
P IYSI CAL REVIEW VOLUM E 135, NUMBER 6B 21 SEPT EM 8 ER 1964

Locations of Landau Singularities*
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It is shown for the third-order triangle and the fourth-order box Feynman diagrams that singularities
exist on the physical boundaries of the amplitudes if, and only if, the external momenta are such as to allow

the reactions to actually proceed with real intermediate particles. If, furthermore, the information concern-

ing the locations and appropriate branches of singularities implied by this principle is combined with the re-

quirement that discontinuities be given by Cutkosky's rules, the amplitudes are uniquely deteraQned.

I. INTRODUCTION

N essential difFiculty which has thwarted attempts
to construct schemes for the calculation of arbi-

trary S-matrix elements is that there appear large
numbers of singularities dispersed in an unknown
fashion on the many Riemann sheets of the transition
amplitudes. Although equations for singularity sur-
faces' and expressions for residues and discontinuities'
can be obtained, no comparable methods exist which

may be employed to determine on which Riemann
sheets the singularities are located. This lack implies
that the functions which describe the residues and
discontinuities are ambiguous in that the proper
branches for these expressions are not determined.

In this paper the singularities characteristic of the
triangle and box Feynman-Cutkosky diagrams (Figs.
1 and 5) are studied with an eye toward obtaining
results which appear general enough to shed light on
this problem. Particular attention is devoted to under-
standing the physical processes with which singulari-
ties correspond; the motivation for this effort is the
hope that sufIicient insight will be gained to help
clarify the situation which is so complicated from a
mathematical point of view. The results of this work
have as yet only been verified for the two diagrams men-
tioned. Nevertheless, many features will appear readily
generalizable.

Every diagram, for example the triangle in Fig. 1,
will appear internally in an infinite number of S-
matrix amplitudes. One can connect an arbitrary
number (within limits imposed by the conservation
laws) of incoming and outgoing particles at each of the
external vertices. Viewed this way, a given graph has
an extensive range of its external variables where it

contributes to physical processes. For example, the

graph in Fig. 1 is physical if M;s) (M,+M&)', or if

M;s&(3f; Ms)'. —That is, it can contribute to some

physical amplitudes whenever

h(M ' M ' M ')=—M t4+Ms'+Ms4 —2M 'M '
2MrsM—ss 2MssM—ss& 0, (1)

and all the M are real.

Suppose that it is possible to connect particles to
the external vertices of a diagram with momenta such

that the transition thereby represented can actually
occur with some, or all, of the internal particles propa-

gating freely —on the mass shell with real, future time-

like momenta. For values of the external variables
which satisfy these requirements, the diagram has a
Landau singularity residing on the physical boundary'
of the complex amplitude. 4 Further, no singularity
ever lies on the physical boundary unless it corre-

sponds in this way to a transition involving real inter-

mediate particles. '
The first object of this paper is to verify that these

statements are true for the two amplitudes of Figs. 1

and 5. Secondly, we want to point out that these

amplitudes are unambiguously determined once the
consequences of these remarks are supplemented by
Cutkosky's' rules for the calculation of discontinuities.
This result follows despite the fact that not all the
singularities refer to possible transitions with real
intermediate particles. The existence of such singular-

itic S arise from the form of the mathematical
expressions for the discontinuities, and their proper
Riemann sheets are fixed by requiring that there is

no process for which they reside on the 'physical

boundary.

FIG. 1. The triangle diagram. (Mlles Mat, MIS)
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FxG. 2. Examples of two processes for which the point @~=M/= (m2+m2)' can fall in the physical region. For case (a), (M'2+%2)2
& (m2+m2)' for (b), (m2+m2)2&(M2 —3I2)2.

s;= (m;+ms)2, or x;=1,
(2) the "abnormal" thresholds

(7a)

"i"is externally unstable, M;2& (m,+m2)', for x, & —1,
it is internally unstable in the sense that m$2& (M;+ms) 2

or m k2& (M~+m, )2.
We must consider the following Landau singularities

which occur in V:~
(1) the normal thresholds

s;= (m, —ms)2, or x;= —1, (7b)

Section II is devoted to a study of the triangle
diagram. The physical "pictures" of the singularities
are discussed, and from these considerations the values
of the external variables are obtained which locate
singularities on the physical boundary. It is then shown
that these essentially kinematic conditions, together
with generalized unitarity, ' suf.IIce to determine the
amplitude. In Sec. III the corresponding steps are
carried out for the box diagram in Fig. 5. The results
concerning the location of singularities are also shown
to agree with those obtained by analytically continuing
in the external masses. ' Finally, in Sec. IV, we sum-
marize our results and make some brief general remarks.

where

j.
V(Si,$2i$2) =-

(m2+m3) ' S1 Sl

Gsy

Vi($1 i$2i$3) i (2)

Vi(si, $2,$2) = 6 '~'($2, $2,$2) 1n[o.i+P/crt —Pj, (3)

rri =Si —Si(ml +m2 +ms +$2+$2)
+ (m22 —m22) ($2+$2), (4)

P= LV"(Si,ms', ms') 6'"($2,$2,$2), (5)

and 6, is defined in Eq. (1). Sufhcient conditions for
the validity of Eq. (2) can be expressed simply in
terms of the variables x;,' defined by

x;= (s; m m—)/22m2;—m (22,j,)2 different) . (6)

These conditions are fulfilled if xs+xs&0, x2&1, and
x3&i. In the discussion it is often useful to replace
the dependence upon the s; by the x;. Both variables
will be used interchangeably. For x;&1, the vertex

' See, for example, S. Mandelstam, Phys. Rev. 112, 1344
(1958); C. Fronsdal, R. E. Norton, and K. T. Mahanthappa,
J. Math. Phys. 4, 859 (1963); Francis R. Halpern, zNd. 4, 879
(i9O3).' C. Fronsdal and R. E. Norton, J. Math. Phys. 5, 100 (1964);
G. Bonnevay, I. J. R. Aitchison, and J. S. Dowker, Nuovo
Cimento 21, 1001 (1961).

2 J. Tarski, J. Math. Phys. 1, 429 (1960).

II. THE TRIANGLE DIAGRAM

We study the diagram of Fig. 1, choosing for con-
venience all particles to be spinless. Employing the
notation s;=M, the analytic properties of the triangle
graph U($2, $2,$2) can be displayed, for example, in the
variable SI, by the dispersion relation~

(3) the triangle singularities'

x;=L;I,+, (7c)
with

I.;2+=——x,xg,a [(1—x,2) (1—x22) )'~2. (8)

The amplitude in Fig. 1 also has a non-Landauian
singularity'" given by A($2,$2,$2)=0. This feature is
discussed at the end of this section.

Let us first discuss the normal threshold singularities
in Eq. (7a). In terms of si the normal threshold is
manifest in Eq. (2). As mentioned in Sec. I, whenever
( m+ m)s2&(3E+3II2)2 or (m, +ms)2& (M, Ms)2, th—e
point s,= (m, +ms) lies in the physical region of s,.
Examples of both possibilities are shown in Fig. 2. We
now ask the question —when s;= (m;+ms)2 is in the
physical region, can the particles with masses m; and
mI, actually be created and propagate for an arbi-
trarily long time before making the final steps of the
transition? The answer is obviously yes. Whel) s;
= (m;+m2)2 the relative velocity of m; and m2 is zero—
they do not move apart —and there is no geometrical
reason why they can't take as long as they please to
produce the final state. We conclude that the normal
thresholds are always on the physical boundary.

The abnormal thresholds in Eq. (7b) can be thought
of as referring to the situation where only two particles
propagate on the mass shell; the first existing for an
arbitrarily long time and then interacting at a vertex
to produce the next one with the same velocity. If this
could occur, it would be necessary that the part of the
amplitude which connects the creation of the first
particle to the destruction of the second exists for the

(p»+p») R
1».g»

P»

2- P)( +P ')»*. &1

p 1)»a@~
3 FIG. 3. An ex-

ample of a process
which can occur with
all three internal
particles propagat-
ing freely.

'We define I.;I,+ to have the positive square root when—1&go&1 and —1&@A,&1. The L;I,+ are then determined at all
other values of x, and xs providing we don't cross the lines

( x;
~
& 1

and (x2~ &1.
D. B. Fairlie, P. V. LandshofF, J. Nuttall, and J. C. Polking-

horne, J. Math. Phys. 3, 594 (1962).
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total time both particles are present. However, this
would require at least one more real internal particle
to propagate this part of the interaction. We conclude
that the abnormal thresholds are never on the physical
boundary.

The singularities in Eq. (7c) occur because at these
points the argument of the logarithm in Eq. (3) has a
factor which vanishes (or diverges); nis P'—(xg,;s )
X(x;—I;s+). Their existence reflects the possibility
that all three intermediate particles can be on the
mass shell. An example is shown in Fig. 3." In this
case si) (ms+ms)', ss) (mi+ms)', and ss& (mi —ms)'.
Equivalently, x»1, x2&1, and x3& —1. If xj and x2

are held fixed, and the value of x3 sought which allows
the process of Fig. 3, we obtain x3——L»+. Conversely,
if xs and xs(xi) are fixed, the required value of xi(xs) is
Les (Lis ).

It is clear that, except for variations obtained by
relabeling the vertices, the process in Fig. 3 is the only
one that can actually occur with three real intermediate
particles. The kinematic and geometric requirements
which allow this process (and the ones equivalent to it)
should therefore be the necessary and sufficient con-
ditions for a triangle singularity to be located on the
physical boundary of an amplitude. That these con-
clusions are valid for the diagram of Fig. 1 can readily
be verified by comparing them with the positions of
the L;;+ as determined by analytically continuing

V(si, ss, ss) in the s;. Since the latter results are reasona-
ble well known and available in the literature, '" we

do not discuss them further here.
We now want to show all the singularities of the

third-order vertex graph are located by combining our
kinematical considerations with Cutkosky's rules. One

simple way to accomplish this is to adjust x2 and xa
so that for some value of x~&1 the process of Fig. 3
can occur. We therefore fix x2&1, x3& —1, and x2

+xs(0. The triangle singularities Lss+ then lie along
the positive x~ axis as shown in Fig. 4. We are aware of
only the three singularities, x&= 1, xj =L»+, and
x~=L23, and we know that just the 6rst two lie on
the physical boundary. Since L»+ resides at a physi-
cally accessible value of si (if 3fs'(0, the real si axis
is completely accessible) and does not, for these values
of x2 and xs, correspond to a realizable process with

Im x&

x,- Plane

Re x(

FrG. 4. The positions of the triangle singularities in the
x1 plane when x2&1 and x3&—i.

"The considerations here resemble those by I. J. R. Aitchison,
Phys. Rev. 153, 81257 (1964).

t channel — m, me Bte,t, M,e,Mee, MIe, hl+e)

MI

S- channel

FIG. 5. The box diagram.

real intermediate particles, it is not on the physical
boundary.

Let us now employ Cutkosky's rules to calculate the
discontinuity across the branch cut from x&

——1.. We
run this cut along the positive real axis, for example,
and construct the dispersion integral which expresses
this contribution to the amplitude. If the discontinuity,
itself, has any singularities for xi)1 (in this case at
Lss+ and Lss ), we run the cut under these singularities
so that the part of the amplitude thus far constructed
has only the singularity x&

——1 on the physical boundary.
That is, we don't want the singularity of (xi' —xi) ' to
"pinch'" the contour against these other singularities
when x~ approaches the cut from above. Next we repeat
the process and construct the dispersion integral con-
tributed by the cut from L» . The resulting two ex-
pressions can then be combined to yield one dispersion
integral whose contour runs from +1 to ae over Lss
and under L23+.~

The formula for V(si,ss,ss) obtained in this manner
agrees essentially with Eq. (2) when the latter is con-
tinued to x2&1 and x3& —1. There is, however, still
an ambiguity in that we haven't determined the proper
branch of the logarithm in Eq. (3). We decide this
point by noticing that on all but the principal branch
of the logarithm, the zeros of 6 in Eq. (3) are singular.
These zeros occur at si ——(Ms+Ms)' and are the end
points of the physical values of s~ when they lie on the
real axis. It follows that if either of them is located on
the real axis, on the unphysical side of the cut (so as to
pinch against x), it inust do so when the logarithm
assumes its principal value. This requirement implies
a unique branch of the logarithm.

A. Kinematical Considerations

The triangle singularities occur in the box diagram
and correspond to essentially the same physical pictures

III. THE BOX DIAGRAM

In this section, we study the diagram of Fig. 5. We
apply to it the program outlined in Sec. I and dis-
cussed in detail for the triangle graph in Sec. II. We
first find the kinematic conditions which locate singu-
larities on the physical boundary, and then show that
the conclusions of this eGort agree with those obtained
by analytic continuation of the box diagram amplitude.
Finally, we argue that the amplitude is determined
once these results are combined with Cutkosky's rules.
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FIG. 6. Two examples where transitions can occur with three
internal particles of the box diagram on the mass shell. In case
(a), x&1, x4&1, x& I.+(x,x——4)(—1, and the values of y, xi, and
x~ are irrelevant. In case (h), x&1, xi&1, xs =I,+(x,xi) & —1.

xi ——(Mi' —pi' —mi')/2prmr,

x2 (~2 tel m2 )/2Plms 1

xs ——(Ms' —ps' —ms')/2prmt,

x4——(M4' —ties —mrs) f 2psmr,

(9b)

and note from the discussion in Sec. II that the reaction
in Fig. 6(a) is possible when x4)1, x3( 1 x3+x4&0,
and x=L34 . Similarly, the situation depicted in Fig.
6(b) can occur when xi)1, xs& —1, xi+xs&0, and
x=L» . By combining these singularities with the
L~4+ and L23+ which likewise exist in the t channel,
we obtain all the triangle singularities L»+, L34+, LI4+,
and L23+. Each of these has values of the x; and x, y
which locate them on the physical boundary.

In addition to the L;;+, there are of course the normal
thresholds x=1, y=1, x;=1. As discussed in Sec. II,
they always lie on the physical boundary.

Finally we must consider the singularities which
correspond to all four internal particles on the mass
shell. Let us study the requirements for such a reaction
to occur. Three possible configurations are shown in
Fig. 7, and it is easy to verify that any other can be
obtained from one of these by relabeling the vertices
(and/or reversing all the velocities).

Let us look at the conditions which allow the process
shown in Fig. 7(a). It is convenient for this purpose
to think of the transition as occuring in two stages;
the first below the dotted line in Fig. 7(a), and the
second above this line. We 6x the x;(xi,x4& 1; xs,xs( —1)
and ask what restrictions are imposed on x and y.
Consider the first step of this reaction in the coordinate
system where m~ is produced at rest. This is shown in
Fig. 8(a), and it is apparent that the possible range of
x(s) is determined directly by the allowed velocities of
ms. This velocity is minimum (maximum) when ms is
emitted backward (forward) relative to t'ai. If ms is
emitted forward (x maximum), then it necessarily ends
up moving away from mi. If it is ejected backwards (x
minimum), it moves toward or away from mi depending

as in the triangle graph. We dehne'

x= (s mi—ms )/2mrms, y= (t tj,i' —tls')/—2prtr, s, (9a)

and

M~e&(me-Pa )e M,e&(m, -~,)e M e&(me+P,)e

m"
I iPe

&b) m,

Mle +{m,+p., )

me)

M+e+{mt+Pe)

Mle &(ml+p. i)

M,e&(me+tent. e)e

l me)

(c)
j'I

m,
II

e

Mle&(m, +ttt, ,
)e M e&(+,+ me)e

FIG. 7. Three diferent con6gurations for transitions with four
real internal particles. Any other can be obtained from one of
these by relabeling the vertices.

n R. P. Peierls, Phys. Rev. Letters 6, 641 (1961).

upon the velocity of p~ and the momentum transferred
at the second vertex. For xi+xs)0, it moves away; for
xi+xs&0, it goes toward mt. In either case, the allowed
range of x is" Lrs (x(Lrs+ (see also the Appendix).
These results are summarized in Fig. 8.

The part of Fig. 7(a) above the dashed line is es-
sentially the same as that below, if the directions of
all velocities are reversed. Accordingly, the possible
values of x are given by L34 &x&L34+. This sub-
process is represented in Fig. 8(b). For xs+x4(0, and
x sufBciently near L34, m2 interacts with M3 when it
(ms) bas a component of velocity away from mt. If
x3+x4& 0, or if x is suKciently close to L34 ms must
have a positive component of its velocity toward m~.

To put the two parts of Fig. 8 together to form the
reaction of Fig. 7(a), it is clear that there must exist
a range of x which satisfies both L» &x&L~2+ and
L34 &x&L34+. Thus, either L34 (L» &L34+ or L»
&L34 &L34+. If one of these conditions is fulfilled,
there is an interval of x where both stages of Fig. 7(a)
are energetically possible. Now let's look at the geo-
metric requirements. For fixed x;, the value of x
determines the angles 0~ and 02 shown in Fig. 8. The
realization of Fig. 7(a) therefore depends upon whether

m2, when emitted in the direction given by 0~, can
unleash p, 2 with the required 02. This feat can be ac-
complished if, and only if,

(10)

If the inequality (10) is satisfied, ms can propagate
for exactly the right distance to fire p, 2 in the direction
detern1ined by 02 and hit m~ "head-on. "When 02 = vr —0~,

the distance traveled by m2 is zero, and for 02(m —0~,

the two states of Fig. 8 are incompatible.
If xi+xs) 0 and xs+x4)0, then we see from Fig. 8

(and the above discussion) that both 8r and Os lie in
the interval 0&g;(s/2. The inequality (10) can not



LOCATIONS OF LANDAU SIN GULARITIES 8 1385

TmLE I. All the regions of x where the con6gurations in Fig. 7 can actually occur. When the x; are adjusted as
indicated, the singularity y+(x) is on the physical boundary if, and only if, x lies in these regions.

Figure

7(a)'

7(b)"

7(c)b

Restrictions on the X;

xi&1, x4&1, x2& —1, xs& —1,
and xi+xg &0

xi&1, xs&1x2&—1, x4& —1,
and x]+x2&0

all x;&1

Restrictions on the Lg+

1&L34 &L12 &L34 &L12, then
L23 &L14+&L23 &L14 &—1; or
1&L34 &Lip &Lim+&L34+, then
Lms+&Li4+&Li4 &Les &—1

i&L34 &Lip &L34+&Lig+, then
1&Lps &Li4 &Lgs+&Li4+

1&I34-&Lip-&L12+&L,-4+, then
i&Li4 &Lms &L23+&Li4+

Lig+&L34 &Li2 &L34 & 1, then
Li4 &Les &Li4 &Les

Lig+&L34+&L34 &Li2 &—1, then
L23~&Li4+&Li4 & L23 &—1

Location of "Box"
singularity in x and y

L14 &x&xp&L34 (L12 ) such that
y+(xo) =L14+, then L14 &y=y+(x)
&y+(L14 ) &L44, or
L14 &r=r+(x) &r+(L14 ) &L14

Ii~ &x&x0&L34+, such that
r+(xo)=L14, then L14 &y
=r (x)&y (Ls-)&L +

Li2 &x&x0&L12+, such that
y+(xo) =L44-, then
L44 &y=y4. (x) &y+(L14 ) &Lss+

L34+&X&X()&L12, SuCh that
y+(xo) =L44+ then L44+

&r=y. ( ) &r.(L")«—
L34+&x&x0&L34, SuCh that

r4. (xo) L14 the11 L14
&y=y+(x) &r+(L44+) &L14

a Two more cases obtained by interchanging 1 ~ 4 and 2 ~ 3.
b Two more cases obtained by interchanging 1 ~ 3 and 2 ~ 4.

XI+X &0

o&8I& m

8I a W If X asLIIt

8,=0 if xr4Llx

XI+X~ 0

0&8I&w/a

8, Oif xrsLzor Lls+

Xx+X4&0
0&8,&m

8&a vr if X=L34

8 =o Ifx=L +

X3+X4&0
0 &8~& m/a

8 =0 if x L OI'L+

be satisfied. Consider, however, L34 (L~2 &L34 and
x just larger than L~2 . The angle 8~ is then barely less
than 4r, and the requirements of (10) can clearly be
fulfilled. As x increases from Li2, 0~ decreases from x
toward zero, but before it gets there x reaches xp, say,
where Oi=m —02. At this value of x, the distance
traversed by m2 has shrunk to zero, and the corre-
sponding singularity must be on the verge of leaving
the physical boundary.

Suppose the x, and x are adjusted to allow the process
of Fig. 7(a). If we compute the value of y which is
required, we obtain

y =y+ (x)—=1/(x' —1)(x(xtxs+xsx4) +xtx4+xsxs
+L(x—L» ) (x—L»+) (x—Ls4-) (x—L34 )]'")4 (11)

or expressing x in terms of y,

x=x (y)—= 1/(y' —1)(y(xtxs+xsx4)+xtxs+xsx4
—L(y—L14 ) (y—L14') (y —L» ) (y—L»+)j'") (»)

The algebra needed to yield this result is outlined in the
Appendix. Equations (11)and (12) describe one of the

two "well-known" box-diagram singularities. 6 8 The
other, y=y (x) or x=x+(y), is obtained by changing
the sign of the square roots in Eqs. (11) and (12). It
can similarly be located on the physical boundary by
considering the process differing from that in Fig. 7(a)
by the interchange of M2 and M4. This replacement
reverses the roles of x and y.

YVe can now see how the singularity given by Eqs.
(11) or (12) leaves the physical boundary when x
increases past the position of xp discussed above. At
this point, m2 does not propagate any distance at all,
and the configuration of Fig. 7(a) degenerates into
that of Fig. 9. Comparing this situation with that
shown in Fig. 3, and with the discussion in Sec. II,
we conclude that the singularity y=y+(x), which lies
on the physical boundary for L» (x&xp, disappears
from this limit by moving behind the triangle singu-
larity y=L14+. That is, y+(xs) =L14+, or xs x(L14+). ——

The other alternative for the realization of Fig. 7(a),
L» &L34 &L,»+, can be similarly analyzed. In the
part, of Table I which refers to Fig. 7(a), we list all
the regions where the possibility of this configuration
implies a box diagram singularity located on the
physical boundary.

(o) (b)

III
M

I

I
I

8
I

M4 4

+p p=t&(p, -p )
I

FIG. 8. The two subprocesses divided by the dashed line in
Fig. 7(a) are shown separately in the coordinate system where
oui is produced at rest. The ranges of the angles Hi and 8g are also
given.

Fro. 9. A picture of the process in Fig. 7(a) when 84=4r —81,
so that es& interacts with Ms as soon as it is created by M~. The
box diagram singularity y+(x) coincides with the triangle singu-
larity Li4+.
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M~

Fio. 10. The process in Fig. 7(b) is portrayed in the coordinate
system where m1 is produced at rest. In contrast to the case of
Fig. 'l(a), 82)g—ei is not a suKcient condition for this reaction
to proceed. It is also necessary that m& is not required to emit p2
before it (m&) is created by Mi.

The domains where the processes in Figs. 7(b) and
7(c) are possible are also listed in Table l. The argu-
ments leading to these results are similar to those
already discussed. For example, consider the s; and
L;;+ arranged according to the first case of Table I
referring to Fig. 7(b). This reaction is portrayed in
Fig. 10, and it is readily seen that the angles 8& and 82

must again satisfy the inequality (10). For x just
larger than L», gi is barely less than g., and (10) can
easily be satisfied. As x increases from Lj2, the angle 8~

decreases, and the velocity of m2 gets larger. As before,
there will exist a point where 82=x —8~, and if the
process has been possible until then, it will not be for
larger values of x. This situation is similar to the
previous case, and the singularity r~(x) will disappear
from the physical boundary by passing behind L~4 .
These features characterize the first case for Fig. 7(b)
shown in Table I. It is also possible, however, that
the point 8~=x—82 can not be reached. Before this
occurs, m& may be required to emit p2 as soon as it
(m&) is produced by Mt. This is the second alternative
in Table I, and one sees that the relevant singularity
leaves by ducking under L23 . Similar considerations
apply for Fig. 7(c).

The r+(x) and x+(r) are given by Eqs. (11) and (12)
and by the discussion immediately following.

The function f(x',r) defined in Eq. (14) has singu-

larities at x'=&1, Lie+, Ls4+ and at r=r~(x'). The
x'=&1 occur because then the two singularities of
E(x',r), r=r (x') and r=r+(x'), go to infinity; x'=1,
of course, yields the normal threshold which is also
manifest in Eq. (13);x'= —1 is never on the physical
boundary as argued in Sec. II. The L;;+ account for
the possibility that the two zeros of E(x',r) 'can
"pinch" the contour in Eq. (14). The r~(x') is explicit
in Eq. (14), and r (x') is only singular if it "pinches"
the contour against y. This will not occur for any of
the continuations which are considered.

Suppose now that y is held 6xed in the upper half-

plane, and that the x; are varied, with small, positive
imaginary parts, along their real axes to the region

x3& —1. During this continuation, the
L„+do not cross" the line x') 1, and r+(x'), for x') 1,
does not move into the upper y' plane. We can there-
fore accomplish this continuation without distorting
the x' contour in Eq. (13). For definiteness, we adjust
x2 and x3 to their 6nal values before increasing x~ and
x4, and locate the x; to satisfy xi+xs&0 and xs+x4&0.
Except for possible reorderings of the L;;+ along the
line x')1, these singularities of f(x',r) then move
from their initial to their 6nal values as shown by the
dotted lines in Fig. 11(a). Simultaneously, Li4+ and
L23+ assume the positions in the y' plane shown in
Fig. 11(b).

We want to show that if x and y approach the
physical region from their upper half-planes, then
r=r~(x) is a singularity of B(x,r) in Eq. (13) if, and
only if, Lts &x&x (Li4+)—that is, if the conditions
derived in part A and listed for this case in Table I
are satisfied. Consider x' to vary along the integration

B. Mathematical Considerations

Let us now show that the conclusions of part A, for
the location of r~(x), agree with those obtained by
analytic continuation of the box diagram amplitude in
the external masses.

When x;&1, xi+xs&0, xi+x«0, xs+x4&0, and
xs+xs&0, a Mandelstam representation is valid for
the diagram of Fig. 5. ' Suppressing the dependence
upon the 3E,s(x,), and replacing the variables s and 1

by x and y, this representation can be written as

pm y
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y plone

+
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f I I
I
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FIG. 12. A typical arrangement of L»+ and L34 in the x; plane
and of L23+ and L14+ in the y plane is shown. The dashed lines
in (a) indicate how Lis~ and L84+ move to their final positions
when the x; are continued from x 2&2 to x1)2, x4&2, x2& —1,
ga& —1 with gi+gs&0 and gq+g4&0. The dashed lines in (b)
in icadicate how the singularity y+(x} moves as x' is decreased from
+~ to +1 passing under L12 and L34 and over L12 andL34 .+ +

'3 If x~ and x4 are continued above +1 before x2 and x3 are
decreased below —1, the L»+ and L34+ cross the line x&1; they
return, however, as soon as xg and x3 are decreased below —1.
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contour of Eq. (13), moving in from +~ under L34+

and L»+ and over L» and L.-4 before proceeding to
+1 [see Fig. 11(a)j. As x' decreases from ~, y+(x')
decreases from +1; it then goes into the lower half-

plane for Lj2+&x'&L34+, converges on the real axis
when x'=L»+, loops L~4+ at some point xo between
L» and L»+, goes into the lower half-plane for
L34 &x'(Li2, and moves off to + ~ as x' approaches
+1. This motion is shown by the dotted line in Fig.
11(b).

During this journey, whenever y+(x') resides in the
physical region determined by the value of x', it may
introduce a singularity of B(x,y) on the physical
boundary. For B(x,y) to be singular when x and y
both approach the real axis from above, it is necessary
that x, pushing down on the contour of Eq. (13),
forces the singularity y=y+(x) up at y. This means
that dy+/dx(0. From the preceding discussion of the
motion of y+(x') [and Fig. 11(b)$, we see that this
situation only happens in the required interval L» &x
(x (Li4+) so that Li4 (y+(x)&y+. (L» ), and also for

a portion of the region where both x and y+(x) lie

outside their respective L;,+. The latter domain never
lies within the physical range of variables (see the
Appendix).

C. Determination of the Amplitude

We here argue that the box diagram amplitude is
determined once Cutkosky's rules are supplemented by
the conclusions of part A. Let us, for this purpose,
again adjust the x; to satisfy the conditions which
allow the reaction in Fig. 7(a) and fix the L;;+ to
agree with Fig. 11. If the value of y is also stationed
along its negative, real axis in the region Lj4+&y
(y~(L» ), then we know from part A that the singu-
larities x= 1, L84, L», and x (y) all lie on the physical
boundary, whereas the Li2+, L34+, and x+(y) do not.
Proceeding as in Sec. II for the triangle diagram, we

employ Cutkosky's rules to calculate the dispersion
integrals in x' (fixed y) contributed by the four branch
points x=1, L», L34, and x (y). As before, these
contributions can be summed to yield

1 " dx' 1 y+(x')+y (x') —2y+2[(y+(x') —y)(y (x') —y))'~'
B(x,y) = —— Xln

x' —x PC(x', y)]'" y+(x')+y (x') —2y —2[(y+(x') —y)(y (x') —y)]'"-
(16)

where the integration contour runs over the L,; and
x (y), but under the L,;+ and x+(y). Equation (16)
could also be obtained by performing the integration
in Eq. (14).

The amplitude B(x,y) is now determined up to a
choice of branch for the logarithm in Eq. (16). To
decide this question, we note that if y is increased
over y+(L» ) so that it sits in the interval y+(L» )
(y& I.i4, then x (y) decreases, loops clockwise around

L» and comes back. As it returns, it must not be a
singularity of the integrand in Eq. (16); if it were, it
would introduce a singularity of B(x,y) for a region of

y not allowed by the conclusions of part A. Inversely,
if y is held fixed in the domain Li4+&y&y+(L» ), and
x' in the integrand of Eq. (16) is decreased from x (y)
and looped counter-clockwise around L», it must
return to x (y) when the logarithm of (16) is on its
principal branch. The branch of the integrand in Eq.
(16) is thereby determined. For x' larger than all the

L„+, it assumes its principal value.

IV. CONCLUDING REMARKS

We have seen two special cases how kinematic and
geometric considerations may be employed to fix the
proper Riemann sheets for all the singularities appear-
ing in these amplitudes. In fact, the method used did
not seem to exploit all the information which these
considerations overed. For example, in our determina-
tion of the amplitude for the triangle graph, we did
not explicitly use the fact that L23+ must show up on
the physical boundary, x&& —1, when x2 and xs are

both increased above +1. If the techniques employed
here to locate singularities are found useful in more
general applications, it would probably not always be
possible to fix them all simultaneously. That is, it
would presumably be necessary to put one (or a few)
after the other of these singularities on the physical
boundaries of the amplitude, thereby locating them in
turn. To actually carry out this program, some domain
of analyticity would be required through which the
continuation from one physical boundary to the next
could be accomplished. For the amplitudes considered
here, this domain is the product of the upper half planes
of the MP (and s and t).
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APPENDIX

We here outline the steps required to obtain Eq.
(11),. We consider the process in Fig. '1(a), and its
two parts in Fig. 8(a), (b), in the c.m. system of 3f~
and M'4 or mi and mm. We call @i the angle between
the incoming M~ and the outgoing m~ for the reaction
of Fig. 8(a), and define &2 to be the angle between. mi
and M4 in the process of Fig. 8(b). One can readily
obtain



B 1388 RI CHARD E. NORTON

nt s' —s(MP+Ms'+rttP+rrts' 2—tsP)+ (MP —MP) (rrtP rr—ts')
Cospt= —= (A1)

(A(s,MP, MP) 6 (s,mP, ms') )'t'

&2 ss s(Mss+M42+rrt12+srt22 2ts 2)+ (M42 M 2) (rn 2 rn 2)
Cosgs= —=

Ps (g(s Ms M42)g(s ntP srt22) jl/2

where the symbols are defined in Fig. 5 and Eq. (1). If the two parts in Fig. 8 are now put together to form
the transition in Fig. 7(a), and if p is defined to be the angle between Mt and M4, then

cosf= cos(fr+$2) =cospt cosmos
—L(1—cos'pt) (1—cos'ps) j". (A3)

We now look at Fig. 5, and express t in terms of s, cosg, and the M,
l= (1/2s)( —s'+s(MP+Ms'+Ms'+Me') —(MP —Ms')(M '—Ms')+co&t 6(s,MP Ms')5(s, Mss, M ')]'"} (A4)

(A2)

Substituting (A1)—(A3) into (A4) and replacing s, l and the M; by x, y, and the x, according to Eqs. (9a),
(9b), there results Eq. (11).

The remark at the end of part 8, Sec. III can also be easily veri6ed. For x outside both the intervals

Lt,—&x&L»+ and L» &x&Lss+, then cosg& and cosmos defined in (A1) and (A2) are both larger than unity
in magnitude. Therefore, by (A3), so is cos&, and y+ does not lie in the physical region ~cosg~ &1.
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A study is made of the depolarization of polarized, relativistic fermions (spin —,) passing through matter.
The final polarization of the projectile shows two features, (i) a rotation of the polarization vector so that
it does not have the same direction as the initial polarization with respect to the initial or final momenta:
rotation; (ii) an unpolarized component so that the magnitude of the polarization has diminished: shrinkage.
We consider the scattering of the incident polarized fermion oB unpolarized target electrons and nuclei
to lowest order in'. Whereas to this order no polarization can be produced, i.e., the magnitude of the polari-
zation vector cannot increase, the magnitude of the spin vector can decrease if the target has spin. General
formulas are presented for the spin--, particles scattered electromagnetically from an unpolarized target with
arbitrary spin in terms of form factors. Numerical results are presented for processes (i) and (ii) in the
cases of positrons and muons scattered by unpolarized electrons. Process (ii) is proportional to t' (for small
momentum transfer t). If one expands the expressions for the polarization phenomena keeping only the
linear term in t, then the shrinkage (ii) vanishes and the rotation effects (i) all reduce to those for the pure
Coulomb scattering case. (As is well-known the depolarization due to Coulomb scattering is negligible for
small-angle scattering. ) However, if one is concerned with particles scattered into a sizeable solid angle, then
(a) the rotation etfects in, e.g. , positron-electron scattering become enormously larger than that given by
Coulomb scattering; (b) they become strongly dependent on the relative orientation of the incident polariza-
tion vector: much larger rotations occur for transversely polarized beams; (c) one cannot omit the contribu-
tion from the annihilation diagram compared to that from the direct one-photon exchange; (d) and most

important the depolarization due to shrinkage is con&parable to the rotational effects. In multiple scattering,
the shrinkage is a cumulative effect whereas the rotational contribution to depolarization is a random
walk process.

I. INTRODUCTION

&~ETAILED knowledge of the depolarization of
polarized, relativistic fermions (spin —,) passing

through matter is of current interest. Our theoretical
studies (which neglect bremsstrahlung, see Ref. 21) do

~ Supported in part by the U. S. Air Force through Air Force
Once of Scientific Research Grant AF-AFOSR-62-452.

t Supported by U. S. Atomic Energy Commission.

not explain the large depolarizations found in the experi-
rnents of Dick et a/. '' However, our results show a

'L. Dick, L. Feuvrais, and M. Spighel, Phys. Letters 7, 150
(1963); S. Bloom, L. A. Dick, L. Feuvrais, G. R. Henry, P. C.
Macq, and M. Spighel, ibid 8, 87 (1964); L.. Dick, L. Feuvrais,
L. DiLella, and M. Spighel, ibid. 10, 236 (1964).' However, we do get agreement with the small p depolarization
observed experimentally. Polarized muons suGer negligible de-
polarization in slowing down from ~70 to ~10 MeV in any
type of moderator (D. D. Yovanovitch (private communication) g.


