero, the differential cross section summed
over 6nal spins, will depend on the initial polarization
P31. In the general case it is therefore simpler to work
directly with the matrix (A3) and not to define a
"shrinkage" S;.

It is a well-known result" which applies when time
reversal is good and the initial state is the same as the
final state (elastic processes) is that 8=C. This equality
states that the polarizing power of the reaction is
equal to the analyzing power. We shall now establish
that in the c.m. under the same conditions —M»2'
=M21' in (A4) and hence M has only 6 independent
elements. The method of proof is the same as that used
by Bell and Mande125 to show that J3= C. We consider

'4 L. Wolfenstein, Ann. Rev. NncL Sci. 6, 43 (1956).
22 J. Bell and F. Mandel, Proc. Phys. Soc. (London) 71, 272,

867 (1958).

(A+M~i ) (A'+ M'„)

a scattering through an angle 0' in the c.m. from a
polarization state ar to a state ap, Fig. 6(a), the time
reversed reaction, Fig. 6(b) and the reaction —a2I, ap,
Fig. 6(c). Because the process is elastic, Fig. 6(b) is
the same as Fig. 6(c) Lrotate (b) by 180' about an
axis which is in the direction of the initial momentum).
Thus we have —M2»'=M»2'. This proof fails in the
laboratory frame because the three-momenta of the
initial and final states are not equal and therefore (b)
is not the same as (c). However, if there is no shrinkage
Lfor example, Coulomb scattering, see Eq. (29)j, then
M»= —M» is also true in the laboratory system be-
cause the final state is simply a rotation in the scatter-
ing plane times the initial state. One can readily obtain
a condition on M in the laboratory by using the anti-
symmetry in the c.m. and the rotation de6ned in Eqs.
(17) and (18). (This proof gives the relative sign be-
tween 3f»2' and 352»", however, particular conventions
in naming angles enter into this equation and therefore
the sign will have to be checked in any specific applica-
tion. ) We have made use of this property of M to check
the numerical results of Sec. V.

I I
(A-Mig) *(A+Mgl)

FIG. 6. Diagrams to illustrate the proof that —HEI»'=3II21' in
the c.m. for an elastic, parity conserving, process. The cross
section for (a) is proportional to A'+Ms~', etc.


