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Multiyole Mixtures in the Mossbauer ESect*
J. T. DEHN, J, G. MARzDLP, AND J. F. SALMoN

RIES, Woodstock College, Woodstock, Maryland
(Received 15 May 1964)

A theory of multipole mixtures applicable to resonance absorption is developed. The method used is an
extension of Malus' law to include elliptically polarized multipole mixtures. The case of dipole-quadrupole
mixtures is treated in detail as a means of measuring E2/Ml mixing ratios and checking time-reversal
invariance in certain nuclei.

THEORY

Let us begin with a modified form of Eq. (38) in F for
the electric Geld vector,

Sst(3II) = aEs(M)+be'&Et(M), (2)

where c and be'& are products of the appropriate signer
3j symbols and reduced matrix elements I, as explained
by F. We can choose a, b, and the relative phase of the
nuclear matrix elements q to be real numbers. The
angular dependence is expressed by the vector

Er(M)=e™&(tfte*d sr (p)+fl ie-' d isr '(p)) (3)

INTRODUCTION

ECENTLY, Frauenfelder' and his co-workers have
";developed and applied the theory of elliptical

polarization in the Mossbauer effect. In their paper (re-
ferred to hereafter as F) a method of complex vector
parameterization was used to derive an expression for
the transmission pattern,

IX=II' cos'0

such that the factor I, which is proportional to the in-
tensity of the emitted radiation, can be factored out on
the right side of Eq. (1).Then Z, which is proportional
to the absorption cross section, may be found explicitly
in terms of the Euler angles n, P for the oriented emitter
and u', P' for the oriented absorber. The angular factor,
cos'O~, is given in Table V of F for pure dipole and
quadrupole radiation and for various values of M and
M', the changes in magnetic quantum number for
emitter and absorber, respectively. However, this
method proved too complicated for a convenient treat-
ment of multipole mixtures. It is the purpose of the
present paper to develop the theory of multipole mix-
tures by a more direct method.

We may divide by this quantity to Gnd

Z=(I)-'I S* S'Is=I'cossO

and divide again by I' to Gnd

cos'0'= (II') 'I s*~ s'I',

(7)

(8)

which appears as the 6rst (or fourth) entry in Table V
of F. We have omitted subscripts and arguments in
Eqs. (7) and (8) to indicate their general applicability
even to multipole mixtures.

is the angle between this axis and the axis of observa-
tion, while a is the azimuthal angle measured about the
axis of observation. The complex unit vectors are

tlat= W (s+i j)/K2

so that g„* j„=8„„,while the rotation matrix elements
d„~&~& are given in Table II of F, reproduced here as
Table I.

The quantity we are interested in is

»=
I
s»*(M) s»'(M') I'

= Iaa'Es*(M) Es'(M')+ab'e'&'Ese(M) Ei'(M')
+a'be '&Et*(M).Es'(M')

+bb'e 'iv &'lEt*(M) Ei'(M')I'. (5)

As a 6rst step it is convenient to compute the complex
numbers listed in Table II by using Eq. (3). From
Table II and Eq. (5) with a or b set equal to zero, we can
derive the formulas given in F. For example, with b= b'

=0, we may compute IZ=
I
Sse(2) Ss'(&2) I' which

appears as the last entry in Table III. If in addition we
let a= a', rr=cr', P=ds', and use the upper signs in this
formula, we Gnd the intensity squared and Gnally the
intensity

I= s a'(4 sin'P+ sin'2P) = isa' sin'P (1+cos'P) . (6)

where the upper signs refer to electric radiation and the
lower signs to magnetic radiation. We shall be concerned
with the case of most physical interest, namely, a mix-
ture of magnetic dipole (L= 1) and electric quadrupole
(I.=2) radiation. In the last equation, y is the Euler
angle measured about the axis of nuclear orientation, P

*This work was supported in part by the National Aeronautics
and Space Administration under Research Grant NsG 670.' H. Frauenfelder, D. E. Nagle, R. D. Taylor, D. R. F. Cochran,
and W. M. Visscher, Phys. Rev. 126, 1065 (1962).
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TmLE I. Reduced rotation matrix elements, d„~(~),
for dipole and quadrupole cases.
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TA)&Lz II. Complex numbers E,*(M) E1'(3P)

2

~2
0

2
2

&2
2

+2
0

2

1
&2

0
0
0

&2
0
0

&2
&2

0
&2

0
0

&2
&2

0
&2

0

E.*(3f) Eg'(M')

(a) Dipole radiation (s=t=1)
,'e —' ~(" r'&[(1+c osp cosp') cos(a —u') —t(cosp+cosp') sin(n —n')7
(1/vX) e+' "sin p'L&cosp cos (a—n') e—sin(n —n') 7
sinp sinp' cos(n —n')

(b) Quadrupole radiation (s=t 2)
~-', e a(~r'& sinp sinp'p(1acosp cosp') cos(n n'—) t(c—osp+cosp') sin(a-n')7
—xee *'(»+7'& sinpL(cosp'+cosp cos2p') cos(a n') —z(co—sp cosp'+cos2p') sin(n —u')7
W (3/8)'"e~"& sinp sin2p'L&cosp cos(n —n') esi—n(n —a') 7
—,'e '(&+r'&t'(cosp cosp'+cos2p cos2p') cos(n n') —t(co—sp' cos2p&cosp cos2p') sin(n —n')7
(3/8)'"e+'& sin2p'L&cos2p cos(n a') —eco—sp sin(n —n') 7
~ sin2P sin2P' cos(n —n')

(c) Cross terms (s = 1, t =2)

w-,'e '(rr»'& sinp'p(cosp+cosp') cos(n n') —t(1&—cosp cosp') sin(n —n') 7
—,'e '(&+r'&p(cosp cosp'&cos2p') cos(n u') —e(co—sp'+cosp cos2p') sin(n —n') 7
(3/8) "e+'r sin2p'Leos(n —n')Wt cosp sin(n —n')7
~ (1/v2) e+n1' sin p sinp'Leos (u —n') wt cosp' sin(n —n') 7
(1/K&) e+'~'

sinP LcosP' cos (a a') +—e cos2P' sin (n —n') 7
t(V3—/2) sinP sin2P' sin(n —n')

Before proceeding further, let us derive two auxiliary
formulas which may be used to 611 out Table II. The
first is hardly more than a rearrangement of the
quantities involved, as follows:

E,*(M) E,'(M') = PE.(M) E,'*(M')j*
=LE,*(M') E,'(M)j.', (9)

where subscript x denotes the operation n ~ n', p ~ p',
y~y'. This formula is convenient for finding such
quantities as E,o(M).E,'(M') from Et*(M') E,'(M).
The second formula is

E.*(—M) E,'(wM')
= (—1)"PE,*(M) E,'(+M'))*, (10)

where rt=M+M'+(1 —8.1) and 3, 1 is the Kronecker
delta. It is useful for obtaining E,*(—M) E,'(WM')
from E,o(M) E,'(&M'). We may prove it by using
Eq. (3) in Eq. (10) and equating the coeflicients of the
exponentials in the resulting expression. Thus we must
show that

(s)d, ~(t) —( 1)M+)&r'd (s)d, &(t) (11)

( )(E,8I(o —( 1))&r+sr'd (s)d, &(o (12)

where we have ignored the symbol for the complex
conjugate since the d„~&~) are real. These relations
follow from the equation

(L) —( 1)&+3rd (L) (13)

which can be obtained from an examination of Table I
or, in the general case, from Eq. (4.19) of Rose. '

' M. E. Rose, E/emeltury Theory of ANgulor 3Iomentnm (John
Wiley Bz Sons, Inc., New York, 2957), p. 54.

By using Eqs. (9) and (10) to complete Table II we

may now construct Table III from Eq. (5). In the last
three entries of Table III one or both of the dipole
components is missing, so that two of these formulas
are only partial mixtures while the last is pure quad-
rupole. However, they are included for the sake of
completeness. In order to 611 out Table III we can
employ two auxiliary transf ormations. To find IZ(M, M')
from IZ(M', M), we use

( n, P, a, ,b()o~ ( n', P', 'a, 'b, (()&, (14)

that is, exchange corresponding primed and unprimed
quantities. To find IZ (—M, WM') from IZ(M, &M'),
we use

(a,a', b, b', p, q') ~ (a, a', b, b', —q, —--q') (15)

with the Euler angles unchanged. These transformations
may be proved by writing out Eq. (5) for the quantities
involved and using Eqs. (9) and (10) to transform one
into the other. The transformation y~y' is not in-
cluded in Eq. (14) since this angle does not appear in the
6nal result IZ.

We may also compute the intensities given in Table
IV from the first and third entries in Table III by using
the upper signs and letting a=a', b=b', n=o, ', and
p= p'. This gives us Is((0) and Is&(+1) when we take
the square root. If we use transformation (15) to find
IZ(—1, T1), we may then obtain I»(—1) by the same
procedure. Similarly, from the last entry in Table III
we obtain Is(+2) as in Eq. (6).

Finally, we note from Eq. (3) that electric and
magnetic mu]tipoles differ only in the sign of p &. As a
result of this, Tables II, III, and IV are the same for a
magnetic quadrupole-electric dipole mixture as for the
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TAnLE III. Transmission factors IZ =
) 8si~(M) ~ 8si'(3P) ('.
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0 sin'P sin'P'f t (3aa' cosP cosP'+bb' cos(q —q ') ) cos(n n—')+43 (ab' siny' cosP ba' —sinq cosP') sin(a —a'))'
+(VS(ab' cosy' cosP+bu' cosq cosP') sin(a —a')+bb' sin(y —y') cos(n —n') ]'}

-', sin'p'{p(veau' cosp' cos2p+ab' cosy' cosp+v%a' cosp' cosy&bb' cos(y —y') cosp) cos(n —n')

&(ab' sinq' cos2p u3ba—' cosp' siny cosp+bb' sin(y —q ') ) sin(n —a') j'
+t'(VSaa' cosp' cosp&ab' cosy' cos2p+ v3'bu' cosp' cosp cos q+bb' cos(y q'—) ) sin(n —n')

+ (—ab' siny' cosp+v3bu' cos'p' sinq &bb' sin(y —y') cosp) cos(n —a)g'}
', {P a-a'(c soP cosP'&cos2P cos2P')+ab' cosq'(cos2P&cosP cosP')

+ha' cosq (cosP cosP'+cos2P')+bb' cos (y—y') (1+cosP cosP') g cos (n —a')
+gab'(cosP &cosP' cos2P) —ba' sin q (cosP'+cosP cos2P') —bb' sin(q —y') (cosP&cosP') 7 sin(n —n') }'
+-', {taa'(c ops' cos2p&cosp cos2p')+ab' cosy'(cosp+cosp' cos2p)
+ba' cosq (cosP'&cosP cos2P')+bb' cos(q —q ') (cosP&cosP') J sin(u —a')
+P ab' siny—'(cos2P&cosP cosP')+ba' siny(cosP cosP'+cos2P')
+bb' sin(y —q') (1+cosp cosp') j cos(n —n') }'

—', sin'P sin'P'{L(+V3aa' cosP cosP'+ab' cosy') cos(n n')+—ab' sinq' cosP sin(a —a')]'
+L(VFaa' cosp'+ab' cosy' cosp) sin(a —n') ab' s—iny' cos(n n')]—'}

-', sin'p{ L(aa'{cosp'&cosp cos2p'}+ah' cosy'{cosp&cosp'}) cos(n —a')
+ab' sinq '(1+cosP cosP') sin(a —n') g'
+L(aa'{cosP cosP'&cos2P'}+ah' cosy'f 1&cosP cosP'}) sin(u —a') ab' siny—'(cosP&cosP') cos(a )aj—'}

—,'a'a" sinmp sin'p'f(cosp+cosp')'+sin'p sin'p' c o(sn n'))—

electric quadrupole-magnetic dipole mixture we have
been describing, although only the latter is of much
physical interest,

EXPERIMENTAL POSSIBILITIES

Angular correlation measurements have been fre-
quently used to determine the mixing ratio a/b and the
relative phase q.' At 6rst4 allowance was made for the
possibility that the ratio is a complex number, a/(be'&).
However, Lloyd' showed that the assumption of time-
reversal invariance limits p to the values 0 or m. Since
the discovery of violations of the validity of parity
conservation, attention has been turned toward experi-
mental methods of checking time-reversal invariance
too. ' ' More recently, the Mossbauer eRect has been
proposed' as a technique for polarizing the daughter
nucleus in an angular correlation experiment involving
time-reversal and parity, and has been used' in a
coincidence experiment to determine the E2/3II1 mixing
ratio of the 123-keV transition in Fe57.

The results of our paper might be used to determine
u/'/i and y for nuclei which show the Mossbauer effect"

3 For example, T. Tamura and H. Yoshida, Nucl. Phys. 30, 579
(1962).

4 D. S. Ling, Jr., end D. L. Falko{I, Phys. Rev. 76, 1639 (1949).
s S. P. Lloyd, Phys. Rev. 81, 161 (1951).' M. Morita and R. S. Morita, Phys. Rev. 107, 1316 (1957);110,

461 ($958).
7E. M. Henley and 3. A. Jacobsohn, Phys. Rev. 113, 225

(1959).
s B. A. Jscobsohn and E. M. Henley, Phys. Rev. 113, 234

(1959).' M. Morita, Phys. Rev. 122, 1525 (1961).
"H. de Waard and F. van der Woude, Phys. Rev. 129, 1342

(1963).
"Third International Conference on the Mossbauer EGect,

edited by A. J. Bearden, Rev. Mod. Phys. 36, 496 (1964).

and are known to emit mixed Z2/M1 radiation. "
Although only a limited number of such nuclei are
known, and the Mossbauer eRect requires the ground
state to be the final state of a low-energy ((150-keV)
transition, still Zeeman experiments using only the
Mossbauer eRect can serve as a complement to the
techniques described above. Of particular interest would
be a more accurate check of time-reversal invariance for
such nuclei.

CONCLUSION

The theory of dipole-quadrupole mixtures has been
presented in detail for emitter and absorber nuclei
oriented in magnetic fields so that separated Zeeman
lines appear. The method used is a traditional one since
it amounts to an extension of Malus' law, discussed in
most texts on optics. Both 8 (the "polarizer") and 8'
(the "analyzer" ) are projections of the electric vectors
on the plane of observation, the g~, q J, or z, j plane.
Malus' cos'(rr cr') law h—olds for the case of plane-

polarized radiation, M=M'=0. It is obtained by pro-
jecting one vector on the other, squaring the magnitude

TAsI.E IV. Intensities for quadrupole-dipole mixtures.

Is& (0) = (3/4) a' sin'2P+ b' sin'P

In (&1)= ss La'(cos'P+cos'2P)
&2ab cosq ( co' s+pco2s)p+b'(1 +c o' s)p7

1,(~2) = (1/8)a'(4 sin'P+sin'2P)

"G. N. Belozerskii and Yu. A. Nemilov, Usp. Fiz. Nauk 72, 433
(1960) LEnglish trsnsl. :Soviet Phys. —Usp. 3, 813 (1961)j.
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of the resu1t and dividing by the intensities as in Eq.
(8).We have extended this method to include elliptically
polarized radiation for multipole mixtures and the pure
multipoles which are special cases of these mixtures.

Since Eqs. (3) and (13) are perfectly general, the
method may be extended to multipole mixtures of any
order. Possible use of these results in experiments has
also been brieQy described.
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Beta Decay pf Y™f
PHILIP W. DAvIs, JEAN KERN, * AND RAYMOND K. SHELINE

Departmertt of Physics, Florida State Urtioersity, Tallahassee, Ftonda
(Received 14 May 1964)

An 0.620-MeV P branch has been observed to compete with the previously reported gamma decay from
the 3.14 h Y~'~. The calculated values, derived from the shell model for the branching ratio t (0 620 MeVtt )/
(0 482-MeV y) = 1.16X 10 'g and the log ft (7 54) are compared with the experimental values of 3.8+1X10 2

and 7.04+0.13, respectively. The small discrepancy is probably due to impurities in the shell-model con-
6gurations assumed for the transition.

INTRODUCTION

'HE 0.685-MeV 29Ysi leVel (TI/2=3. 14 h) haS
been shown' ' to gamma decay to an 0.203-MeV

level and then to the ground state in a simple cascade
with no measurable crossover. Spins and parities of
7+ for the 0.685 MeV level and 3—for the 0.203-MeV
level have been established by the above groups, the
ground-state spin and parity being previously estab-
lished as 2 —by Bartholomew. ' From shell-model con-
siderations, the 39th proton is in the p, /2 shell and the
51st neutron is in the d5~2 shell outside of a ggi2 closed
shell of 50 neutrons. ' This implies that the 2—ground
state and the 3—state result from the (pi/2ds/2) con-
6guration. The simplest assumption as to the con6gura-
tion of the 7+ isomeric level is to promote one proton
into the gs/2 shell, creating the (gs/sds/2) configuration,
and allowing the gamma decay from this state to in-

volve a change only in the state of one nucleon.
The levels in 49Zrs999 have been studied by Ford, '

Sheline, Lazar et al , Bjffrnholm . et at. ,"and Bayman
ef al." In his study of this nucleus, Ford' has shown

t This work was supported in part by the U. S. Atomic Energy
Commission under Contract AT-(40-1)-2434.

*Supported in part by the "Fonds National Suisse de la
Recherche Scienti6que. "

' R. L. Heath, J. E. Cline, C. W Reich, E. C. Yates, and E. H.
Turk, Phys. Rev. 123, 903 (1961).

2 C. Carter-Waschek and 3.Linder, Nucl. Phys. 27, 415 (1961).
~ W. S. Lyon, J. S. Eldridge, and L. C. Bates, Phys. Rev. 123,

1747 (1961).
4W. L. Alford, D. R. Koehler, and C. E. Mandeville, Phys.

Rev. 123, 1365 (1961).
'G. A. Bartholomew, P. J. Campion, J. W. Knowles, and

G. Manning, Nucl. Phys. 10, 590 (1959).' P. F. A. Klinkenberg, Rev. Mod. Phys. 24, 63 (1952).' K. W. Ford, Phys. Rev. 98, 1516 (1955).' R. K. Sheline, Physics 23, 923 (1957).
~ N. H. Lazar, G. D. O'Kelley, J. H. Hamilton, L. M. Langer,

and W. G. Smith, Phys. Rev. 110, 513 (1958).
"S.Bjornhglm, O. B. Nielsen, and R. K. Sheline, Phys. Rev.

115, 1613 (1959)."B.F. Bayman, A. S. Reiner, and R, K. Sheline, Phys. Rev.
115, 1627 (1959).

that the low-lying states in Zr" should be determined
by the proton configurations (Pi/2)', (gs/2)', and (pi/2fs/2).
Sheline' erst observed the low-1ying expected levels
of (1.752 MeV)9+, (2.182 MeV)2+, and (2.315 MeV)s
by populating them through the decay of Nb". Due to
its spin, the 5—level can be unambiguously assigned
to the (PI/2g9/2) orbital. Experimentally, this level was
found to decay 84% to the ground state with an E5
gamma and 14% to the 2.182-MeV level by an E3
gamma transition. Furthermore, it was shown' —"that
the ground state and the first excited state should both
be mixtures of (gs/2)' and (pi, 2)' configurations.

The relative population of the ground and 6rst ex-
cited 0+ states in Zr" by the Y"ground state" through

p decay and by the Zr'9 (2.182)2+ state through y
decay, establishes ""that the ground-state configura-
tio»s 63% (PI/2) +37%(gs/2)'.

THEORETICAL

By examining the initial and 6nal configurations of
the states involved in the beta transition between the
ground states of Y" and Zr", it can be seen that this
transition can be described as the transformation of a
ds/2 neutron into a Pi/2 proton. In a similar fashion, the

(g9/2ds/2) 7+ isomeric state in Y" could be expected to
decay into the (pi/2g9/2)s excited state in Zr" by a
dgi2 neutron transforming via a new beta transition into
a Pi/2 proton.

Not only will it be reasonable to expect that the log ft
value for the two beta decays should be similar, but
that one should be able to predict the log ft value of the
new transition by using the logft value of the ground-
state transition after including the percentage (63%)
of mixing of the ground-state coniguration in Zr" and
a geometrical factor. The geometrical factor is needed

"O. E. Johnson, R. G. Johnson, and L. M. Langer, Phys. Rev.
98, 1517 (1955).


