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Limited Applicability of the Theory of Nucleon Tunneling*
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The assumptions made in the theory of the tunneling process of single-nucleon transfer are reviewed and
their shortcomings discussed. A schematic form of a black-box treatment is systematized and assumptions
made are pointed out. The reason for the agreement between results obtainable from this form and the
earlier way of ascertaining quantum-mechanical corrections is discussed. Among the assumptions made is
the legitimacy of neglecting terms that vanish when the ratio of the nucleon mass to the reduced mass is set
equal to zero. The character of effects arising from these terms is illustrated by means of a one-dimensional
model, and the associated inadequacy of dealing only with the relative motion of the heavy aggregates with-
out including eBects of motion with respect to the inertial system is pointed out. Further discussion concerns
itself with the effects of the angular momentum of the transferred nucleon in the emitting nucleus and in the
receiving one on the space dependence of the transfer function; the symmetrized forms of the transfer cross
section; the effect of the relative velocity of the emitter and receiver nuclei on the matching of the angular
momentum of the nucleon; the transition from the isotropic-transfer quantum treatment to the correspond-
ing semiclassical one, including the double-limit situation involved in making the scattering angle and the
space-decay parameter approach zero; the questions involved in the consideration of the exterior region,
including the possible e8ect of deuteron, triton, alpha particle and other types of tentacles in configuration
space; and the distinction between the nucleon configuration and wave-function assignments of shell-
structure theory and the nucleon configurations and wave functions that matter more directly for the
treatment of the exterior region and of single-nucleon transfer. The bearing of virtual Coulomb-excitation
processes on applications of usual potential-barrier penetrability estimates for reaction-yield estimates
made in astrophysics is mentioned, and it is pointed out that as the kinetic energy is decreased, the nuclear
radii in ordinary estimates must be increased.

I. INTRODUCTION

A PPIICATIONS' of a form of nucleon-transfer
theory' have been made employing primarily the

semiclassical (SC) approximation. In view of the large
amount of experimental material which has been com-
pared with theoretical expectation and of the variable
charac" er of the agreement, it appears desirable to
point out and to discuss some of the limitations on the
applicability of the equations used. The considerations
in the earlier theoretical papers' ' do not take into
account some essential aspects of the process. Dis-
agreements between calculation and measurement may
thus be due, at least partly, to the incompleteness of
the theory originally intended for qualitative purposes
and the examination of the earlier data' on N'4(N",
N")N". The limitations on the applicability of the
equations in the earlier work' ' were partly discussed
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in papers read at conferences' ' which were sufficiently
concerned, however, also with other matters to make
the presentation of the limitations unsystematic and
not sufficiently clear.

The possibility of exploring the density of nucleons
at the nuclear surface" which in the case of reactions
with small Q values amounts to the determination of
reduced widths for nucleons in their bound states has
been discussed concretely' for the case of N"(N",
N")N" in the SC approximation which is frequently
used in applications. ' This possibility still remains one
of the attractions of the study of nucleon transfer since
the reduced widths are valuable parameters for nuclear
structure models.

A systematic presentation of a black box treatment
is presented in Sec. II. The "black boxes" are the
nuclear interiors of the transmitter and receiver nuclei.
The problem is specialized to the case of the isotropic
transfer function and it is brought out that the quan-
tum-mechanical (QM) equations can be transformed
in a manner similar to that used in BK-I for the treat-
ment of adiabatic wave functions and the reduction to
reduced widths in the case of reactions with small Q
values. This process leads to Eq. (2.16) and its partner
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obtained by interchange of the receiver and emitter. A
further simple reduction yields the coupled equations
(2.17), (2.18). Neglect of the last two terms in curly
braces involving the ratio of the nucleon mass to the
reduced mass of the collision process, 3f/p, gives Eq.
(2.20) which is the QM extension of the SC equations
in BE-I. The relationship of consequences of these
equations to an earlier derivation of the QM correction
factor to the SC formulas is then discussed and the
reason for the agreement of the two approaches is
mentioned. The insuKciency of reduced widths for the
general treatment of the tunneling process in cases of
the reaction Q value being WO is brought out in the
course of the presentation and the nature of the quan-
tities entering instead is brieRy described. In Sec. III
the effect of the omitted terms in 3II/p, is examined
employing a one-dimensional example of two equal
8-function potentials. For the case of complete sym-
metry of masses and fields these effects become small
but in the case of N'4(N", N")N" for which many
comparisons between theory and experiment have been
made there is no assurance of symmetry of the fields.
The modified space dependence of addition to transfer
function P contained in 1—no@ of Eq. (3.20) and the
presence of momentum dependence appear noteworthy
since analogous terms in a more complete treatment
may affect comparison with experiment. Both terms in
(3.20) are needed to verify reciprocity, i.e., to obtain
Hermiticity.

The angular momentum of the transferred nucleon
affects the space dependence of the transfer function
as discussed in Sec. IV. Since the wave function of the
transferred nucleon may be a linear superposition of
functions with different orbital angular momenta, and
since, for anisotropic transfer, the space dependence is
affected by the orientation of the projection of the
orbital angular momentum, these effects can modify the
angular and energy dependence of the transfer cross
section. In Sec. V, the effect on the angular momentum
of nucleon c about nucleus b of the relative motion of
nucleus a containing c is discussed in a simple special
case. The presence of such effects is well known in the
theory of deuteron stripping, but since it has not been
taken into account explicitly for nucleon transfer from
heavier nuclei, its discussion appeared desirable.

In Sec. VI, the limit M/@=0 for the dynamic cor-
rection term in the case of the isotropic-transfer func-
tion is returned to and the connection between the
QM and SC results is discussed. The relationship of the
cross section formulas to the Rutherford scattering
formula at small angles 0, and the double-limit situation
that arises when 8 and the range parameter of the
neutron usually denoted by cx approach zero, is dis-
cussed. This matter is of interest in connection with the
comparison of theoretical formulas with experiment for
the N" (N'4, N")N" reaction. In this section the possi-
bility of enhancement of effects of competition with
other reactions through virtual Coulomb excitation at

the larger internuclear distances is brieRy discussed. It
may result in an effective increase of the range of
spatial extension of the imaginary part of the effective
optical potential commonly called 8', and to the
presence of wave-absorption effects at lower born-
barding energies than otherwise expected. In the same
connection, the possible presence of resonance effects
like those in the Heitler-London theory of molecular
binding may be useful to recall especially in connection
with the collision of N" with N' . The possible bearing
of virtual Coulomb-excitation processes on reactior.
yield estimates made in astrophysics is mentioned at
the end of this section.

The limitations on quantitative applicability of
single-nucleon transfer theory caused by tentacles of
deuterons, tritons, etc., in configuration space are
brieRy mentioned in Sec. VII. This section is also con-
cerned with the indirectness of the connection between
the wave function of the transferred nucleon and shell-
model configurations.

Some of the main symbols reoccurring in the paper
which it might be difficult to identify are as follows:
i indicates termination of influence of operator in (8, Al~ are orbital angular momenta of c while attached
to a and b, respectively; m, m~ are the magnetic
quantum numbers of I and /'. In subscripts and super-
scripts l', nz, P, m~ are printed as l(a), m(a), l(b), m(b);
s= sin(8/2) where e is the angle made by the velocity
of the reaction product with that of the incident
nucleus.

II. THE BLACK-BOX TREATMENTS

As carried out, ' the SC approximation makes use of
the following assumptions: (a) The motion of the heavy
aggregates, such as the two colliding nuclei may be
approximated by classical mechanics; (b) the forces
between nucleons have a short range; consequently, the
effects of Coulomb excitation, real or virtual, are sup-
posed to have a negligible effect; (c) transitions between
levels of the same nucleus caused by acceleration effects
are not taken into account; (d) reactions other than
the transfer reaction under consideration have a neg-
ligible probability at any point on the classical orbit.

The limitations on assumption (a) have been dis-
cussed in Ref. 5 from two viewpoints. The first was
concerned with qualitative estimates of the possibility
of satisfying the requirements of sufficiently good wave-
packet localization. These turned out to be higher than
could be satisfied during the collision time which is long
enough to allow appreciable spreading of the wave
packet. The reason for this is the large separation energy
of the neutron in N' and in N" which makes it necessary
to localize the relative distance of the nuclei better than
within the limits of 1/(2n) where

(2.1)

is the reciprocal of the range constant of the neutron
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wave function in the outer regions of the emitter
nucleus u. Here p, is the reduced mass of relative
motion of the neutron c and nucleus a while E„is the
binding energy of c in a. The reason for this high degree
of localization is that the chance of the neutron pene-
trating from a to c varies approximately as exp (—2rrr, s).
The relative largeness of B„which is =10 MeV in the
case of N" makes it difficult therefore to localize the
wave packet sufficiently.

Secondly, a perturbation calculation, Eqs. (48.27)—
(48.36), employing a 5-function type of interaction
energy between the neutron and the receiver nucleus
b has been made and the results compared with those of
the SC approximation. This calculation made use of the
evaluation of an integral in the work of Ter-
Martirosyan" on (d,p) reactions which is closely
related to independent work on (d,p) reactions by
Biedenharn, Boyer, and Goldstein. " Although the
treatment of the motion of the transferred neutron
is considered in this quantum-mechanical (QM) treat-
rnent with much less generality than, in the corre-
sponding SC considerations made in Ref. 2, it is never-
theless to be expected that the ratio of the QM to the
SC quantities in this special case should have a close
relationship to the value of the same ratio under the
more general conditions used in Ref. 2. A reason for
this expectation is that the errors of the SC treatment
have to do primarily with the impossibility of the exact
localization on the classical orbit of the heavy aggre-
gates so that qualitatively the replacement of a 8-

function interaction by one with space extension gives
rise to an averaging which is similar for the 8 function
and other interactions. This supposition is supported
by a more detailed argument presented at the Padua
conference. ' The result of the calculation is that within
the accuracy of the approximation used the cross section
is proportional to

~

Is(8) ~', where

Io(e) =
(4s.)'"

4' '*(n~, l i; r)4 "'(n', &.; r)

)& (e "/r) dr (2.2)

"K. A. Ter-Martirosyan, Zh. Eksperim. i Teor. Fiz. 29, 713
(1955) LKnglish transl. Soviet Phys. —JKTP 2, 620 (1956)j."L. C. Biedenharn, K. Boyer, and M. Goldstein, Phys. Rev.
104, 383 (N56).

is the Ter-Martirosyan integral for scattering angle 0
connected with initial and final relative momenta k;,
k~ of the heavy aggregates by

cosg= (k;.ky) .

Employing the steepest descents approximation to the
hypergeometric function that occurs in Is(0) as worked
out by Ter-Martirosyan" the ratio of QM to SC values
of the collision cross section o is obtainable from (48.33)
of Ref. 5. In the special case of k;=kg, g, =g~, ap-
proaching the limit of g —+ ~, k ~ ~, keeping
tl/k =a'= ts times the classical distance of closest

approach, there results Eq. (48.34) of Ref. 5 which
reproduces the SC dependence of 0 on O,„and 8 as in
Eq. (23.1) of Ref. 2. Employing the most critically
varying factor in the ratio of QM to SC values of o.

this ratio is approximately that of the corresponding
values of

n/(2ks). (2 5)

Aside from the factor 1/(2s), this parameter is pro-
portional to the ratio of the wavelength at an infinite
distance to the characteristic length 1/rr, in qualitative
agreement with the consideration of the possibility of
wave-packet localization.

An extension of the QM treatment in Ref. 5 in-
cluding the effects of the capturing nucleus without the
employment of the 6-function potential has been briefly
described in Ref. 8. The arrangement of the calculation
is similar to that of the SC calculation in Ref. 2 re-
garding the employment of the adiabatic functions I,
~ representing the condition of the nucleons for fixed
positions of the centers of mass of the aggregates a and
b. Instead of being multiplied by time-dependent
coeKcients as in Ref. 2, the adiabatic functions are
multiplied, however, by functions of the vector dis-
placement r from a to b. The presentation in Ref. 8
points out some of the main assumptions that have
been made in arriving at the final forms but the
enumeration of the various omissions is involved and
incomplete. The generality of the treatment regarding
the inclusion of many-body features of the problem
may also not have been apparent from Ref. 8. The
derivation will now be restated in an improved form.

The wave function of the whole system is approxi-
mated by

e=u (r„r,iI)f (r)+u'(r„r, g)P'(r). (2 6)

"The writer is grateful to Dr. K. W. Chun for communicating
his very useful result before publication.

exp{—4rl tan 'far/2ks)}
=exp{—2a'rrL1 —-', ( rr/2ks)'+ ]/s}, (2.3)

where
s= sin(0/2) . (2 4)

For the (N",N") reaction at bombarding energy of
14 MeV on N", this effect amounts to' a 13% effect
at 180' and 40% effect at 90'. In these numbers only
the contribution caused by direct scattering is con-
sidered as though N"" and N" were not identical
particles, the main purpose being to illustrate the order
of magnitude of effects. According to Eqs. (48.35) and
(48.36) of Ref. 5 and the discussion following them the
e8ect on the total cross section at the same energy is
about 25%. The difference between QM and the SC
approximation has thus been known to be non-neg-
ligible for some time. The characteristic parameter
which enters the e6ects calculated in Ref. 5, such as
that in Eq. (2.3) above, is
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All coordinates are in the center-of-mass system, the
transferred neutron is c and its displacement vector is
r„q denotes collectively the relative coordinates of the
system other than those contained in r and r,. In this
treatment the masses m„m~ of u and b are supposed
large in comparison with the mass M of c and the other
nucleons, an assumption the faults of which will be
discussed later. It is therefore possible to group the
many q according to whether they refer to particles in
a or b as in Eqs. (7.1) and (7.2) of BE-I. The identity
of nucleons is not explicitly considered at this point
but can be taken care of, so far as the tunneling process
goes in Sec. IV of BE-I.

The possibility of expressing the function in this
manner implies not only that the probability of other
reactions of other types is small but also that the
probability of other single-nucleon transfer reactions,
including those involving other states of a and of b is

sufficiently small to contribute negligibly to wave
absorption and also to the transfer to one state occur-
ring as a result of virtual transfer to another state
followed by a transition by long-range forces or other
tunneling transfers. The Coulomb fieM is one of the
possible long-range forces. The dominant process for
Iow-incident energies or distant collisions generally
consists of the succession of virtual Coulomb excitation
by 6e1.d of b on c in u followed by Coulomb de-excitation
of c at b by field of a. The potential energies

U&&&;(r&;&gi&g2»' g») & Vbc(rc&g&&+1&g&&+2»'g&&+&&&) & ( .7)

between c and u as well as c and b are meant as above,
without restriction regarding form but it is supposed
that the range of these interactions is short so that
between the surfaces of a and b there is a gap within
which c is force free. The functions u~(r„r,q), u~(r„r, q)
occurring in (2.6) are the adiabatic functions of BE-I
which correspond to the solution of the Schro"dinger
equation for 6xed positions of the centers of mass of
the nuclei but whose de6nition otherwise implies no
specialization of the general many-body problem. In
general, the equations satis6ed by u, u~ are

(H.g—Z )u =0, (H,g
—E')u'=0

(2 8)
H,g= —(A'/2m, )A,+H,+Ht,+V„+V g, .

The subscript "ad" to LI indicates that the Hamiltonian
is that for adiabatic functions. It is supposed at this
point that the consideration of two functions in the
expansion of 0' sufBces. This assumption involves an
approximation which implies for example that tun-
neling from the ground state of a to level E2~ of b

followed by tunneling from E» to level 82 of a and
then to level E~~ of b is neglected. Such processes, while
doubtless negligible at the larger distances, especially
in the absence of virtual Coulomb excitation (VCE),
may become more pronounced at the shorter distances.
Although the equations in Ref. 8 as well as in the present
presentation are written for two states, one of which is
mainly associated with a and the other mainly with b

there is no inherent diKculty in extending the treatment
to groups of degenerate sublevels of two energy levels
having energies E and E~. In the limit of r= ~, these
correspond to magnetic sublevels of the two-space
degenerate levels. For simplicity the sums over the
sublevels will not be dealt with here. This simpli6-
cation is legitimate in special cases such as the j—j
coupling configurations considered in BE-I for N" (N'4,
N")N" for which the transfer is essentially isotropic.
This idealization is useful also because it makes it
easier to bring out other shortcomings of the theory.

In the space outside a and b, for the case of a and b
de6nitely separated the functions u, u' have the form

u"=u(', r)~ (Vi, ",V-) v (V~i, ",V~-),
(c)a, c)b) (2.9)

u'=s(', r)v'(Vi, ",V.)v'(V~i, "e~-),
and on account of assumed isotropy of transfer, the
argument r of I and v may be replaced by r. As shown
in BE-I, the adiabatic functions may lead to a slow
convergence of the perturbation calculation and it is
for this reason desirable to introduce related but
different functions as in Eq. (9.3) of BE-I,

u=uC —i&S, 8=uS+i&C, (2.10)

S=sing, C= cosy, (2.11)

where y is an angle which is defined in BE-I and is
called 8 there. The transformation has the qualitative
signi6cance of making the functions u, 8 resemble the
unperturbed functions in the case of large internuclear
separations.

The same transformation applied to u~, u~ gives
functions u„B, which are applicable also if c is inside
either a or b. The subscript g is meant to indicate the
more general applicability of the functions. Since the
angle y is a function of r only it is not affected by the
operators of the Hamiltonians H, IIb which refer to
the internal motions of particles within a and b,
respectively, and commutes therefore with H, +Hq.
Making use of this property as well as of Lh„F7= 0, it
is then found by a short calculation that

(H, q E')u, + (A'p/2M)8—,=0,
(O'P/ 3f2)u, +(H,g —E')8,=0, (2.12)

where as in BE-I the energies E, E~ are the values of
E~, E~ for r= ~. The quantity P as introduced in
BE-I through Eq. (4.9), depends on the barrier pene-
tration factors and the reduced widths of the neutron
in the channel in which it leaves a and arrives at b.
Within certain approximations described in BE-I an
explicit expression for the N"(N'4, N")N" reaction is
given in Eq. (24.1) of BE-I.The precise form of P does
not matter for the present discussion, but the fact that
it depends on r as Lexp( —nr)7/r will be used. The
reduction of p to a form characterizing the interior
regions of the two nuclei entirely by means of reduced
widths is possible o&ily if the Q value of the reaction is
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close to zero. If this is not the case, Eqs. (4.1) and (4.2)
f BE-I which introduce the reduced widths throug

essentially their reciprocals )~, )2 do not sufIicesuKce for
expressing e ith d'fferences in logarithmic derivatives

'ng th l ft-hand side of BE-I. In place of ) ~,

th nter quotients of 6nite di6erences in e
logarithmic derivatives to energy differences. uc

t t are not directly expressible in terms ofquo ien s a
d resslonsd 't at the nuclear surface but related expredensi ies a

als exist. Intro-involving averages over energy interva s exis .
ducing functions f, f„by means o

&P +O'P'=ugg„+vs, (2.13)

f ~2.6~ in theand substituting the approximate 4' of ~2.6~
'

Schrodinger equation

These equations are somewhat similar in content to
th 6 t equation in slide 2 of Ref. 8 and the equation
obtainable from it by interchanging a and b throug
Equations essentially identical in form with those of
(2.17) have in fact been erst obtained by Dr. K. W.
Chun employing the equation of slide 2 of Ref. 8 and
trans orming i oi ' t t the barred variables. " There is
actua ya i erll a difference in the content of these results rom
that of (2.17) because the functions u„v, are de ne
not only for c being outside both u and b but also for c
being inside one of these nuclei, i.e., u„8, are introduced
here b the same linear transformations as u, 8 but in
terms of the complete adiabatic functions u,
than the I, v of (2.9). In obtaining (2.17) use is made
of the orthonormality of u, and 8, which leads to

where
(H—E)%=0, (2.14) (u„(V,v, i)+ (v„(V,N, ))=0, (2.19)

&& ( (u„$~„e,])y.+ (u„t S„8,])y„}=0, 2.16

together with the result of interchanging a with b and
e with ~. Here and below the inner products indicated

b l (X Y) are taken over all coordinates
except the three components of r. Thus,

(X,V) = X*Vdr,dqi dq„+„. (2.16')

0

Evaluation of the commutators gives

&=&,g+ V.,(r) —(A'/2p) h„(2.15)

with p, stan ing or ed f th reduced mass of relative motion
of a and b and with V,~(r) representing the central
potential acting e ween

'
l t b t en u and b such as the Coulom

potential, there results

the functions u„8, being chosen to be real. Here as
well as in (2.17) the ( jt indicate that the differentia
operator in ( jj is applied only to the quantity on i s
right in ( jj. Equation (2.19) leads to opposite signs
of the last terms in the two parts of (2.17). I (~i„

d & were commuting operators this re-
lationship of signs would lead directly to reciproci y
of a reaction and its inverse. In fact, neglecting the lack
f commutativity the effective Hamiltonian for a two-o corn

~ ~

hascomponennent wave function with components
a Hermitian structure of the oG-diagonal elements

b t d b P and the last terms in curly braces.
tHowever, since the factors in the latter terms do no

t the verification of reciprocity necessitates t e
consideration of both terms of order M/p m eac o
the curly braces and is readily carried out. It follows
more obviously, however, from Eq. ,2.16 and the result
of the interchanges (a,b), (N, v) in the latter. In this
form it is a consequence of the identity

52——a,+V„—E,+— (z,ug Pdqdr, P„
2p, 2p

2M
(u„(V,r. ,j}) V, P.=0,

p
(2.17)

g~*(u„A,v, )P, P„(v„d,u,)P„—]dr= 0. (2.19')

If the mass of the nucleon M is supposed small in
comparison with the masses of the nuclei a and b, an
approximation to (2.17) is obtained by neglecting t e
terms in M/p in the curly braces. This approximation
is of the same type as in BE-I where the orbits were
not supposed to be affected by the transfer process. In
this approximation, and neglecting the integra s in t e
square brackets of (2.17) for the same reason——&,+V.~

—»+— (&A Pdq«. 4.
2p 2p

52 M—p——(v„(h,e, jj)
2M p,

2M
+ (~., (&.v. jI) &. 0-=0

p

g —g g g~ —g—g&.

3+V g E——f = PP-, ,
2p 2M

6,+V,g Eg g.—=— —
2jx

jp
p4,

2M

(2.20)

as in slide 5 of Ref. 8. Assuming that the incident wave
(2.18) contains only u, and that the transfer probabihty is
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small, one may use for P„ the solution of the first of the
two equations in (2.20) neglecting the right-hand side
with appropriate boundary conditions which, in the
case of a Coulombian V ~, amount to the employment
for P„of

(2.21)

of Eq. (2.2). By standard methods the substitution of
this approximate value in the second part of (2.20)
gives the asymptotic form of g„at large r as

p
Ip& '~+i exp(iLkir —zi ln(2kir)$), (2.22)

4+Mr

in the notation of Ref. 8. Here

Ip f (gf ki''r)P(r)f'+' (g„k,,r)dr, (2.23)

which within a constant of proportionality is Io(e) of
Eq. (2.2). Since p(r) does not contain the incident

energy, both the angular and the energy dependence
of the collision cross section are such as correspond to
the 6-function potential used in Ref. 5.

III. THE DYNAMIC REACTIONS

The terms in (2.17) neglected in obtaining (2.20) are
caused by the interaction of the relative motion of a
and b with the motion described by the adiabatic
functions and those described in terms of the coordi-
nates r„q. In this sense these terms are concerned with

the dynamic reaction of the r motion on the motion of
the transferred nucleon and on the motion of nucleons
contained in a and b. The dynamic reaction terms have
been neglected in BE-I and in Ref. 8 but have been
brieRy considered in Ref. 9 in a semiclassical analogy.

The dynamic reaction terms occurring in the square
brackets in (2.17) have an effect like that of a change in

V,q. Since there are other reasons such as nuclear
polarizability for considering V,~ as not being exactly
the Coulomb potential and since such effects are
dificult to estimate with certainty they will not be
discussed further here, their consideration being in-

separable from that of elastic scattering. The dynamic
reaction terms in curly braces in (2.17) add themselves
to P and thus contribute directly to the nucleon transfer.
They contain the coefficient M/14 which has the value
—' in the case of N'4(N'4, N")N" and is not truly small.
The neglect of the dynamic reaction terms on nucleon
transfer probability cannot be justified therefore on
the grounds of the smallness of M/p, alone.

The dynamic reactions depend on the ratio of the
masses m and m~ of a and b to each other, quite apart
from the unavoidable connection of m and my with
the nuclear structure of a and b. Thus, even if there
were no important change in the adiabatic wave func-

tions I, v, but if the masses of a or b which do not affect

strongly the important parts of I and e were changed,
an e6ect would result on the dynamic reaction terms
as below. The adiabatic functions I, v should have as
their arguments any set of relative coordinates which
correspond to the separation of the c.m. These coordi-
nates may be introduced by first replacing the coordi-
nates of individual particles in a by those of the center
of mass of u and the relative coordinates of particles in
a by well-known procedures. Similarly, the relative
coordinates of particles in b and the center-of-mass
coordinates of b can be introduced. For the sake of
simplicity the smallness of M/m, and M/mb will be
made use of in presenting the particular point under
discussion to the extent of neglecting the effect of the
transferred neutron on the position of the center of
mass of. the whole system. The inclusion of this e8ect
would result in a modification of the terms in curly
braces in (2.18) containing the factor M/p, to the
relative order M/p and a qualitative idea of the effect
of these terms can be obtained without a complete
calculation. In this approximation the difference
between the two coordinates intended for the initial
and 6nal states in BE-II need not be considered.

If m, =mi„ the relative coordinates g= ($,q, t) con-
taining r, may be introduced by referring the position
of c to the center of mass of u and b so that

5'= r (r/2) (3.1)

If m, ~m~ the coordinates of c referred to center of
mass of u and b are

where

p'= ($',it', f') = r,—R,

R=mt, r/m, m=m. +mt, .

(3.2)

(3.3)

Referring to (r, y) as the old and to (r, g') as the new
coordinates and designating partial differentiations in
these two systems by o and e, respectively,

(3.4)

(3 3)

According to (3.4) terms containing (V,v, jI and (A,N, jI

in (2.17) become modified through the inclusion of
terms involving (Vp, jI and (D,u, jI. Since f is a func-
tion of r only, the V,f„rem ins aunchanged in the
equation. Equation (2.17) is thus affected by mb m, —
Since the motions of nucleons within a and b are affected
by the accelerations of u and b as they move about
their center of mass this situation is a natural one. The
dynamic effects under consideration are in this sense
acceleration eGects and have been referred to as such
in Refs. 8 and 9. The terms corresponding to these
terms in the SC calculation in BE-I have been neg-
lected there. They are formally of the order of mag-
nitude Mp/p, not truly negligible in comparison with
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The symmetric and antisymmetric solutions are identi-
fied with I and e, respectively. In the line segment
between the two potentials

u=X+ cosh(n+$), u=X sinh(n $),
(—x/2 (&(w/2),

where X+, X are normalization constants. Continuing
these functions in the intervals (—~, —x/2) and
(x/2, pp) by means of (3.6) and requiring that u and n

vanish at ~ there result conditions on 0+ and e as
follows:

n+=np[1+ exp( —n+x)$,

n =n([1—exp( —n x)$. (3 8)

The values of the normalization constants are then also
obtained as

the f(rst term in curly braces in (2.17). The qualitative
reason for the entrance of barrier penetration factors in
(0„(d,u, ]}) and (v„(V,u, jI) in much the same way as
in P is that even though u, and 8, are orthogonal to
each other according to (2.10), the change in u, caused
by a change in r is not orthogonal to 8, and that the
important change occurs where 8, is large, i.e., in 6
which is reached by the tail of the changed I, by barrier
penetration from a.

It is not immediately obvious from (2.17) and (2.18)
that the dynamic reaction terms satisfy reciprocity.
In fact neither of the two sets of terms in M/p in the
curly braces taken separately satis6es it. The diferent
signs of the terms containing a free V, produce at first
sight the false impression of furnishing a Hermitian
operator on the two-component wave function P„, P„.
On the other hand, the two coupled equations on f„,
f„one of which is (2.16) allow an easy verification of
reciprocity making use of two partial integrations.
Since (2.17) is obtained from (2.16) they also satisfy
reciprocity as may be verified by using the quantities
in curly braces as a whole. By means of (2.16) it is seen
that reciprocity is not affected by the dynamic reaction
terms also if mb/m .

The qualitative character of the dynamic reaction
terms may be illustrated by means of the following
one-dimensional problem. The particle c is supposed to
be free to move in a straight line. At points x,=0 and
x,=x it is acted on by 6-function potentials of equal
strength. In terms of the variable $ used earlier in this
section the adiabatic functions satisfy the boundary
conditions

g~ ( ]2)+o d~ —( t2)+o
= —2no, w=(u or n). (3.6)

wd( (,)~i p wdp ( (pi p

then from (3.8), to within the first order of 7,

n+'=no'(1+2'), n '=np'(1 —2r) . (3.11)

Maintaining the same relation between P and np, n+, n
as in BE-I,

p= 2no'~. (3.12)

The functions I, v may also be expressed as

where

and

N = (n~/m)1V+ exp(n+x/2),
1V„= ( in—/m. )X exp(n x/2)

+" e'"& cos((px/2)
dM )

n '+(p'

+" e*'"& sin((px/2)
4M.

n +OP

(3.13)

(3.14)

(3.15)

These forms of I and ~ are convenient for calculation,
applying for all $ and not just to a finite interval as is
the case for (3.7). The functions

u= 2—'~'(u —i), v = 2—»'(u+u)

have the special values

u, =np'~' exp( —no) f+x/2~),
(i, =np'I' exp( —np[ P

—x/2 (),

(3.16)

(3.17)

jp
p{1—(M/p) [mo(mo m, )/2m'g —(1 nox)—

2M —(M/Il) [(m o m, )/2m/—x8/Bx}, (3.20)

so that for infinite separation of the potential wells, the
states I and 8 are concentrated on the left and right
potential wells, respectively. From (3.15), it follows
that

(u,ilia/Bx) =0, ((i,8u/Bx) 0, =(3.18)

the integrand of the integral over ~ being odd after the
integration over $ is performed. From (3.18) and (3.16),

(u, &8/Bx) =0, (8,8u/Bx) = 0 (3.1.8')

It is also found that

(u, a'(i/(lx') = 0 (r') (3.19)

and hence all terms of order M/p, in curly braces of the
second equation in (2.17) are of higher order in r than
the term —P, provided mo —m, is negligible. For non-
negligible (mo —m )/m, employing (3.4) and (3.5), the
terms in curly braces in the one-dimensional analog of
(2.17) combine to

X~={2n+/[1+n+x+ exp (n+x)}'",
X = {2~/[—1—n *+exp(n *)$}»o.

7 =exp( —npx)&(1,

(3.9)

(3.10)

where terms of higher order in 7 than the 6rst have
been dropped. In the N'4(N" N")N" reaction

~
(mo —m, )/m,

~

= 1/27 while M/p= 1/7. The product
of the two factors is small and formally one may expect
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the effects caused by the extra terms to be small in this
case. But for Mg" (N', N")Mgst,

~
(crib —rrt, )/ere~ = ~»

M/tc =1/9. 1 and without closer investigation it appears
unjustifiable to claim that these effects are negligible.
The presence of x in the second term in curly braces in
(3.20) and of xcI/cix in the third indicate a different
energy dependence from that of the main term and are
an additional reason for caution regarding neglecting
the dynamic reaction terms. The one-dimensional
example cannot be expected to be a quantitative guide
for the three-dimensional situation but the relative
order of magnitude of the three terms depends on the
action of the tails of the wave functions in both cases,

The term containing V„Tt„ in (2.18) represents an
effect of the momentum of relative motion of a and b.
If Q=O, the factor e'"' in Eq. (24.2) of BE-I, which
furnishes the transition amplitude, is unity and for a
head-on collision the contribution of the term in
question is proportional to

r'(u, Dr /Dr) dt, (3.21)

where D/Dr is the derivative with respect to r keeping
y of BE-Iconstant. Taking the origin of t at the turning
point, i is antisymmetric in t while the remaining factor
of the integrand in (3.21) is symmetric. Therefore, the
term vanishes. If QWO the imaginary part of e'"' gives
a contribution to the integrand which is symmetric in t
and a nonvanishing effect of the term in r' results as
mentioned at Asilomar. ' This term is 90' out of phase
with the main one and produces therefore insigni6cant
effects when small compared to the principal term. It
has not been shown that it is negligible in general.
Since, as discussed shortly before Eq. (3.5), the validity
of reciprocity depends on the combined effect of both
terms involving 3I/p in the curly braces the separate
consideration of the two terms gives only a partial. view
of the problem.

I'ro. 1.Angles, dis-
tances, and quanti-
zation axes used
in calculations of
angular momentum
eRects.

IV. INTERNAL ANGULAR MOMENTUM EFFECTS

The calculations in BE-I have been carried out in
detail for special configurations of nucleons in N" and
N". For these the spatial dependence of the tunneling
effect on the cross section was expressible in terms of
(1/r) exp( —nr). In general, the r dependence involves
additional powers of 1/r combined with angular func-
tions. The presence of additional powers of 1/r matters

for quantitative comparisons of the energy dependence
of the cross section and the angular distribution.

The wave function of a nucleon originally in the right
nucleus b with angular momentum l~ and magnetic
quantum number m~ is, within a constant factor,

rb '"«(b)+i(«b) I'i(b)m(b) (eb, q b)

Q i(a),ne(a)foal(a)m(o) I t(a) m(ai (ga~ 0 a) y (4 1)

where r~, 0~, y~ are polar coordinates of point P in Fig.
1, referred to the polar axis O~s~ which is directed from
the center of nucleus b to the center of nucleus a. For
convenience of printing the quantities l~, m~, E, m are
written as l(b), m(b), l(a), tts(a) in subscripts and
superscripts. Disregarding spin orientations the capture
of a nucleon from the state of Eq. (4.1) into a state of
nucleus a of aximuthal quantum number /, and mag-
netic quantum number m, depends on the coefIj.cients
of the Fit &m& &(H., io,) in the expansion of the wave
function in (4.1). The expansion is complicated in the
general case but a qualitative idea of the relative im-
portance of different terms can be obtained if o.r))1,
nb))1 where b is the nuclear radius. In this case'4 one
may approximate at the surface of a

rb 't'Ici&b&+i(nrb) = 0!(r) exp(n'r, cos8),
n'= nr/(r «.), (4.2)—

and

8(r) = f (tr/2n)'t /(r —r,)j
Xexp{—nfr+r, '/(r —r )j) . (4.3)

This approximation is obtained by means of the asymp-
totic form of Et+i(nrb) approximating rb in exp( —nrb)
as

rb= f(r —r,)'+2rr, (1—cos8)$'t'

=r r,+frr, /(r r,)—](1 cose), —(4.4)—
and employing the cruder approximation,

(4.5)

in the denominator of the fraction fexp( —nrb)]/rb.
The reason for making these approximations is that
(4.2) is to be used in (4.1) for an analysis in the
Fi&,& &,&(g„io,) at fixed r, and that for 6xed r, the
values of fexp( —nrb) j/rb on the sphere r, =const are
largest close to cos0=1. The main requirement in the
calculation is therefore to represent the function well
close to cos0=1 and since the dependence on the ex-
ponent is the more critical the approximation used for
the denominator as in (4.5) is the cruder of the two.
The spherical harmonic factors on the left- and right-
hand sides of Eq. (4.1) also vary and can spoil the
approximation by making the integrand small in a
suKciently large range of values of 8 around 8=0.

The notation for the Bessel functions of imaginary argument
is as in G. N. Watson, Theory of Besset Fgmcteoes (Cambridge
University Press, Cambridge, 1922).



L(20+1)(2l +1)j'" (f'+m') ~(l~+m')!
rb '~'Ki&bi+1(nrb) = (—)"b&+ &b's p

la mb! (fb—mb)! (l —mb)!

e " I(i.l+;( r)
y l(alnsibl (()ap pa) ~ (4 6)

yl/2
X

(2&&)mb+1
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Employment of (4.1) gives

Here I~+y is the Bessel function of imaginary argument of the first kind and is related to the regular density
function F& by

These relations have been mentioned in Ref. 9 but with insufBcient explanation concerning the meaning of the
approximation used.

For ca=0 the Bessel functions of imaginary argument of the second kind are taken place of by inverse powers
of r, the wave equation (6—k')/=0 being replaced by the Laplace equation. In this case without approximations

( )x+x' na— (4.8)

The function on the left-hand side is the irregular, i.e.,
the source type, solution of the Poisson equation
emanating from O~. It is represented on the right as a
sum of solutions regular at r =0, with coeKcients that
are functions of the internuclear distance r. While
exact, Eq. (4.8) applies only to nucleons having zero
separation energy, a situation completely opposite to
that of the approximation used in Eq. (4.6). In both
cases the expansion coefficients are functions of the
magnetic quantum number m but in (4.8) the de-
pendence on r is m-independent while in (4.6) there is a
marked m dependence. For zero separation energy,
according to (4.8) the ratios of coefficients of the
regular functions for' different m are independent of r.
In this sense the anisotropy is in this case independent
of the internuclear distance. On the other hand, for
high nucleon separation energies, according to (4.6)
the anisotropy depends on r.

It is thus seen that there is no reason for expecting
the e ~'/r function which applies for the special nucleon
configurations which appeared probable for N'4(N",
N")N" in BE-I to have a general signi6cance. The
transfer probability amplitude may be expected there-
fore to contain additional powers of the distance of
closest approach in the SC approximation. As a result
both the angular distribution of the reaction products
and the energy dependence of the total cross section
may be expected to differ from those derived by means
of e "/r. This conclusion will be made use of in Sec.
VI. It should be mentioned that the approximation of
(4.2) cannot be expected to be universally good and
that numerical examination shows it to be poor under

many circumstances. Nevertheless, the general features
of (4.6) and the presence of many powers of 1/r remain
in the improvements.

Experimental data have been analyzedv ""in terms
of o/A' plots against

x=rr(bi+ bs —2a')+rr(bi+5, —2a'), (4.9)

where A is the wavelength for the incident state divided

by 2x. Here n and o. are the space-decay constants of the
neutron in the initial and final states, b~, b~, and 2a' are
the radii of the two nuclei and the distance of closest
approach in the initial state and the barred quantities
have the corresponding meaning for the final state.
Similarly, plots of do/d(r;„A') against r;„have been
used in some data analyses. "Here r; is the distance
of closest approach for a Rutherford orbit corresponding
to a given angle. In both cases the assumption of the
applicability of the e "/r type function is involved, and
these ways of analyzing data have therefore only
qualitative significance. There have been two reasons
for carrying out this analysis. In the first place, it
appeared desirable to see whether' the bulk of the data
is in agreement with the general tunneling picture,
combining the latter with the supposition that for
angles corresponding to the more distant collisions one
may neglect forces additional to the Coulombian as
well as the effects of competing reactions. In this
application the variation of e "/r contained in e " is
often more marked than that in the factor 1/r. The
presence of large e6ects other than tunneling may be
detectable therefore in the approximation used. The
possibility of virtual Coulomb excitation (VCE) was

paid particular attention to in Ref. 7. Secondly, it
appeared desirable to make some obvious improvements

5 G. Herling, Y. Nishida, and G. Breit, Bull. Am. Phys. Soc.
5, 293 (1960)."K. S. Toth and E. Newman, Eroceedirlgs of the Third Corl-
fererIce orl, ReactiorIs Betzoeerl, Complex Nuclei, Asigomur, 1963
(University of California Press, Berkeley, 1963), p. 114.
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nb i l
nbs

2n9, res (1+nbii 1+ubstt
(4.12a)

the latter being taken from BE-I and having a direct
meaning only for the particular nucleon configurations
used there. Comparison of (4.11) with (4.12) gives C
in terms of E. Since, for both the initial and final orbit,
the minimum distance of closest approach r; is
proportional to 1+1/s, there was introduced a mean

rmin

(--)=( ' ')'"(1+1/). (4.13)

The relationship between d(r;„) and the solid angle
dQ contained between the cones of angular openings 8
and 8+d8 is, according to (2.4),

d(r~i~): I (a a ) /87I's ]tEQ
y (4 14)

and hence, introducing the values of r; for the initial
and final orbits

r;„=n'(1+ 1/s), r;„=a'(1+ 1/s)

'7 M. L. Halbert, T. H. Handley, J. J. Pinajian, W. H. Webb,
and A. Zucker, Phys. Rev. 106, 251 (1957).

' J. A. McIntyre, F. C. Jobes, and T. L. Watts, Proceedings of
the Second Conference on Eeacti ons Between Comp/ex Nucl'ei,
Gattirlbttrg, Tenrtessee, 1960 (John Wiley tk Sons, Inc. , New York,
1960), Paper A-2, p. 16.

in the early attempts to provide a comparison of
different transfer reactions by means of "universal
curves" which were first made by Halbert et al.' A
removal of the dissymmetry in the roles of the initial
and final states was made' earlier but Eqs. (48.100),
(48.101), and (48.102) of the last-mentioned reference
contained unnecessary approximations in formulas for
the total cross section which were avoided in the work
reported on in Refs. 7 and 15. The starting point was
however very similar as is seen from (48.79') of Ref. 5
which has the same meaning as Eq. (4.9) of this paper.

Another reason for introducing the approximate ex-
pressions was the lack of proper symmetry between
initial and 6nal states which was present in the intro-
duction of the do/dr;„plots by McIntyre, Jobes, and
Watts. "The results obtained in BE-I employing e ""/r
and Q=O were therefore somewhat arbitrarily general-
ized as in Ref. 5. This generalization supposed that

do/dQ= (C/s') expL —(na'+ua')/s), (4.10)

where s is as in (2.4) and C is angle-independent.
Integration over solid angles gives then

o.= (8vrC/(na'+ua')) exp( —na' —ua') . (4.11)

On the other hand, as in Ref. 5 and Eq. (4.9) above, it
is expected that for the total cross section

o =XA' exp{—n(2a' —bi —bs) —u(2a' —bi —bs) ), (4.12)

with

there was obtained

(na'+na')
~(r- -) (a'a')'"

XexpLn(bi+bs)+n(br+6&) —nr; —nr; j. (4.15)

The object in introducing these improvements and in
employing them has been mainly that of taking into
account approximately the effects of the Q value of
the reaction. These effects enter through the differences
between n and n and between a' and a' as in (4.12) and
(4.15). On the other hand, neither the quantum cor-
rections for heavy particle motion nor the expected de-
pendence of E on the nucleon configuration have been
taken into account in the applications of (4.12) and
(4.15). Since the former of these approximations affects
the energy and angular dependence and since the proce-
dure for symmetrization between the initial and final
states has not been uniquely established, it appeared
justifiable to neglect in these comparisons the higher
powers of r which are expected to enter in the general-
ization of the transfer function e "/r.

On the other hand, attempts to decide which method
of calculation is the better on the basis of comparison
with experiment without taking into consideration the
possibility of additional powers of 1/r entering the
transfer function are obviously meaningless, especially
in view of the lack of consideration of virtual Coulomb
excitation and of. M/tt type terms as will be discussed
in more detail in Sec. VI.

V. EXTERNAL ANGULAR MOMENTUM EFFECTS

In addition to the effects of anisotropy of transfer
and of the related occurrence of additional powers of
1/r classical mechanics suggests that the transferred
nucleon, while still attached to a, possesses an angular
momentum around b on account of the motion of a+c
as a whole. By analogy with the Franck-Condon prin-
ciple of molecular physics a certain degree of inde-
pendence between the relative motion of a with respect
to b and the motion of c around the combined system
formed by a and b may be expected. Such an inde-
pendence is in fact present in most of the discussion
in Sec. II of the present paper but is violated by the
dynamic reaction terms of Eq. (2.17). The effect under
discussion in this section is concerned with another type
of violation of this independence. If the angular mo-
mentum of c around b, owing to the motion of c along
with a, matches the angular momentum of an available
state of c in b, the transfer to the state in 6 may be
expected to be favored. In order to be significant, the
matching has to occur approximately at the distance
r; because the tunneling is most pronounced for this
value of r. In this respect the consideration is similar to
that used in applications of the Franck-Condon prin-
ciple. The way in which this occurs in a quantum-
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mechanical treatment of angular momenta may be
illustrated in a simple example.

As in BE-II, two sets of relative coordinates are
appropriate: one for the condition of the system in
which c is attached to a, one for that in which it is
attached to b. This complication is minimized in the
special case of mb= ~. To simplify conditions still
further /, the angular momentum of c while in a, will
be taken as l, =O. If L the angular momentum of (b+c
with respect to b, is oriented along the axis of quanti-
zation the wave function representing the motion of
the center of mass of c and a with respect to b may be
written

X (x,+iy,)'R„,b(r„,b)/r„, b . (5.3)

If c is tightly bound to a and if r„,b is not too small, the
square of the absolute value of the wave function is
small unless

r.a/rca, b«1. (5.4)

Under these conditions, the factor (x,+iy, )~'(x,+iy,)'
is insensitive to s and will be treated as a constant. If

m,/(m. + m, )&(1, (5.5)

the variation of successive terms in (5.3) with s is
contained in the factor

L ! mc)'

s!(L—s)! m. ,l
(5.6)

Approximating logarithms of the factorials by means
of Stirling's series with neglect of the term in 1/(12rb)
for loge the condition for a maximum on the supposition
that (s/L)&(1, L))1 becomes

Had one set

s/L= m,/m„. (5.7)

sk= m, vE, LA= m„vE (5.8)

on the classical picture of the two angular momentum
components under discussion corresponding either' to

+ca, o= [(xca,b+&yca, b)/rcab7 &, cab(rca, b) ~ , (5 1)

Here x„,b is the difference in the x coordinates of the
center of mass of c and a and the coordinates of b and
the axis of quantization is perpendicular to r„,b.

Similarly for y„,b, and r„,b is the absolute value of the
vector r„,b having components x,. b, y„b, z, b. Since
mb ——~, one may set xb ——yb= sb ——0 so that

x...b= (m.x.+m,x,)/m. „m.,=m.+m, (5.2.)

Substituting into (5.1)

2'J t 52g

(L—s)!L(2s+1)!7'" m. . (5 6')

the position of the maximum in the m,/m&(1, L))1
approximation is

(s„+-',)/L =m, /m. .. (5.7')

and the square of the quantity in (5.6') is approxi-
mately proportional to

the width of the transfer probability maximum as a
function of transferred orbital angular momentum
being now (s +-,')'~' in the same sense as it was s "'
before. The conclusions are seen to be rather insensitive
to the change in convention regarding normalization.
Some of the anomaly in the behavior of Pb"'(N"
N")Pb"' and Pb"'(N" N")Pb"' observed by Watts
and McIntyre may be caused perhaps by the partici-
pation of the effect of selection of a band of angular
momenta in a manner just discussed. If the neutron is
not in an s state initially, an additional diffuseness of
the maximum may be expected.

mass m, or mass m, +m, moving with the same velocity
e and at the same distance E. around the center of b, one
would have obtained the same value of the ratio s/L
as in (5.7).

Equations (5.1) to (5.7) thus show that for s states
of relative motion of c with r'espect to a, for mb ——~,
and with the restrictions imposed in (5.4) and (5.5),
the maximum probability of a state with angular
momentum projection sk occurs at the classical me-
chanics value of the angular momentum projection.
In calculating the quantum mechanical probability
the variability of the two factors containing the com-
binations x+iy was disregarded making use of the
supposed spatially condensed nature of the wave
function of relative motion of c with respect to a. Had
this assumption not been made, a diffuseness in the
condition (5.7) would have been introduced. Some
diffuseness in the correspondence of the probable
quantum values to the classical picture, expressed by
(5.8), is present besides because the expression listed in
Eq. (5.6) does not have a sharp maximum. Under the
assumptions made, the width of the square of the
quantity in (5.6) is s '~', where m indicates value at the
maximum, the measure of the width used being a
decrease to 1/e of value at maximum in going to either
side of s by the "width. "

The choice of the factor used in (5.6) may appear
arbitrary because the powers of x„b+iy,, band , of
x,+iy, in (5.1) and (5.3) do not occur with the same
numerical coefficients as in the normalized spherical
harmonics. If the calculation is made in terms of the
latter the quantity replacing that in (5.6) is
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F(iq, iq; 1; —1-)

(6.1)

where

The quantity

f' = 4k's'/n'.

(1yt.)'~F (i~„ i~, , 1; —|.)

(6.2)

may be evaluated by employing an analytic continu-
ation of the hypergeornetric series in powers of 1/(1+i ).
Taking the limit of this series for g=i1s—rli

——0, there
results the relation
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The passage to the classical limit employed in the
semiclassical treatment (SCT) requires keeping

(6.4)

finite and approaching a constant, while g and k ap-
proach ~. In this way curves normal to wave fronts
become eventually the rays of geometrical optics, i.e.,
the classical orbits. In this limit"
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Here

x=2'(1+/) 'i' —+ a'ne, e=1/s, (6.6)

"The writer is indebted to Dr. S. Ohnuma and Dr. C. R. Fischer
for their check on Eqs. (6.3) and (6.4) a few years ago in another
connection, and for having found an error in the first calculation
of the limit in Eq. (6.5).

VI. TRANSITION TO SEMICLASSICAL THEORY
AND SMALL-ANGLE LIMIT

At low energies the interactions between a+.c with
b initially and of a with b+c finally may be expected
to be predominantly Coulombian. In this limit the
integral ls&~& of Eq. (2.23) becomes a multiple of Is(8)
of Eq. (2.2). In the special case of equal initial and final

energies, on the basis of Ter-Martirosyan's results
employing the collection of formulas in Ref. 5,

2k
exp 2g tan '——2wg

der C
LEs (na'e) j' exp ( 2—na'),

dQ v's4
(6.8)

in agreement with the exact evaluation of the angular
dependence according to the SCT in Eq. (23) of BE-I.
The dependence on e also checks if the first of the two
forms for the probability

I a„(+ ee) I' listed in Eq. (25)
of BE-I is employed. Similarly, the constant of pro-
portionality C is readily verified to be the same in the
QM and the SCT. The agreements just mentioned are
natural and follow from general principles discussed by
means of Fig. 2 and Eqs. (18) to (19.4), pp. 694, 695 of
BE-I.

For 0(&1, the Bessel function of imaginary argument
of the second kind Eo approaches its asymptotic form
for large values of the argument, and accordingly,

do/dQ= (C'/e's') expl —2na'(1+e)], (6.9)

where C' is a constant. If, in this form, one makes ~—+0,
the angular dependence is as 1/s', and is not the same
as that for Rutherford scattering. It is claimed on the
other hand by Greider" that, in the limit of +=0, the
factor multiplying exponentials behaving with angle
much like that in (6.9) should approach proportionality
to 1/s' because agreement with the Rutherford-
Coulomb scattering angular dependence would result
for such a dependence. The expectation of agreement
with the Coulomb-scattering law appears to be inherent
in the approach of Ref. 20, which neglects the dis-
tortion operators in the evaluation of the formulas.
The agreement of the QM and the SCT verified above'"
shows, however, that the distortion of the wave by the
Coulomb field is very important, the main transfer
occurring in the SCT near the point of closest approach
along the orbit. According to Fig. 2 of BE-I, this point
lies in the region in which the distortion of the plane
wave by the Coulomb 6eld is relatively large.

Equation (6.9) was obtained from the more exact
(6.8) by going to small 8. The comparison with the
Rutherford law then took place by making o. —+ 0 and
neglecting 2na'(1+e) in the exponential function. Such
a comparison contradicts, however, the assumption
made in obtaining (6.9), viz. , that na e))1.This assump-
tion was used in replacing Eo by its asymptotic value
for large values of the argument. Thus, the derivation

"K. R. Greider, Phys. Rev. 133, 31483 (1964l; Phys. Rev.
Letters 9, 392 (1962).

"This agreement and the agreement of both theories with the
angular dependence expected for the Rutherford cross section
was communicated to the author of Ref. 20 by the writer of the
present paper before the publication of Ref. 20.

where the quantity to the right of the arrow is the
result of'taking the same limit as in (6.5). From Eqs.
(6.1) and (6.5)

Es(na'e)
limlI (8) I

= '"i1Lexp( —a')] . (6.7)
k s

This gives, therefore,
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of Eq. (6.9) breaks down for suKciently small n even
in the semiclassical limit.

The employment of the SCT limit by means of (6.4)
need not give the QM limit for 8 —+0 for the actual
situation, however, because it implies the passage to
in6nite values of the momentum p,e, a limit which can
be secured by making p, infinite but does not correspond
to reality. The SCT limit makes use of a finite e so that
pv cannot be made infinite by making v= . For fixed

p, i), and 8 the behavior of do/dQ is obtainable from (6.3).
Since, for n~0, the quantity f ~ po and

ln (4k's'/u')
~F(ig, iq; 1; —1) ~

~, (n-+0). (6.10).I p('.) I'

The limiting form of
~ Ip~ is, accordingly,
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If a assumes values such that
~
ln(1/n') ~))

~

ln(4k's'),
the differential cross section which varies as ~Ip(8) '
has the same angular dependence as that for Rutherford
scattering. Agreement with the latter is thus obtained
for 0. —+ 0 in the quantum-mechanical treatment. The
passage to the limit n —+0, 0 —+0 is seen to be not
uniquely dehned. In fact, if a is kept fixed and 0~ 0,
then f —+ 0 and F(iq, ig; 1; —f') —+ 1. In this limit

( 2k
~

I (6) I (4 "'/n') exp~~ 2g tan '—2 g),
n
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The exponential function is in practice nearly exp( —mg
—na') and the cross section is quite small on account
of the factor exp( —2n.)I). Nevertheless, it is seen that
the limit depends on the order in which n and 0 are
made to approach zero.

Passage to the limit 0,=0 as in (6.10) and (6.11) has
a definite mathematical meaning but the physical
assumptions justifying the use of perturbation theory
are violated since the interaction is not weak when the
nucleon separation energy is small. The infinite value
of ~Ip(8)

~
which results for n=0 implies this as well.

For o. —+ 0, the SCT also gives a logarithmic term since

(&p(aa'p) I'~ ~ln(oa'/2s)+yj', (6.13)

and the velocity as well as s occur with the same
powers in (6.8) and in (6.11). In this respect there is
agreement between the SC and the QM approaches"
and there is thus no reason for mistrusting the SC
result on the alleged grounds of disagreement with the
angular dependence expected from Rutherford's scat-
tering formula. In summary, there is a logarithmic
dependence on s= sin(8/2), but as n~ 0 in any fixed
range of 0 excluding 0=0, one can make a small enough

to give the Rutherford dependence of the cross section
on 0. On the other hand for 6xed n one can make 0
small enough to make lns interfere with the agreement.
But if 0 is small enough, the argument of Eo, viz. ,
0,'8 6»1 and lns has little bearing on the value of Eo
which is then approximated better employing the
asymptotic exponential form as in (6.9). In this limit
the critical variation of the impact parameter (P ~ 1/s
with 0 dominating the transfer process since the latter
depends primarily on the value of e ~~/E with R corre-
sponding to closest approach.

It is seen from the above discussion that the argu-
ment concerning the limit e~ 0 in Sec. V of Ref. 20
is not valid. On the other hand, Ref. 20 lays stress on
the improvement in the agreement with experiment
that is obtained on account of the extra factor 6 in
Eq. (42) of that reference. This emphasis on preference
between di6erent approximations to the solution of
essentially the same equations on the basis of agreement
with experiment is being made both in Sec. IV on p.
81492 and in Sec. V of Ref. 20. At the same time, Ref.
20 is critical of the work of Ter-Martirosyan" and of
Biederiharn, Boyer, and Goldstein" regarding the limit
which the results in these two references approach when
n —+0, and also regarding the derivations used. By
implication it is also critical of the applicability of the
quantum corrections to the SCT which have been used
by the writer. ' The discussion in the present section
shows, however, that from the point of view of the form
of the answer all of these treatments behave properly
at small 0 and small 0, except for defects having their
origin in the largeness of the transfer probability which
cannot be corrected by inserting a factor 1/sin(8/2) in
the formula for 0 (8) as Ref. 20 recommends.

It will be noted, however, that the dissymmetry
caused by the introduction of the zero-range interaction
in Refs. 11 and 12 is not present in the quantum treat-
ments presented at the Padua and Asilomar' con-
ferences and explained more systematically in the
present paper. Even though the treatment of quantum
corrections presented in Ref. 5 has made use of a zero-
range interaction unsymmetrically and employed the
integral evaluations of Ref. 11 this was done only to
ascertain the ratio of QM and SCT results for the
zero-range interaction. Otherwise, reliance was put on
the treatment in BK-I which is free of the dissymmetry
inherent in the use of the 5-function potential. On the
other hand, at energies much below the Coulomb
barrier the same differences between a classical orbit
(SCT) and a wave-mechanical (QM) treatment of the
motion of the heavy nucleus enter for' the symmetrical
treatment of emitter and receiver nuclei and for the
short-range unsymmetrical one. The application of the
correction factor to the results in BE-I could be ex-
pected therefore to be adequate. This expectation is
borne out by the work in Refs. 8, 9, and the present
paper. On the other hand, the possible presence of
virtual Coulomb excitation as well as &he various other
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effects discussed in Refs. 8 and 9 as well as here make a
judgment, regarding correctness of calculations which
do not take these effects into account on the basis of
comparison with measurements, inadequate. It may
also be mentioned that according to Ref. 22 the straight-
forward application of Eq. (6.1) employing the steepest
descents approximation to the hypergeometric function
according to Ref. 11 in the adaptation to the heavy ion
case as in Ref. 5 gives a reasonable representation of
experimental data on N' (N'4 N")N" at 12.3-MeV bom-
barding energy. This treatment is more accurate in
detail than that in Ref. 9 but is similar to the latter in
the essential points. The claim made in Ref. 20 con-
cerning the steepest descents treatment of Ter-
Martirosyan being insufhcient for the determination
of the phase factor of the wave is correct only in the
most literal and not an essential sense since the steepest
descents integral over the saddle point furnishes the
steepest descents approximation to the hypergeometric
function including the phase factor. The result of this
integration was used in Ref. 22.

The presentation in Ref. 20 makes use of an s-state
wave function for the transferred nucleon without
justification. The neutron actually transferred in the
reaction discussed can hardly be an s neutron in any
ordinary sense. A partial justification for such a pro-
cedure is contained in BK-I. It is shown in that paper
that for special coupling conditions of the p-shell
neutrons, the net effect on energy and angular de-
pendence of their transfer is such as though an s-state
neutron wer'e transferred. The jj coupling assumed in
BE-I is only an approximation to the actual one, how-
ever, and the additional powers of 1/r mentioned in
connection with Eqs. (4.6)—(4.8) may be expected to
have an effect on the energy dependence and the
angular distribution. Unless it is shown that these
effects are negligible there is an additional r'eason for
considering agreement with exper'iment as insufhcient
evidence for the criticism'0 of standard formulas. The
employment of the s function through the nuclear
interior defeats from the outset the possibility of dis-
cussing the nuclear' inter'ior with generality and realism
since in the interior there are strong interactions
between nucleons leading to admixtures of other con-
figurations. It is also not known that wave absorption
caused by competition with other reactions has a
negligible effect on the angular distribution at 12.3-
MeV bombarding energy. Such an effect does not
appear unreasonable if virtual Coulomb excitation
should enhance the transfer of larger groups of particles.
Even the endothermic reactions N'4(N'4, 8")F'~ and
N" (N",C")0'~ are energetically possible with 6.15 MeV
available in the center-of-mass system, the first reaction
being endothermic by 4.9 and the second by 4.1 MeV.
The separation energies of He' in N" and F" are 27.7

~ G. Breit, K. W. Chun, and H. Q. @bsweiler, Phys. Rcv.
133, 8403 (1964).

and 22.8 MeV, and are large enough to inhibit ordinary
tunneling very strongly, but it is not clear that a transfer
of He' would take place with a probability insufFicient
to cause appreciable wave absorption. The transfer of
H' corresponds to separation energies of 22.7 and 18.6
MeV initially and finally, and is also somewhat im-
probable. The exothermic deuteron transfer N"(N",
C")0"may be expected, however, to be more probable.
The separation energies of the deuteron in the initial
and 6nal states are 10.3 and 20.7 MeV, respectively,
the Q value is 10.4 MeV. This, and perhaps other .

exothermic reactions, may perhaps introduce appre-
ciable wave absorption with the participation of VCE.
In this process, it will be remembered, the largeness of
the separation energy does not count as heavily as for
ordinary tunneling. These effects have not been defi-
nitely excluded as having negligible effects on the
angular distribution of N"(N",N")N" and similarly
resonance force effects caused by the identity of the
two colliding nuclei have not been shown to produce
an inhuence on the relative motion of N'4 with respect
to N" that is insufhcient to affect the fits to the
Eg——12.3-MeV data in Ref. 22 and in Ref. 20.

The possibility that at ener'gies below the Coulomb-
barrier, virtual Coulomb excitation may result in an
enhancement of nuclear reactions, not necessarily of
the single-nucleon transfer type, may be of interest in
astrophysics. It is customary in considering nuclear
reaction yields in this subject to make use of estimates
of barrier penetrabilities in combination with the
assumption that it is necessary for the colliding nuclei
to come together within the range of nuclear forces in
order that a reaction take place. The VCE processes
should, on the other hand, be the dominant ones in
low-energy collisions. Speaking qualitatively, the
nuclear radii to be used neglecting VCE should become
increasingly greater as the kinetic energy of colliding
particles is decreased.

VII. THE NUCLEON HALO REGION

The treatments in BE-I and the succeeding ones
consider only one plausible coupling scheme and one
configuration of nucleons. This was done for simplicity
in the desire to obtain a quantitative comparison with
experiment without too many complications. The
underlying picture is appreciably more general and it
appears appropriate to give a brief account of it. In the
spirit of the black-box point of view employed in
signer's 6tmatrix theory of nuclear reactions a surface
separating the con6guration space into an interior and
an exterior region will be used. For one nucleus the
interior region will be defined as corresponding to
positions of nucleons inside a three-dimensional sphere
of radius b having the center of mass of the nucleus for
its center. In the case of deformed nuclei, it.'„=would of
course be more rational for some purposes to use an
ellipsoid rather than a sphere but, for simplicity, only a
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spherical separation surface will be discussed. Whenever
all nucleons are inside the "sphere, " the collection of
nucleons will be said to be in the interior region. Other-
wise, it will be said to be in the exterior region. The
criterion for the radius of the sphere will be the possi-
bility of neglecting the interactions between nucleons
whenever they are outside the three-dimensional sphere.
Approximately this is a density criterion. It cannot be
formulated with comp1.ete exactness, but estimates indi-
cate that it has an approximate meaning for the
supposed short range of nucleon-nucleon forces. The
chance of a collision in the exterior region decreases
rapidly with b to such an extent that it becomes
reasonable to neglect it for su%ciently large b.

There are situations for which this is not the case.
Thus, part of the exterior region is occupied by virtual
deuterons, tritons, alpha particles, etc., forming ten-
tacles in the many-dimensional configuration space"
which are approximated by the clusters of Wilkinson. '4

However, a virtual alpha particle in a tentacle need not
bear a strong resemblance to an ordinary alpha particle
except at the end of the tentacle. At very low bom-
barding energies, the tentacles usually do not tunnel
through the gap between two nuclei as well as a single
nucleon. On the other hand, according to Ref. 23, some
short-range tunneling effects are expected to be ap-
preciable and in the quantitative analysis of nucleon
transfer data single-nucleon tunneling via tentacles of
larger mass may have to be considered. If the formu-
lation of tentacles and their penetration through the
gap is enhanced by VCE, a possibility which was left
out of consideration in Ref. 23, their importance may
become greater' especially because the separation energy
does not matter as critically at larger distances.

Returning to the simpler one-nucleon tunneling
transfer without VCE and leaving the tentacles out of
consideration, the wave function of a nucleus in the
interior of the sphere S may be expanded in terms of
antisymmetrized products of central Geld single-nucleon
functions. The goodness of the shell model is immaterial
for the possibility of doing so, the only relevant con-
sideration being the completeness of the set of ex-
pansion functions. The most important situation for
the transfer is obtained if just one of the nucleons is
outside S. In Wigner's terminology it is then in a closed
channel and its "partner" is the residual nucleus. The
convenient expansion for this part of the conGguration
space is in terms of products of wave functions of the
residual nucleus and of the nucleon outside S. The

"G.Breit, Phys. Rev. 102, 549 (1956).
24 D. H. %'ilkinson, in I'roceedings of the ENtheford JNbriee

Internateonat Conference, 3fonchester, 1961 (Heywood and Com-
pany, Ltd. , London, 1961), p. 339.

boundary condition for the single-nucleon wave func-
tion is that of vanishing at ~. Since the energy of the
nucleon is determined by the separation energy, the set
of channel functions is completely deGned. The energy
of the single-nucleon wave function, i.e., the energy of
relative motion of the nucleon and the residual nucleus
will not match in general the single-nucleon energies
used in the Slater determinants of the interior region.
The connection of the actual wave function in the
exterior region with the shell-model function is thus not
direct. If the nucleus is well described by a shell-model
configuration, then one may expect the function in the
exterior region to be approximately represented by
products just described employing for the relative
motion of nucleon and residual nucleus one of the shell
theory functions and assigning the others to the residual
nucleus. But the function for the external nucleon must
then either be used with an energy diGerent from the
separation energy or' else the shell of nucleons in the
residual nucleus must be used with the separation
energy of the transferred nucleon —an unrealistic and
hardly warranted alternative —or else the nucleons in
the shell become unequivalent. In the general case, it
is thus necessary to join the functions in the exterior
region to a function consisting of a sum of different
shell-structure functions in the interior. There is no
general reason, therefore, for the functions in the exterior
region to contain only the l values of the nucleons in
the last shell of the nucleus. In particular, the neutron
transferred from N'4 may be partly in a p and partly
in f and h states for the same state of the residual
nucleus N" and a similar situation obtains for a nucleon
captured by N" to form a state of N". The possibility
considered in BE-I is thus only one of many although
it appears that it is likely to be the more important one.

The fractional parentage considerations of shell
structure theory which are said by some to have a
bearing on the transfer problem are not closely con-
cerned with the part of the wave function which has
an immediate bearing on the transfer process, viz. , that
consisting of the residual nucleus function in a specified
state and the function of relative motion of the nucleon
with its separation energy rather than the energy in an
auxiliary central field used in introducing a set of func-
tions in shell-model calculations.

The antisymmetry of wave functions in protons and
neutrons has been considered to some extent in BE-I
in connection with the p-shell wave functions. The
resonance effects mentioned toward the end of Sec. VI
of the present paper contribute in general Heitler-
London type forces to the interaction of nuclei a+c
with b, and of a with 5+c, which should be considered as
part of the combined problem of nucleon transfer and
of nucleus-nucleus scattering.


