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Breaking of SU(3) invariance is studied in the case of the meson-baryon decuplet with It'=-,'+. In a
simple theory based on single-baryon exchange, the evolution of the broken decuplet from a degenerate origin
js traced in detail. Symmetry breaking is introduced by allowing initially degenerate meson and baryon
masses to approach continuously their physical values, while obeying at every stage the Gell-Mann-Okubo
sum rules. The following conclusions are reached: (i) The Okubo equal spacing rule for the decuplet levels
follows from the validity of the Gell-Mann —Okubo rules for the meson and baryon octuplets. (ii) The main
effect of the symmetry breaking may be characterized as a mixing of the 10- and 27-dimensional representa-
tions. The mixing is small enough so that the resonances can be unambiguously associated with the 10 repre-
sentation, but at the same time large enough to imply coupling-constant ratios diBering appreciably from
the values for pure symmetry (iii) In t.he approach to pure symmetry through reduction of mass differences,
there are no difhculties of the type pointed out by Oakes and Vang. Resonances cross thresholds smoothly,
and a degenerate decuplet of bound states is obtained in the limit.

1. INTRODUCTION

'ESON-BARYON resonances with J =~+ have
- ~ been assigned tentatively' to the (3,0) decuplet

representation of the group SU(3}.' The resonant states
in question are 1Vsts* (1238 MeV, T=$, V=1), F'&*

(1385 MeV, T=1, F=O), tts* (1530 MeV, T=~a,

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

'R. E. Behrends, J. Dreitlein, C. Fronsdal, and B. W. Lee,
Rev. Mod. Phys. 34, 1 (1962); S. Glashow and J. J. Sakurai,
Nuovo Cimento 26, 622 (1962); M. Gell-Mann, Proceedings of the
196'Z International Conference on IIegh Energy Physics at CERE,
edited by J. Prentki (CERN, Geneva, 1962); R. Cutkosky,
J. Kalckar, and P. Tarjanne, Phys. Letters 1, 93 (1962); R. H.
Capps, Nuovo Cimento 27, 1208 (1963).' M. Gell-Mann, Phys. Rev. 125, 106'I (1962); California
Institute of Technology Report CTSL-20, 1961 (unpublished);
Y. Ne'eman, Nucl. Phys. 26, 222 (1961).

I = —1). &t now appears likely that these states all
have the correct ~+ spin-parity values. ' To complete the
decuplet, a particle Qp (sometimes called 0 ) with
T=0, F=—2 was predicted. The recent discovery4 of
such a particle constitutes strong evidence for both the
decuplet assignment and the general scheme of the
"eightfold way. '"The discovery is all the more remark-
able, since the observed mass (1686&12 MeV) of Qs
agrees very well with the prediction of the Gell-Mann-
Okubo mass formula. "For the (3,0) decuplet, the

3 A summary of the experiments and a bibliography is given byR. H. Dalitz, Ann. Rev. Nucl. Sci. 13, 339 (1963).
V. E. Barnes, P. L. Connolly, D. J. Grennell, B.B.Culwick,

et al , Phys. Rev. Letter.s 12, 204 (1964). We prefer the notation
Op to 0, since the isotopic spin has been used as a subscript for the
other decuplet states. The Op notation appears also in Ref. 7.' S. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962).
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latter implies that the masses should be a linear function
of I'; i.e., that they should be equally spaced.

The agreement of experiment with this equal spacing
rule, as well as the agreement of the pseudoscalar meson
and baryon masses with the analogous rule for the
octuplet representation, deserves close scrutiny from
the theoretical side. Gell-Mann and Okubo assume that
the perturbation which upsets SU(3) synunetry has
the transformation properties of the X'= 0, I =0
member of an SU(3) octuplet, and that departures from
symmetry can be calculated as first-order eQ'ects of this
perturbation. Although this hypothesis results in a good
description of mass splittings within the 0 and ~~+

octuplets and the +2+ decuplet, one should still ask
whether it will be sufhcient to describe uQ major
departures from strict SU(3) symmetry. For example,
may the perturbations of coupling constants be calcu-
lated along the same lines as mass perturbationsP
Putting the matter another way, the sense in which
the perturbation is to be regarded as weak needs
clarification.

In this paper, we study the symmetry breaking of the
decuplet in several of its aspects. Our method is to
regard the mass splittings within the decuplet as a direct
consequence of the mass splittings within the meson
and baryon octuplets. For the latter, we insert the
observed masses. This procedure is carried out within a
simple theory in which the meson-baryon composite
states of the decuplet are produced by single-baryon
exchange forces. The theory amounts to a simplification
of the model used by Martin and Wali. ' The simplifica-
tion is mainly the recognition that the meson and
baryon mass differences have their strongest inhuence
in centrifugal barrier effects. With an appropriate choice
of coupling parameters, the observed decuplet mass

splittings can be reproduced. Thus, without using a
perturbation method to calculate the splittings, we

conclude that the validity of the mass formulas for the
meson and baryon octuplets implies the validity of the
formula for the decuplet. This confirms a result of
Tarjanne and Cutkosky~ which is based on a similar

model, but on a relatively rough calculation. We also
show that from an appropriate point of view the
perturbation can be regarded as weak, at least in the
problem of mass shifts. Specifically, the oB-diagonal
perturbations of the initially diagonal D matrix can
almost be neglected. On the other hand, when we

calculate the perturbations of the coupling constants of
decuplet states to their constituents, we find that the
perturbation can no longer be regarded as weak. The
departures from pure syinmetry are pronounced, and
show very little resemblance to the formulas of Dulle-

mond, Macfarlane, and Sudarshan. ' The departures

' A. W. Martin and K. C. Wali, Phys. Rev. 130, 2455 (1963).
P. Tar3anne and R. E. Cutkosky, Phys. Rev. 1', 31292

(1964); see also S. Frautschi, Phys. Letters 8, 141 (1964).
SC. Dullemond, A. J. Macfarlane, and E. C. G. Sudarshan,

Phys. Rev. Letters 10, 423 (1963); see also E. C. G. Sudarshan,

from symmetry are such as to improve the agreement
with experiment, particularly with regard to the branch-
ing ratio of Ã&* decays. An alternative way to judge the
degree of symmetry breaking is to calculate all transi-
tion amplitudes in the basis of those states which, in
their degenerate limits, transform according to pure
group representations. Evaluation of such amplitudes at
the resonance energies shows that group invariance
arguments are quite adequate to predict which ampli-
tudes will be large and which small. However, the rela-
tive magnitudes of small amplitudes are not well pre-
dicted. The amplitudes to which we refer are T matrix
elements divided by the initial and final momenta.

In order to trace the development of the broken
multiplet from its degenerate origin, we perform a
gradual reduction of the meson and baryon mass
differences, while maintaining the corresponding Gell-
Mann —Okubo relations. As one expects, the Okubo
relation for the decuplet is satisfied with more and more
precision as the syi~rnetry breaking is reduced. The
degenerate level is a bound state with a binding energy
of about one pion mass. The coupling constant ratios
do not approach their pure symmetry values very
rapidly.

We are especially concerned with some criticisms of
the decuplet assignment raised by Oakes and Yang. '
These authors have posed the following questions: (i)
If one imagines that the symmetry breaking perturba-
tion is gradually reduced, can the poles representing the
decuplet states move in some reasonably simple way
to arrive at a common real or complex energy in the
degenerate limit? (ii) Is there any theoretical basis for
applying the Okubo formula to the decuplet? (iii) Is
the symmetry breaking slight enough so that group
invariance arguments are meaningful? Our answer to
the first two questions i.s yes, contrary to the contentions
of Oakes and Yang. With regard to question (iii), our
model shows clearly that group considerations do play
a useful role. However, group arguments must be used
with caution, particularly in the derivation of coupling
constant ratios.

In Sec. 2 we review the structure of the Riemann
surface of the many-channel scattering matrix. The
SD ' representation is employed. "An examination of
the motion of poles as symmetry breaking is reduced
shows that when a resonance crosses a threshold there
are inevitably two poles at complex energies near that
threshold. One lies on the sheet reached from the
physical sheet by crossing the cut above the threshold,
and the other on the sheet reached by crossing the cut
below the threshold. One pole causes the resonance peak
when the peak is above the threshold, and the other,

Proceedings of the Athens 2'epical Conference on Recently Discovered
Resonamce Particles (Ohio University Press, Athens, Ohio, 1963).
Note added in proof. The formulas of Dullemond et al. , have been
criticized recently by V. Gupta and V. Singh (to be published).

v R. J.Oakes and C. N. Yang, Phys. Rev. Letters 11,174 (1963).
"R.L. Warnock, Nuovo Cimento 32, 255 (1964).
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FIG. i. Diagrams of the course of a point moving over the
Riemann surface of a two-channel scattering matrix. The plus
and minus signs indicate the four different sheets through w.'Inch
the point may move, as explained in the text.

when it is below. In this conclusion we agree vrith many
other authors who have discussed the problem in
diferent formalisms. " In Sec. 3 our model and some
methods of calculation are described. Section 4 contains
the main results of a numerical evaluation of the theory.
We tabulate resonance energies, coupling constants,
matrix elements, and so on. In the Appendix a 6ctitious
two-channel problem is analyzed in order to illustrate
more concretely the behavior of poles. The model
involves a resonance which is first located between the
two thresholds, and which crosses the upper threshold
a,s the perturbation is turned off. There is a pair of
complex conjugate poles on each of the three unphysical
sheets. A calculation shows that the poles have nearly
the same position on all three sheets, so it is indeed
appropriate to refer to the poles as "shadows" of one
another. '2

2. THE RIEMAEN SURFACE AM3 THE
MOTION OF POLES

%e are concerned with spin-0 particles scattered from
spin- —, targets, so it is appropriate to work in the
complex plane of m, the energy in the center-of-mass
frame. " We neglect channels with more than two
particles. In the w plane, a single partial-wave scattering
matrix T(w) =LT,z'r(w) j, y= (J,T,I ), yields both
orbital states I=J~-,' corresponding to a given total
angular momentum J. T has left and right "physical"

"M. Ross, Phys. Rev. Letters 11, 450 (1963); R. J. Eden and
J. R. Taylor, Phys. Rev. Letters 11, 516 (1963); M. Nauenberg
and J. C. Nearing, ibid 12, 63 (1964); R. . H. Dalitz and G.
Rajasekaran, Phys. Letters 5, 373 (1963); G. Rajasekaran, Nuovo
Cimento 31, 697 (1964); C. R. Hagen, Phys. Rev. Letters 12, 153
(1964); D. Amati, Phys. Letters 7, 290 (1963).

n R. J. Eden and J. R. Taylor, Phys. Rev. 133, B1575 (1964).
'3 S. W. Macnowell, Phys. Rev. 116, 774 (1960); W. R. Frazer

and J. R. Fulco, ibid 119, 1420 (196.0); G. Frye and R, L.
Warnock, ibid. 130, 478 (1963).

branch cuts (—oo, —w&) and (ws, eo), where ws is the
energy of the lowest state having quantum numbers p.
Ke denote these cuts collectively by the letter I'. By
MacDowell's relation, "

ft g -z]—s(w) = T(w+z0), w) wo,
fi=g+r p(w) = —T(—w —z0) ) w) we, (2.1)

where T has been normalized so that in the single-
channel case fg(w) reduces to f~

——sinbq exp(z8~)/g; here

q is the center-of-mass momentum. The structure of the
Riemann surface is very clearly brought out by means
of the matrix ED ' representation. " Suppressing the
index y, we have T=ED ', where X=L1V;;(w)j is
analytic in a region including the physical cuts I', and"

D,;( w)=b, ;—
w —w p, (w')1Vg(w')dw'

= 3;,+I;, (2.2)
~ (w' —w) (w' —w)

The factor p; is equal to the i channel momentum. for
lw l

greater than the z-channel threshold, and is zero
otherwise.

'4 J. D. Bjorken, Phys. Rev. Letters 4, 473 (1960).
"We neglect the possibility that "unphysical" branch points

(i.e., those not associated with unitarity in the direct channel)
might lie on the physical cuts P. This neglect is not really justi6ed
in all the problems treated in this paper; for example, the branch
point associated with two-pion exchange in E-Xscattering appears
above the ~-h threshold in all T= 1, Y=0 amplitudes. This problem
can be overcome by deforming the paths of integrals in the D
matrix so as to dodge the branch points. The model described in
Sec. 3 has no such branch points.

"C. N. Yang, Proceedings of the Argonne User's Group (to
be published).

Because of the analyticity of X(w) around I', we learn
all about the sheets which are connected along I' by
direct inspection of Eq. (2.2). For the problem at hand
we are concerned only with the ps~s state, which is
associated with the right physical cut (ws, ~). Each
row of the D matrix has just two sheets which aie
connected by this right cut. We denote these two sheets
by the symbols (+) and (—). The representations of
the ~th row of D on these two sheets are

D,i'+)(w) =8„+I;;(u),
D;zt-&(w) =3;,+2zg, (w)N, ;(w)+I'(w), (2.4)

where j=1,2, ~ - I an.d I;; is given by Eq. (2.2).
Taking into account q;(w+i0)= —g, (w —i0), w)ws;,
it is easy to check that D„&+&(w+z0)=D„& &(w~z0).
Since D;;H& and D;;& & are both analytic in the cut.
plane, it follows that one is the analytic continuation of
the other, and that only two sheets of D;; are connected
through the right cut. Thus, if there are e channels,
T has 2" sheets connected through the right cut,
corresponding to all possible choices for the rows of the
D matrix.

In the two-channel case the situation can be visual-
ized easily in the diagram shown in Fig. 1.The notation
for sheets follows a suggestion by Yang. "Sheet (+—)
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is the sheet obtained by taking D~;&+& for the 6rst rovr
of D and D2;& ' for the second, and so on. Three other
diagrams like that of Fig. 1 may be drawn, since the
solid curve can correspond to any one of the four sheets.
Now suppose there is a, resonance above the upper
threshold z 02. We make the usual assumption that it is
represented by a pole on the sheet reached from the
physical sheet by crossing the cut above w02, i.e., there
is a pole on sheet (——), near the real axis. If the
parameters of the theory are altered so that the reso-
nance moves to a diferent energy, can it cross the
threshold m02? The I'»* pole must undergo such a
crossing as the decuplet passes to its degenerate limit.
If the resonance lies at an energy between mo» and F02,
it must correspond to a pole on sheet (—+).As Oakes
and Yang pointed out, a pole can move continuously
from (——) to (—+) only by making a clockwise
circuit around woo through the sheet (+—). Such a
complicated pole motion seems unlikely, pa.rticularly if
one expects that the motion of poles can be calculated
as a first-order e6ect of a symmetry-breaking perturba-
tion. Fortunately, the pole need not travel from (——)
to (—+), since there is already a different pole on

(—+) which takes over to represent the resonance
vrhen the latter moves belovr @02. To show that this
nevr pole is practically inevitable, we note that all poles
of T near the physical cut are given by zeros of detD.
Let wii be the position of the original pole on (——):
detD& &(wn)=0. As Re(wii) decreases through woo,
detD' '(wii) and detD' +'(wii) become nearly equal,
since they differ only by terms involving q&(w@)Ns;(wii)
as a factor. The explicit formulas are

detD& +& = (1+2iqiNii+Iii) (1+Iso)—(»qiNis+Iis)Isi,
detD( ) = (I+2iqiNji+Ill) (I+2Zq2N22+Iss)—(2zqiN12+Iis) (2&q2Nsl+I21) ~

In the case of a narrow resona, nce crossing the threshold
we have Re(wii) =woo and qs(wz) —qs(woo) =0. There-
fore, the function detD( +~(w) must have a zero at a
point very close to m g. Note that the resultant pole of T
on (—+) is quite distinct from the pole on (——),
since these tvro sheets are not directly connected. The
same mechanism operates if the resonance crosses a
threshold moving upward. Also, the inclusion of addi-
tional two-particle channels causes no difliculty. The
ca1cu1ations described in the following con6rm this
behavior of poles. Not only do we have the poles that
are necessary to allovr resonances to cross thresholds;
we also expect poles on al/ of the unphysica1 sheets,
since the various determinants differ only by small
terms. The pole positions on a11 of the sheets are
calculated explicitly in the tvro-channel model treated
in the Appendix.

3. DESCRIPTION OF THE MODEL

As remarked in the Introduction, vre assume that the
forces responsible for the J =—',+ decuplet are mainly

h(w) = t'A i+ (w —M)8,3
16m@ 8—3E

+ — $—As+ (w+M)BoJ
E+M

g =1+L2 (Ms+ m') —M s—w'g/2qs,

E~M =L(w+M)' —m']/2w. (3.2)

Qi denotes the Legendre function of the second kmd.
The masses of the meson, the external baryon, and the
exchanged baryon are m, 3/I, and M;, respectively. E is
the baryon energy, so the squared center-of-mass
momentum is q'=(E+M)(E M). The ration—alized
coupling constant is denoted by g.

In computing h(w) we take m=nz„, M=Mq, and a
mass larger than that of A for the exchanged baryon:
M;=10.5m c2. The A and q masses represent the
Gell-Mann-Okubo degenerate limits for the baryon and
meson masses in the absence of the SU(3) symmetry
breaking interactions. The rather large mass for the
exchanged baryon is a device to move the real axis
branch points of the Born approximation to the left
of the lowest threshold of the problem (viz. , the s.-N
threshold), while keeping the iI and A masses for the
external lines. By this device we make X analytic on
the right, and thereby avoid spurious difhculties which
have to do only with the artificial assumption of de-
generate masses in E. The E constructed this way
actually has a behavior on the right cut roughly similar
to that of the Born matrix evaluated with physical,
masses throughout.

"R.E. Cutkosky, Ann. Phys. (N. Y.) 2$, 4/5 (1963).

due to baryon exchanges in meson-baryon scattering.
For given isotopic spin and hypercharge, we retain only
the coupled two-particle channels and construct the
matrix ED ' representation for the partial-wave
scattering matrix G(w). G is related to the I= ss partial-
vrave T matrix defined in the previous section by
G;,=T„/q, q;. .For the matrix N we take the Born
approximation for single baryon exchange computed
with degenerate masses. Thus, N has the form

N(w) = h(w)No.

E0 is an energy-independent matrix, consisting of
Yukawa-type meson-baryon coupling constants given
by exact SU(3) symmetry. Thus, No depends on only
two parameters —a parameter that determines the D—F
mixing ratio''" and an over-all coupling constant
g'~ 4'. The elements of No can be found from the SU(3)
coupling constants and the isotopic spin factors given
in Ref. 6 (Appendixes I and II). The energy-dependent
factor h(w) is a single function defined by
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The D matrix takes the form

p(w') h(w')dw'
--Xo,

(w' —w) (w' —w)
(3.3)

we introduce po, which is the unit matrix times

gp (~w()e()w~ —wp), where

expand

wp are the momentum
and the threshold, respectively, for the "unperturbed"
meson and -baryon masses m, and Mz. Then

where p is a diagonal matrix with elements where
E.(w) =A '+Io(w)+ &(w), (3.8)

V~X,V=X,

where A= P„8„.7. Further, from

G=XD '=h(w)

(3.5)

X &0'—
w —w p(w')h(w')

8'N

m —nr m —m

(3.6)

it follows that,

w —w U (w') Uh(u')
UtGU=h(w) A. '— dw'

~ (w'-w) (u'-w)

=h(w)LE(w)7 ' (3.7)

The requirement that the scattering matrix be sym-
metric is satisled in our approxima, tion scheme, as is
evident from Eq. (3.6).

Bound states and resonances correspond to zeros of
detE on the appropriate sheets of that function, as
explained in Sec. 2. To investigate the gcros of detE,

p. (w)=~*V"(Iwl)~(lwl —wo') (34)

The subtraction point w lies in the interval (—wo, wo);
its value has an influence on the effective strengths of
the left singularities, and thereby on the positions of
resonances and bound states predicted by the theory.
The "centrifugal barrier" factor p(w) is computed from
the physical masses in the case of full symmetry break-

ing, or from nondegenerate masses with smaller split-

tings as the symmetry breaking is decreased. The way
in which the symmetry breaking parameter x is intro-
duced is discussed in the next section. The symmetry
violation in the present model is due only to p(w) and
the factor M, in T;;=q;q,6;;, which is also computed
from degenerate masses. Therefore, our model attributes
a higher symmetry to the E matrix than to the D
matrix. This may have some general validity, but as
far as numerical results are concerned it reproduces
those of Ref. 6 in which S was calculated with physical
masses. In this sense it is a justidable simplification
especially suited to investigate the questions mentioned
ear1ier.

In the limit of exact SU(3) symmetry, each meson-

baryon state speci6ed by isotopic spin T and hyper-
charge V can be expressed in terms of the eigenstates
that correspond to the irreducible representations of
88. For a set of coupled two particle channels, there
exists a unitary transformation U between the definite
particle states and the states that transform by SU(3)
representations. The matrix Xo is diagonalized by U,
so that

w —u pp(w')h(w')dw'
Ip(w) =-

p (w' —u) (w' —w)
(3.9)

is the unperturbed unitarity integral and

~(w) =—w —w (UtpU pp)( —w)h( w)d w'

(w' —w) (w' —w)
(3.10)

ImGg(w) = (3.14)
(w ~—w)'+ (I'/2)'

where I'/2= —Im detE(w~+i0)/c. With one minor

exception, mentioned in the following section, the
resonances of our theory are suKciently narrow so that
Eq. (3.14) is an acceptable approximation.

represents the symmetry-breaking perturbation. If the
perturbation 6 is zero, the determinant factors:

det(A. '+Ip) = (Xg '+Ip)
X (4 '+Io) (& '+ Ip) (3.11)

Each factor corresponds to one of the representations
contained in the direct product 88. In this case of
pure symmetry, the coupling constant and the D—Ii

mixing parameter can be chosen so that the factor
corresponding to the —,'+ decuplet vanishes at some

bound state or resonance energy mo*, and so that the
other factors do not vanish at any energy that would

be reasonable for a resonance or bound state. Now
when 6 is included, the numerical evaluations reported
in the next section show that the determinant still

factors to a fairly good approximation. %e have

detE =det (4—'+ Ip+ 6) P I
—'+Ip+ An)

X (4 '+Ip+&oo) () ~ '+Io+h..). (3.12)

The off-diagonal elements of 6 do not contribute

appreciably, and in this sense the pertgrbatioe is weak

The same choice of mixing parameter that was used in

the degenerate case still guarantees that only the ~3+

decuplet factor vanishes.
In calculating positions of resonances or bound states,

we are concerned with detE(w+i0), w real, where the
limit is taken from the physical sheet. A bound state
corresponds to detE(w+i0) =0, and a narrow resonance

to a zero of detE(w) at a complex energy sg such that
Re detE(wg+i0) =0, where Res wg. Near wg we

may write Re detE(w+i0) =c(wz —w), c=constant,
and

Ot„(wz)
G,;(w) = (3.13)

c(wp —w)+i Im detE(w~+i0)

Rem;;(w~) I' 2
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TABLE I. Positions and widths in units of the pion mass (139.6 MeV) as functions of the parameter x.
Quantities in parentheses in the last row are the corresponding experimental numbers.

0.0
0.025
0.05
0.10
0.25
0.50
0.75
1.00

N*g]p

Position

11.0
10.96
10.92
10.86
10.67
10.23
9.62
9.02

(8.87)

0.0
0.0
0.0
0.0
0.0
0.0
0.24
1.06

(0.72)

Position

11.0
10.98
10.96
10.94
10.86
10.68
10.41
10.09
(9.92)

0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.31

(0.36)

W

Position

11.0
11.0
11.0
11.02
11.05
11.13
11.10
11.09

(10.96)

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.07

(0.05)

Qo

Position

11.0
11.02
11.04
11.10
11.24
11.50
11.71
12.01

(12.07
+0.09)

O.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0

(0.0)

The Eq. (3.14) can also be used to define effective
coupling constants of decuplet states to meson-baryon
states. If one treats the resonant states as though they
had in6nitely narrow width, the contribution of a reso-
nance to a dispersion integral can be evaluated by
treating it as a pole at the mass of the resonance. By
comparing the residue of this pole with the correspond-
ing residue in the Born approximation of an appropriate
Lagrangian, the conventional coupling constant is
related to the resonance parameters. ' We take the
Lagrangian density

i.e., a zero of Eii(w), where we have taken the index 1
to correspond to the 10 representation. Then

P(wA w)—

detE= 531

~13' ' '~1

~23

O.3
~ ~ ~ ~ ~

5„3 ~ O.„

(3.18)

One finds that ~8/rx~ (0.1 over the energy range of
interest. To lowest order in 8/rr, the correction to the
approximate zero m~ is

GB+Bps (r7 „$$ $8„$)k"+—H.c. (3.15)

GB*BP ReX;;
P'

(wn+M)' —m' c
(3.16)

where f, @, and 4& correspond to baryon, meson, and
decuplet fields, respectively. Isopin is suppressed. 0 & is
a Rarita-Schwinger field. We 6nd for the coupling of a
decuplet state 8* to pseudoscalar meson P and
baryon 8

+ +'''+
P- res rrs 0!&—

(3.19)

Another interesting way to analyze detE is by approxi-
mating the eigenvalues of E, since we know the eigen-
values in the case of pure symmetry. We solve the
secular equation g(p)=det(E —p1)=0 by Newton's
method. A 6rst approximation is simply p, ,=E,,=n;,
since (3.9) suggests that off-diagonal elements of E are

Vr' —+ Z+w 2 (Re%)z (qE)z '

I'r'-+ A+7r 3 (Reot)A. (qn)A. '
(3.17)

In the numerical evaluation of the theory we obtained
precise values for the zeros wE of Re detE(w+iO), and
then observed that nearly the same zeros could be
obtained from the factored approximation (3.12). The
lowest order corrections to the approximate zeros may
be obtained as follows. Let mg be an approximate zero;

where ReX;, is computed from the diagonal matrix
element G;, for B+P-+ B+P according to Eq. (3.14).
P; is the appropriate isotopic spin factor. From the
explicit Lagrangian given by Martin and %'ali, ' one
can 6nd the ratios of the decuplet coupling constants in
the limit of exact SU(3). The quantity of particular
experimental interest, the P1* branching ratio, is given
by

FIG. 2. The posi-
tions of the decuplet
states plotted as a
function of the
parameter x.
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not so very important. Expanding about n;, we have

the parameter f, the subtraction point energy 8, and
an over-all coupling constant g'/kr We .choose the
parameters so that the calculated decuplet states
correspond closely to the observed ones when the
constituent mesons and baryons have their observed
masses. Taking account of the results of Ref. 6, we
choose the parameter f to be 0.35; this ensures that
the decuplet representation is the only one that is
resonant in the low-energy region. Then with ze =3m l,-'

and g'/4~=19, the decuplet state energies agree fairly
well with observation. We wish to emphasize that the
approximately uniform level spacing (i.e., the validity
of the Okubo formula) is substantially independent of
the parameters, provided the resonances appear at all.
The average value of the level spacings depends mostly
on cb. This is only reasonable, since variations of fb

change the relative strengths of the di6erent left-hand
singularities, and hence the range of the attractive forces
responsible for the resonance.

%e characterize the symmetry violation by means of
a parameter x, 0&x&1, introduced directly in the mass
formula. For baryons,

(3.20)

The first correction —@/@'=—1/(in@)' may be calcu-
lated from the formula ln detA = tr le. . Thus,

(3.21)Pi= ~ii +
tr(E E)—

4. NUMERICAL RESULTS AND CONCLUSIONS

It was stated in the previous section that for fixed
masses of the constituent particles the free parameters
of our model are the D—Ii mixing ratio determined by

When x=1, I)II(I,Y) takes on the observed values;
x=o corresponds to exact symmetry. The constants u

and b are known, and &Ip ——M~. For mesons one has a
similar formula for masses squared.

m'=mp't 1+xa'Y+xb'(I(I+1) —Y'/4) j, (4.2)

where wp =~~ ~

Table I gives the calculated resonance or bound-state
positions and widths and the corresponding experi-
mental values. It also gives the positions and widths as
functions of x. In this table and io the following energies
are given in units of m c (139.6 MeV). The positions
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TanLE IL
~ UtGU ~ ' at resonance positions. The normalization

is such that ) (U"GU)io, aots=&.

10
27
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1
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3.8X10 2

4.4X10 '

8
8'

10
10
27

8 8' 10
2.8X10 4 7.6X10~ 1.2X10 4

7.SX10 ' 6.9X10 '
1

10
5.1X10 s

2.6X10 8

3.8X10 5

8.0X10 '

27
1.2X10 6

1.7X10 '
1.7X10-2
5.0X10-8
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8
8/

10
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8 8' 10 27
1.0X10 ' 2.8X10 " 1.8X10 ' 6.5X10 '

3.0X10 ' 6.2X10 5 3.7X10 '
1 52X10 '

4.8X10 '

z./2. From Fig. 4 it is clear that this feature persists
when the mass differences are introduced. The 10 eigen-
values split apart, as expected, giving the level spacings.
The other eigenvalues exhibit smaller splittings and
remain large throughout the energy range considered.
Therefore, we are justified in associating the resonant
states with the 10-dimensional representation, even
when when the symmetry is broken. From Fig. 4(a)
and Table I it is seen that the zeros of the appropriate
diagonal elements ReE;, agree roughly with the actual
level positions. This fact was already indicated in Eq.
(3.12). However, it is interesting to note Eq. (3.19),
which shows that this agreement will be less if the non-

vanishing diagonal elements of E are reduced in
magnitude.

In the face of substantial symmetry breaking the
meaning of group invariance arguments is not wel}
defined. Perturbations may affect different types of
observables in different degrees. Besides finding the
perturbations of eigen phase shifts, we have considered
some other ways of judging the degree of syinmetry
violation. The various ways are closely related, but
they serve to point up different aspects of the situation.

In Table II we list the squared absolute values of the
transition amplitudes in the unitary spin representa-
tion; i.e., ~

(UtGU) s ~' for x= 1. As expected, the non-

resonant diagonal elements are small. The oR-diagonal
elements (which are zero in the case of exact symmetry)
are of the same order as the nonresonant diagonal
terms. The 10—27 transition is by far the largest of the
oR-diagonal processes, which suggests that the main
symmetry breaking eRects could be attributed to
10-27 mixing.

To determine the mixtures of various representations
in the resonant states, we diagonalize the imaginary
part of the matrix of residues of G at the resonance
pole. Actually, we diagonalize the matrix Re%(wrr+iO)
defined in Eq. (3.13);for narrow resonance width, this is
essentially the same as the imaginary part of the residue
matrix. The diagonalization is a trivial operation, since

ReX is practically degenerate: Re%;, v,e;. This fact,
which is familiar from the theory of nuclear reactions,
may be proved very simply by means of the ED ' repre-
sentation. We have K= G detE, so detX= (detE)" detG
if there are u channels. But detG=det(1Vh. —'/detE, so
detX has a zero of order e—1, where detE vanishes.
Thus, X has rank 1 at the pole, and consequently every
2&&2 subdeterminant of X vanishes. By considering
2)&2 subdeterminants of the type

x" xv =0
X~' KB

Ter.z III. "Probabilities" for broken and unbroken symmetry.

"Probabilities" v;s v s by exact SU(3)

T=-,', I"=1
Em.
ZIC

T=i, 7=0
A.x
Zm

EE
Zq

T=~~, I"=—1

ZE

68 20%
31.80

31.84
15.97
21.82
18.00
12.37

26.19
30.33
22.84
20.64

30/o
50

25
16.67
16.67
25
16.67

25
25
25
25

we And that X;;=vp;, because of the symmetry
%,,=97,;;.If m~ is the pole position, and m~ is the corre-
sponding poin. t on the real axis where Re detE(tvg+iO)
=0, we have X(tv~)~X(wg+i0). Numerical evaluation
of X(wrr+i0) shows that am%(wrr+i0)«ReX(w~+s0)
This latter circumstance is essentially the statement
that the imaginary parts of the integrals occurring in E
are much less than the corresponding real parts. Thus,
ReX,;(tv~+iO) X„(w~)=v,v;, and v, v;*. The factor-
ization of ReX;;holds numerically to excellent accuracy.
The eigenvector of ReX corresponding to the one non-
zero eigenvalue is v=Lv;j. Since K was defined as a
matrix in the particle representation, the e; are the
"probability amplitudes" for 6nding various particle
states in the resonant state. Of course, since certain
channels are closed, e does not have direct observa-
tional significance. It merely represents the closest
mathematical analog to a probability for decay into
particle channel i. We state the results in Table III
for x=1. The channels with thresholds lying close to
the resonance energy are generally enhanced with
respect to exact SU(3) predictions, while the channels
with distant thresholds are depleted. The Zx channel
does not follow this rule.

Alternatively, we may write (Ut ReKU), ,~u,u;,
where the components of u=Lu;j are the probability
amplitudes for finding group representation states in
the resonant state. We express the resonant state ~P)
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gBBP

rgNNr oo
N~Nm 6.0
N*ZE. 6.0
Fx~ 3.0
Y'z~ 1.0
FNZ 1.0
V*Z~ 3.0
F*=-E 1.0

3.0
"- zg 1.0

3.0
0=-g 6.0

0.025 0.05 0.1 0.25 0.5

6.0 6.0 6.0 6.0 6.0
5.87 5.75 5.50 4.80 3.76
3.02 2.95 2.90 2.88 3.10
0.992 0.962 0.933 0.871 0.857
1.01 0.988 0.981 0.993 1.12
2.97 2.86 2.72 2.47 2.28
0.988 0.950 0.906 0.813 0.738
0.980 0.957 0.941 0.877 0.880
2.95 2.91 2.92 2.85 3.06
0.979 0.953 0.934 0.862 0.854
2.90 2.83 2.76 2.49 2.34
5.91 5.66 5.52 5.16 5.25

075 1

6.0 6.0
2.90 2.34
2.35 1.82
0.601 0.431
0.905 0.750
1.48 1.01
0.467 0.310
0.633 0.403
2.41 1.68
0.613 0.399
1.63 0.987
3.79 2.42

TABLE IV. Ratios of the coupling constants
as a function of the parameter x.

constants are related by factors in which appreciable
effects of symmetry breakdown are manifest. For each
x we compute g'~~~~ in units such that g'~~~ =6.0. The
results are shown in Table IV. For large values of x the
ratios deviate considerably from the values given by
exact symmetry. The deviations do not agree with the
sum rules of Dullemond et al. ' and Sudarshan, ' even at
the smaller x values.
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as a normalized linear combination of the group states.

T=—', 7=1
I P&= o.9s

I
1oH-o. ls

I 27),
7=1, F=O

I y) =o 99
I 10)+0.13127&+0.008

y0.003I io)+0.0007Is&,
T=~, I'= —1

I 4 )=0.997
I 10)+0.07

I
27)
+0.007

I
8')+0.001

I
8). (4.3)

It is important to remember that in these formulas the
states on the right represent linear combinations

I
with

coeKcients given by exact SU(3) symmetryg of definite
particle states with physical masses. As was already
apparent in Table II, the principal contamination of
the 10 representation comes from the 27. However, the
mixing is small enough so that there is no doubt about
associating the resonance primarily with the 10 repre-
sentation. Tarjanne and Cutkosky7 obtained much
larger mixing in a calculation which is dificult to com-
pare with ours. Note that we have diagonalized the
residue of G;;= T,;/q, q;. Had we not factored out q;q;,
the symmetry might have been less apparent. In any
case, our model certainly proves the existence of a set
of left singularities which imply both the observed
decuplet mass diGerences and relatively small mixing,
provided the mixing is measured in the way speci6ed.
In judging the degree of mixing, it is appropriate to
consider directly the coeKcients of Eq. (4.3), rather
than their squares. For example, in the case T=-'„F= 1,
a comparison of (0.98)~ with (0.18)' might suggest that
the amount of

I 27) is negligible. However, from

I 10)= 2 'I'(
I

m X) I

—EZ)) and
I
27)= 2 '"(

I
~$)+ I EZ))

it follows that (v~~/sxz)'= L(0.98+0.18)/(0.98—0.18)j'
=2.1.This ratio, which is unity in the case of no 10—27
mixing, is involved in g'x~x~/g'xeqx.

Finally, we discuss the coupling constants deined by
Eq. (3.16). Although the properties of these constants
are roughly similar to those of the e,', the two sets of
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Fn. 5. The positions of the poles on the unphysical Riemann
sheets for 0&x&0.5. The corresponding values for the channel
thresholds are shown at the bottom.

APPENDIX: QUANTITATIVE STUDY OF POLES
IN A TWO-CHANNEL EXAMPLE

In order to make perfectly explicit the observations
of Sec. 2, we calculate the positions of poles on all
sheets in a simple, two-channel problem. We wish to
illustrate the phenomenon of a resonance crossing a
threshold other than the lowest threshold of the
problem. The xT—EZ problem of the last section is
not suitable for this purpose, since the S3/2* crosses only
the lower threshold. The latter crossing occurs merely
by the pole on the (—+) sheet passing through the
threshold. To obtain a case in which a resonance crosses
the upper threshold, we modify the xX—EZ problem
by reducing the coupling constant so that E3/2* moves
up to an energy just below the EZ threshold. Then, as
the symmetry-breaking parameter x is reduced, the
resonance moves upward through the EZ threshold.
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Vile take only the values x=0.5, 0.25, and 0; for larger x
the resonance width becomes ridiculously large. With
g /4m = 12.8 and @=0.5, we have woq = 10.23, wo2= 11.95,
and m~=11.72, in units of the pion mass. As x goes to
zero, the thresholds coalesce at Kp= 12.35.

The trajectories of the poles on the three unphysical
sheets are plotted in Fig. 5. The positions of the
thresholds for each x are shown (on the same energy
scale) below the graphs. As was expected, for each x
there is a pair of complex conjugate poles on each of
the sheets; the graphs show just the member of each
pair that lies in the upper half-plane. For @=0.5, the
poles have nearly identical positions on the various
sheets, and the resonance peak is due to the poles on
sheet (—+). For x=0.25, the poles again have similar
positions on all three sheets, but the resonance has
crossed the threshold. The peak is now mainly associated
with the poles on sheet (——). In the degenerate limit
x=0 the "original" resonance poles of (—+) have
moved onto the real axis of (—+). Since (—+) is now
completely inaccessible from the physical sheet (++),
this pole has no physical eGect whatever. The same
may be said of the poles on (+—), which have also
moved onto the real axis. The poles on (——) end up
at m = 12.35+0.16i, and therefore represent a resonance
with half-width I'/2=0. 16.

The pole positions as shown in Fig. 5 were calculated
in the usual approximation that takes advantage of the
fact that the poles are all close to the real axis. If E( ) is
the E matrix on sheet (e), then near a zero w~ of
Re detE( & we have

detE& &(w+i0) =c(wg —w)+i Im detEr &(wg+i0)

and the poles on sheet o. are at

w =wg+i(1/c) Im detE&"& (wg+ io)

We list the formulas for detE&~&(w+i0) for w on and

just below the right-hand physical cut. 8 stands for
Re detE(w+i0)) and X '=&(X~ '+Xp ') where the X;
are the eigenvalues of X0 as defined in Eq. (3.5). The
integrals I; are de6ned by

K' —'N

I;(u) = —- p, (w')h(w') dw'

» (w' —w) (w' —w)

and the other notations are as in Sec. 3.

Sheet (—+)
R (spy.'

box(e+mp2:
R'Q Rp2.'

Sheet (+-)

ZOpy+R g+p2'.

6+2 j q, j ah(I, y&-&)

h+iqph(II+X ')

h+ (q&qu)'h'

aihLqP (I,+X-&)—q,s(I,+ Z-~)j;

b+2jqmj'h(I(+X ')

h+ j qmj'h(Ig+I2+2X-')
Wiqph(2 j qm

j'h+Im+X-')

K gÃpy."

Copy+ Ãg'Npg:

6+4 j q&q2 j'h'

+2hLjej'(I&+l ')+ jqmj'(I~+~ ')3
h+ jqmj'h(I&+I&+2~-')

+iqph(2j qmj'h+Im+X ')
w) wag: b (qyqm) h

&ihj qp(I2+X ')+q21(I&+X ')g.

From these formulas one can check that the sheets are
connected as shown in Fig. 1; e.g. , detE& +&(w&i0)
=detE'+ &(w&i0) for u) uo2, so (—+) and (+—) are
connected along the real axis above the second
threshold.

w) w02'. 8+ (q&qq)'h~

Tiht q&,'(I2+X ')-qg'(Ig+X —')]
Sheet (—-)


