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High-Energy Behavior of the Scattering Amplitude for Negative Momentum Transfer*
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The high-energy behavior of the scattering amplitude is investigated in the real negative region of momen-
tum transfers —t, for t below the threshold t=4m~ of the crossed channel. If one assumes the existence of
bound states in the crossed t channel with angular momenta larger than one, one can show that the high-
energy scattering amplitude behaves as if dominated by a Regge trajectory n (t) of even signature and the
quantum numbers of the vacuum. It is shown that n(t) is continuous in the open interval (0,4m ), and an
upper bound for a (t) is given under the assumption of analyticity in the domain Ret'" &2m

1. INTRODUCTION
' 'T is known that the Froissart bound' for the rela-
~ ~ tivistic scattering amplitude F(s,t) can be deduced
from analyticity in the Lehmann ellipse plus the weak
assumptions that the absorptive part of F (s,t) is analytic
in t in the neighborhood of some 6nite positive interval
(O,ts) and is bounded there by a power of s."It has now
also been proved, by using, in addition, analyticity in
the s plane, that if F(s,t) has no poles in t corresponding
to bound states with angular momentum larger than
one in the interval (0,4m') the dispersion integrals are
actually convergent with only two subtractions. We
shall discuss here the asymptotic behavior of F(s,t)
assuming the existence of poles with angular momentum
larger than one. Although no elementary bosons exist
with spin higher than one, this analysis has interest in
itself as it discloses a connection between the high-energy
behavior of the scattering amplitude and the angular
momenta of the assumed bound states according to the
pattern of a leading Regge trajectory n(t) of even
signature and the quantum numbers of the vacuum. It
is shown that o.(t) is continuous in the open interval
(0,4m').

We have also obtained an upper bound for n(t),
assuming analyticity inside the parabola Rept=2m.
This parabola is the limit as k' —& ~, of the ellipse of
convergence of the Legendre polynomial expansion.

2. BOUND STATES AND HIGH ENERGY BEHAVIOR

Let F(s,u, t) be the scattering amplitude describing
three processes:

I A+B —+ A'+B',
II A+B' ~A'+B,

III A+A' -+ B'+B,
where A and 8 are two scalar particles of mass M~ and
M&, respectively. The 6rst two processes are elastic

scattering and the last one is a collision in a state with
the quantum numbers of the vacuum. The variables s,
I, and t are related by

s+t+u = 2 (M~'+M~') .

We assume as in Ref. 4 that F(s,u, t) is an analytic
function of t in a certain domain 5) as required to derive
the Froissart bound, is bounded by a power s~ of s and,
in addition, for 6xed t inside X), it is an analytic function
of s with cuts along s=(M~+M~)' to + ~ and
u=(M~+Mn)' to + eo. The domain I) includes a
neighborhood of the positive real axis from t=0 to
t=4m' with the exception of a finite number of points
where F(s,t,u) has simple poles. Here m is the mass of
the least massive particle, say the pion mass. One can
show4 that given a positive e(1 one can find a real
t,)0 and independent of s such that for t &t., F(s,u, t)
is bounded by s'+'. Therefore, for fixed t(t„one can
write a dispersion relation for F(s,t,u) with only two
subtractions:

F(s,u, t) = Cp(t)+Cr(t) (s—u)

s' " A, (s', t) u' " As(u', t)

(s' —s)s" s (u' —u)u"

The dispersion integrals may extend below the elastic
threshold ss(us) = (M~+M~)' but above this threshold
each absorptive amplitude and all its derivatives with
respect to t are positive definite, for t in the interval
(0,4m'). Now for t in this interval, F(s,t,u) is bounded
by s~ so that one can write a dispersion relation with
iV+1 subtractions:

F(s,u, t) =Co(t)+Cr(t)(s —u)+ P (Ir„(t)s"+Is (t)u")
7f=2

s~+' " A (s', t)
dS

(s' —s)s'~+'*This work was performed under the auspices of the National
Science Foundation.
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u~+' " As(u', t)
du'. (3)

rr (u' —u)u'~+'

)
For t&t, a comparison of (2) and (3) shows that Cs(t)
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and Ci(t) are the same in the two expressions and

I,„(t)=— Ar(s', t)
ds )$'"+'

2kiksz =s+kis+ kss = —(I+kts+kss) . (6)

Therefore, since k»' and k2' are negative in the expansion
of $ or I in power series of 2: all the coeKcients of even
powers are positive. On the other hand, one can expand
zr in Legendre polynomials of order /&p and (/ —p)
even. Again in this expansion all the coeKcients are
positive. Therefore, one can 6nally write

where

2 (Ii-(t)e"+Is-(t)n") =2 Ct(t)Ft(z), (&)
Z=O

Ct(t)= P tet (t)[Is (t)+(—1)'Ii„(t)j
n=l

and for even /, all the ttt are positive. (Actually the
ttt„'s are all positive definite for both even and odd /. )
In the real interval 0&t&4m' the only singularities of
F(s,l, t) as a function of t are poles corresponding to
bound states in the crossed channel III. Let t», t2, ~ ~,
t~ be the energies of these bound states, l», l2, ~ ~, lj,
the corresponding angular momenta. In the neighbor-
hood of t= t„all the coefficients Ct(t) are regular except
Ct„(t), which has a pole at t= t„. It is then clear, by the
result of Jin and Martin4 that the representation (2)
is valid all through the interval 0&t&t»', where t»' is
the first bound state with angular momentum larger
than one. Since the residue at this pole behaves like
(z~"' and, at least in complex directions ~F(s, ti' e)(—
&c

~
s

~

' it follows that /i'= 2.
Let us next consider the sequence of bound states with

increasing energies t»', t~', - -, t„' and ever angular
momenta l»', l2', , l„' such that l is larger than the
angular momenta of all bound states preceding t . I et
us suppose that in the interval 0& t&1,' the representa-
tion (3) is valid with X= /, —1.Then by a slight generali-
zation of the argument of Ref. 4 one can show that in the
interval 0&t&t;+i' the representation (3) is valid with
N=/ +1. We shall give the main steps in the proof.

For t&t, Ir,s„(t) is given by (4) when n&/, ' Since.
At, s(s', t) and all its derivatives with respect to t are

with a similar expression for Is„(t).
Now let us introduce the variable,

z = (s I)—/4krks

where ki = rs(t —4iVg')'t' ks = s (t—4Mtt')'t' are the
initial and final momenta in the center-of-mass system
for process III and s=cos8, where 8 is the scattering
angle. In the region we are considering both k» and k2

are pure imaginary and the product is real and negative.
One can express s and I in terms of s and t by

positive (for s')ss) one can expand A (s', t) in power
series of t with positive coefficients. It is then allowed
to interchange the order of summation and integration
in (4).' One thus obtains a power-series representation
for I„(t) with positive coefficients. H t is the radius of
convergence of this series then it is also the first singu-
larity of I„(t) and vice versa and for t&t' the integral
representation still holds. ' Now since the coe%cients
ttt„(t) in (8) are all positive analytic functions of t then,
for even /&/, t' is also a singularity of Ct(t). Since by
hypotheses, all Ct(t) with even /)/ are regular in the
interval 0&1&1~»', it follows that the representation
(4) holds for n&/ +2 and therefore F(s,l, t) may be
represented by (3) with X=/ +1.Thus our assertion is
proved. Since this result is true in the interval 0&t&t»'
its validity in general follows by complete induction.
Now using the same argument as before one deduces
that:

It may happen that in the interval (t, /~i') there exists
a bound state t; with angular momentum /;=/ +1.
Since for odd / the expression (8) involves the difference
of the two functions Ii (t) and Is„(t) it is not in general
true that for t &t; (3) holds with X=/, —1.lt is however
obvious that, for t&t;, at least /;+1 subtractions are
required.

From the above considerations it is clear that if the
angular momentum /; (even or odd) of a bound state t;
is larger than all the preceding ones the angular mo-
mentum of the next bound state with the same property
is either /,+1, or /,+2 if /; is even.

Another result which emerges from this analysis is
that for all the bound states t as previously de6ned, the
residues are negative. In fact as one approaches the
pole t from below, Ct,.'(t) will be given by (8) and is
positive. Therefore the residue is negative.

3. PROPERTIES OF tr(t)

Let us now define a function a(t) as the limiting value
of the set of real numbers e; for which both integrals

I», 2a '

"Ai,s(s', t)
dS

s'~'+»
80

(10)

are convergent. ' We shall first show that n(t) is continu-
ous in the open interval (0,4nt'). Let us take in the /

plane three circles with origin at t=0 and increasing
radii t, t+5 and to=4nt', respectively. These circles are
inside the domain Q of analyticity in t of A (s,t) and on
each circle ~A(s, t)

~
is maximum on the positive real

axis. Then applying to A (s,t), Hadamard's three circles
theorem, ~ one obtains

A (s, t+ "o) &A (s,t)t'A (s,ts) ~' (11)
' E. C. Titchtnarsh, The Theory of Funeteons (Oxford University

Press, New York, 1939), 2nd ed. , p. 44.
6 This deanition was suggested by A. Martin.
7 E. C. Titchmarsh, Ref. 5, p. 1't|2.
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where

( ls 5 lp5 (l+b l!h=»l
&lysi li' E g i
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is bounded by one in the same region. Now the interior
of the parabola is analytically mapped into the interior
of the unit circle by the transformation'

t

and $~+$s ——1. Since we are excluding the points i=0
and t = tp one can take 6p(t (tp —bp, where bp is arbi-
trarily small. Then for 8&8p one has:

ps &5Ct ln(lp/l) $ &2 (8/8p) . (13)

But 2 (s,ts) is bounded by (s/ss)~, therefore (11) gives

2(, l+S) &A(,l)(/, )', (14)

where it= 2X/bp. Therefore, given an e one can choose a
8t ——e/a such that, for 5&min{8p, 5r), one has

s=ld -I —
I

4&i,i

Therefore, one can apply Pick's inequality' to the func-
tion yCt(s)$. One obtains (for real positive l)

esca

(0)y sex a (tp)

~Le(t) g
1+se&[p'(sl-a(Pp)l

In the limit X —+ 0, (12) becomes

~(l) «(0)+C2s/(1+a)3C~(lo) —~(0)1
"A(s, t+5) " A(s, t)

-d$4$p (15)
$t2l (t)+e+l $a(t)+a(51—8)+1

80 80

or

a(l) &a(lp) —cos — — Crr(ls) u(0)$, (19)
2 tp

Hence ln(t+8) —n(t)
l
& e so that a(t) is continuous. If

F(s,g, t) has a Regge behavior, cr(t) coincides with the
Pomeranchuk trajectory. However, even in the general
sense as defined above n(t) has the properties of the
Pomeranchuk trajectory in the interval (0,4ne'), namely
that, in the (l, t) plane the leading poles with even angu-
lar momentum and quantum numbers of the vacuum
lie on rr(t) and all the others lie on or below this curve.

Finally let us assume that A (s,t) is actually bounded
by s~t'&+' for whatever small e, and that a(t) is analytic
inside the parabola:

Re/i=+is=2m, .

This parabola is the limit as s' —+ ~, of the ellipse of
convergence of the Legendre polynomial expansion.
Since in the Legendre polynomial expansion of A (s,t)
all the coeKcients are positive, for all t on or inside the
parabola (10) Reer(t) has an absolute maximum at t= t p.

Then for X real and positive

s (t) = exphCn(t) —rr(ts)]

pr ( 1 't 'l s

n(t)=2 —cos -l —
l

2&i,i
(20)
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which is an upper bound for a(t) joining the values at
t=O and t=tp. Considering that the absence of z —x
bound states imply n(tp) &2 and since a(0)&1, an
absolute upper bound for the Pomeranchuk trajectory
in the interval (0,4rrc') is


