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The cross section is given in the impulse approximation for inelastic e-He3 and e-H3 scattering assuming an
ejected proton is counted in coincidence with the scattered electron. The process e+He' —+ d+P+e is con-
sidered in detail. This cross section is evaluated for the Gaussian, Irving, and Irving-Gunn three-body wave
functions, the deuteron being described by a Hulthen wave function. The best agreement with the pre-
liminary experimental results is obtained using the Irving-Gunn wave function.

I. INTRODUCTION

'HE structure of the three-nucleon systems He'
and H' has been the subject of much recent experi-

mental and theoretical investigation. Elastic scattering
of high-energy electrons from these nuclei has been used
to measure the charge and magnetic moment form
factors of both He' and H'."Theoretical analysis of
these form factors has given new insight regarding the
wave function for the three-nucleon system. ' ' In ad-
dition to elastic electron scattering, recent experiments
on the photodisintegration of He' also give information
on the structure of the three-nucleon system. ' The pur-
pose of the present paper is to show how the coincidence
cross section for inelastic scattering of high-energy
electrons from He' and H' may be used as a further
sensitive test of the three-nucleon wave function. ~

The three processes we wish to consider are

e+He' ~ d+ p+e',

e+He' ~ (n+ p) g=s+ p+ e',

e+Hs + (rt+rt)g s+p+e

(1a)

(1b)

(ic)
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The inelastically scattered electron and the ejected
proton are to be measured in coincidence. We treat this
process in the impulse approximation, keeping only
those terms corresponding to the electron interacting
with the ejected proton. The electron-proton interaction

is treated in Born approximation using the effective
Hamiltonian given by McVoy and Van Hove. ' Inter-
actions of the ejected proton with the final two-nucleon
system are neglected, so that the relative motion of the
proton and two-nucleon system is described by a plane
wave.

In choosing an initial nuclear wave function we make
use of a classiFication of the possible T=—'„J=—', + states
of the three-nucleon system, given by Derrick and Blatt. '
There are three possible 'S~~2 states, one of which is
symmetric in the interchange of the space coordinates
of any pair of nucleons (this is the dominant state which
we denote by 5), one of which is space-antisymmetric,
and one of which has mixed synnnetry (denoted by S').
In addition, there are three 'I'~~2 states, one 'P~~2 state,
and three 'D~~2 states. In Secs. II—IV of this paper, we
shall be concerned with the contributions of the domi-
nant S state. It is believed that the antisymmetric S
state and the four P states are not present in the ground-
state wave functions to any appreciable extent. ' The
effect of small admixtures of the S', I', and D states
which are thought to be present will be discussed in
Sec. V.

II. aNaLVSIS

In this section we derive a formula for the cross sec-
tion for inelastic electron scattering from He' and H'
with the detection in coincidence of an ejected proton.
For deijniteness we consider the process a+He' —&

d+ p+e' shown in Fig. 1. Since we treat this process in
Born approximation, the incident and 6nal electrons
are described by plane-wave Dirac spinors. We use the
impulse approximation, keeping only the terms corre-
sponding to the electron interacting with the ejected
proton. The effective Hamiltonian for the interaction
between the electron and proton, to order q'/M', can

K. W. McVoy and L. Van Hove, Phys. Rev. 125, 1934 (1962).
~ G. Derrick and J. M. Blatt, Nucl. Phys. 8, 310 {1958).See

also R. G. Sachs, 1Vnclear Theory (Addison Wesley Publishing
Company, Inc. , Reading, Massachusetts, 1953), p. 180.' J. M. Blatt, G. H. Derrick, and J. N. Lyness, Phys. Rev.
Letters 8, 323 (1962).
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Fxo. 1.Inelastic elec-
tron scattering.

be written in the form'

lL1+ (j)j &'.(q') "*'
g

F»(q')
C(1i'~)e ""+e*'*'(li'~)l

with P; and fr the initial and final nuclear wave
functions.

After squaring the matrix element and summing over
electron spins we obtain

(4pre')'
(«,~fIQI' »-rQ*k J

electron g
spins

—2z,Qk, J*—2E,Q*I, J—2zfQk, J*

+2k,' Jkr. J*+2k"J~k&' J+q'I Ql' —q J.J"') (3)

The evaluation of the coincidence cross section is then
reduced to the evaluation of the nuclear matrix elements

Q and J, which depend on the choice of initial and final
nuclear wave functions. In choosing these wave functions
we will be guided to some extent by the previous results
on elastic electron scattering and photodisintegration
of He'.

For the initial three-body wave function f, we closely
follow the notation of Schiff' and write the dominant
S-state wave function as

f;(ri, rp, rp) =u(r», rip, rpp)Pp, (6)
~i.(q')+ "Fp.(q')

(r ~ (q xn)e—"'~ where the spatial wave function u is completely sym-
rnetric under the interchange of any pair of nucleons.
The spin-isospin function pp is defined to be

(f2

+ LF»(q')+2~~F»(q') je "*~
I
u,). (2)

83II2

The notation used is as follows: k, and kf are the initial
and final electron four momenta; q'= (k,—k~)' is the
four-momentum transfer to the proton; Iii~ and Ii2„
are the Dirac and Pauli form factors of the proton; 0.

is the Dirac matrix which operates on the free-electron
spinors I; and Ny, y and e are the momentum and spin
operators for the proton, ~„ is the anomalous moment
of the proton in nuclear magnetons, and M is the nucleon
mass. We use units in which A=c=1 arid the metric
a b=apbp a.b-

It is convenient to write the matrix element for the
reaction in the form

~~= —(4 "/q')L( l,&Q
—( I.I ) Jj (3)

where

g2

Q= ~»+ (~»+2~.F»)
SM2

X Qfl Q 2I 1+'rp( j)]e"*'I4,), (4a)

p~
J= Qfl 2 -'ll+r U)3 (f,e"*~+e"*'1)2'

+iLF'»+~np, „)/mje*' (e;xq) ly, ) (4b)

Pp ——LXp(1,2,3)g,(1,2,3)—Xi(1,2,3)gp(1,2,3)j/K2, (7)

where the doublet spin functions are given by

xi(1,2,3)=P (-', 1mim —mi
I

—', 1-',m) x,"—"(2,3)X,(,"i(1),

Xp (1,2,3)= Xp'(2, 3)Xi(p"(1) . (sb)

The doublet isospin functions p are defined similarly.
In the final three-body wave function we describe the

ejected proton by a plane wave. That is, we neglect the
final-state interactions between this proton and the
other nucleons. The residual two-nucleon system we
assume to be left in either the 'SJ or 'So state. The final
wave function is then

Pf(ri, rp, rp) =%3' g(rpp) expL —iy,'(rp+rp)/2+ipse rij
XX~(»3)Xvp(1)nr(2 3)sin(1), (9)

where yj is the momentum of the ejected proton and
q= k,—kr. The momentum of the proton in the initial
state, which is the negative of the total momentum of
the recoiling two-nucleon system, is denoted by p;. It is
not necessary to explicitly antisymmetrize the 6nal wave
function, since the interaction and the initial state have
the correct symmetry. The effect of antisymmetrizing
the final state is to introduce the factor V3 in Eq. (9).
The generalized Pauli principle requires that J+T= 1.

Using these wave functions to evaluate the nuclear
matrix elements Q and J, the coincidence cross section
for the three processes may be written, after some alge-
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braic manipulation, in the form:

I. e+He8~ at+p+e'
d8a/zP. ,zo,u„= 28«-l I,l;

II. e+He'~ (28+p)g 8+p+e'
d8a/dz, do,dn„= ,'«-l I,

l

'
III. e+H8 ~ (28+ r8) J 8+p+ e'

d'a/dP. ,dofdn„= ~,
l
I,

I
',

where

l p~ l
(p~2+/lf 2)'/2 q2

(2~)8ll,/Z, —p,/~ l

(10a)

(10b)

(10c)

8 F 2 0
+ tan' —(P1„+8„P2~)2+ tan' —(2p/ —q)'

A. Gaussian Wave Function

The spatia)ly symmetric Gaussian wave function is

88( 12 28 18) A exp' 212 ( 12 + 28 +r18 )7
= A expL —n2(r2+3p2/4)7,

where the normalization constant A is given by

(16)

The three-body wave functions we shall consider are
the Gaussian and Irving~ wave functions, which were
used by Schi6' in his analysis of elastic e—He' and e—H'
scattering, and the Irving-Gunn wave function, "
which Berman, Koester, and Smith' used in their analy-
sis of the photodisintegration of He'. The techniques
used to perform the required integrations analytically
are given in Appendix B.

A = 38/4'/2r8/2 (17)

and

Fg„~ 0 „+ sec2-t k" (2pq q)k—f (2y/ —q)4' 2

—2M(k„+kg) (2pr —q)7, (11)

The required integral I1(p,) is straightforward and turns
out to be

42r8/2AX a /r a )-
3n' V3u &v3n&

I.(p,) = d'/ ~"~/. (p) expl:2(q —yr) r7~(pr) (»)

The vectors y and r are related to r~2, r~3, and r23 through
the equations r»= p, r»=r —p/2, r»=r+9/2, while

b
—

tr by-e""" 1—cl l e &"/"'. (18)
v3n 43n~

In Eq. (18), 4(x) is the error function defined by

0 M«&
——e4 cos2 (0/2)/4E ' sin8 (8/2) . (13)

The kinetmatical relations among the parameters ap-
pearing in Eqs. (9) to (13) are given in Appendix A.

Note that since q—y~=y, is the initial momentum
of the ejected proton, the cross-section factors into the
cross section for scattering from a proton of momentum

y;, times the probability of ending a proton with mo-
mentum p; in the initial nucleus. The angular distribu-
tion of the coincidence proton clearly provides a sensi-
tive test of the initial three-body wave function.

III. ANALYTICAL RESULTS

In this section we give analytical results for the pro-
cess e+Hea-+ d+ p+e' for some specific wave functions.
%e choose to discuss this process in detail since the deu-
teron wave function is relatively well known, allowing
the three-body system to be investigated without the
additional complications arising from uncertainties in
one's understanding of the two-body system. %e de-
scribe the deuteron by the Hulthen wave function"

81(p)= L&/(4~)'"7(~ "—a ")//, (14)

where a=45.8 MeV, b= 285 MeV, and the normaliza-
tion constant is

X=
l
2ab(a+b)7'"/(b —a) .

"L. Hulth6n and M. Sugawara, in Handbgch der Ehysik,
edited by S. Fliigge (Springer-Verlag, Berlin, 1957},Vol. 39.

C (X)= e-8'1'. (19)

N(f12 r28 r18)=A exp' 2n( 12 +r»'+ 18 )'"7
=A expL —22n(2r2+3p2/2)'/'7

where the normalization constant A is given by

(20)

A =38/4n'/(120)'/22r'/2. (21)

In this case, using the techniques given in Appendix 3,
one finds the integral I1(y,) to be

I1(p') =
25602r8/2 (b2 —a') AX

X
(a2+ p) (b2+ p) L1+ (gl'82/3rr2) + (2p 2/&2) 7'//2

(22)

While the integral in Eq. (22) can be evaluated analytic-
ally, it was found to be more convenient to compute 1t

"J.Irving, Phil. Mag. 42, 338 (1951)."J.C. Gunn and J. Irving, Phil. Mag. 42, 1353 (1951).

B. Irving Wave Function

The spatially symmetric Irving wave function is
defined to be
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numerically, owing to the complexity of the analytical
result.

1s

C. Irving-Gunn Wave Function

The spatially symmetric Irving-Gunn wave function

~(ru, rz3, r23)
= A exp[ —-', n(r&2'+ r93'+ rq32) '~')/[rqP+ rqP+ r2 'j'~'
=A exp[ —

~~ n(2r2+ 3p~/2) ~~2)/[2r2+ 3p~/2g~/2 (23)

with

6.0

OP fJ)

oE

O
4,0

EXPERIMENT—IRVING -GUNN

--- IRVING

A =3"4n'/42~'" (24)

The required integral in this case is evaluated as dis-
cussed in Appendix B. The result is

256m'I'(b' —a') A E
1~(v') =

2.0

(a'+k') (b'+k') [1+(Sk'/3cP)+ (2p '/n') O'I'

(25)

Again the remaining integration can be performed ana-
lytically, but we leave it in this form for computational
convenience.

IV. NUMERICAL RESULTS

We have evaluated the coincidence cross section
numerically for the three-body wave functions described
above. The experimental conditions chosen for the calcu-
lation were those at which recent data have been ob-
tained, "namely E;=549.1 MeV, By=443.4 MeV, and
8= 51.68 deg. The corresponding four-momentum trans-
fer is q'= —4.75 F '. Ikinematic relations useful in
performing the computations are given in Appendix A.
The results are shown in Fig. 2, where the coincidence
cross section is given a,s a function of 0~, the angle be-
tween the ejected proton momentum and the incident
electron beam. The values of the parameter o. for the
three cases were the following: For the Gaussian
0.=75.9 MeV, for the Irving o,=250 MeV, and for the
Irving-Gunn &=152 MeV. For the Gaussian and the
Irving wave function these values are those found by
Schiff in his analysis of the elastic e—He' and e—H'
experiments. ' In the case of the Irving-Gunn, we use the
value of n, found in the analysis of the photodisintegra-
tion of He', which was also found to fit the charge form
factor and the Coulomb energy of He'. '

Recent measurements of the e—He' coincidence cross
section'4 are indicated in Fig. 2 for comparison with the
cross sections calculated for the completely symmetric
Gaussian, Irving, and Irving-Gunn wave functions.
Comparing the calculations with the experimental

'4 A. Johansson (to be published).

0
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Fxo. 2. The cross section d'o-/dL&'fdQfdQ„ for the process e+He' —+
d+p+e' as a function of the proton scattering angle 8„ for the
conditions E;=549.1 MeV, Ef ——443.4 MeV, and 0=5j..68 deg.
The curves shown are the results obtained using Gaussian, Irving,
and Irving-Gunn three-body wave functions having parameters n
of 75.9, 250, and 152 MeV, respectively. The normalization is
absolute.

results, one sees that the Irving-Gunn wave function
gives an adequate fit to the data. The Irving and Gaus-
sian wave functions give rather poor. its, the Gaussian
being considerably worse than the Irving.

V. ADMIXTURES IN THE THREE-BODY
WAVE FUNCTION

The calculations shown in Fig. 2 include only the
contribution of the dominant S state of the He' wave
function, the contribution of the other nine possible
states being neglected. Before any de6nite conclusions
may be reached regarding the coordinate dependence
of the wave function, it is important to know the con-
tribution of these other states.

Of the ten possible states which can be present, vari-
ational calculations of the binding energy of the triton
indicate that the fully antisymmetric S state and the
four I' states are not present in the wave function to
any appreciable extent. "These same calculations sug-
gest that the total D-state probability may be of the
order of a few percent, while the probability of the S'
state was found to be of the order of or less than 1%.

In the analysis of the elastic electron scattering on
He' and H', Schiff found that the difference in thecharge
form factors of He' and H' could be explained by an
admixture of the S' state of the order of 4%.'

Although these additional states are present with, at
most, a few percent probability, the square of the matrix
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element can contain an interference with the 5 state
proportional to the amplitude, which can be important.
For reasons given below only the 5' state contributes
an important interference term of this type.

The 5 state and that I' state which have coordinate
wave functions which are completely antisymmetric
clearly cannot contribute to the matrix element since
the 6nal-state deuteron coordinate function is sym-
metric. Moreover, the remaining three I' states cannot
contribute to the matrix element. Their wave functions
are proportional to r ~ g, which leads to a vanishing
matrix element when integrated over the azimuthal
angle of either r or g.

Although the contribution to the matrix element from
the three D states does not vanish, its interference with
the 5-state matrix element vanishes when averaged over
spins, assuming the target is unpolarized and neglecting
the magnetic part of the interaction. Consequently, to
order qs/M2 times the D-state amplitude, there is no
contribution to the interference allowing the D state to
be neglected also.

The remaining state, called S', does indeed contribute
an interference term with the 5 state and cannot be
ignored is present with a probability of a few percent.
Following the notation of Schiff, ' the three-body wave
function including the S' state is

1P (rl r2 18) CO'S5 N(fls fls f23)4'8

+sinbL2/2(rl r2 rs)gl 2/1(rl r2 rs)4)2) (26)
where

to be

IJ'(p,)= d'p d'f pJ(y) expLi(sl —py) r)2/1(y, r). (30)

respectively. We assume P is not too different from n
so that only lowest order terms in p —42 need be retained.
In this approximation the normalization constants 8
are

B= (v3/352rs)'/2)424/(n —p)),
for the Irving wave function, and

B= (6&3/Ssrs)'/2Lns/(n —P)),

(32a)

(32b)

for the Irving-Gunn wave function.
Using techniques similar to those given in Appendix 8,

one finds the integrals I~' to be

Numerical calculations for the process e+Hes —+

d+p+e' considered above have been carried out in-
cluding the 5' contribution in the case of the Irving and
Irving-Gunn wave function. As can be seen from Fig. 2
there is little point in considering the Gaussian wave
function further. For the Irving and Irving-Gunn wave
functions the function g is given by

g(rl r2 rs) B expI 2 (& f13 +/2 f28 +p f12 ) ) (31a)

and
B expL —-', (n'f1 3'+/2'f 23'+p'f 12') '/')

(fis'+f18'+f28')'"

/t, = (Xsf/2 —X,s/, )/K2,

us= (&ins+&snl)/~2, (27b)

716802rsXB (u —P) (f/2 —as)

9&2o.'

oo (3p,2+4&2)ksdk

(/32+//2) ($2+$2)L1+ (8/2/3~2)+ (2p 2/~2))p/2

(33a)

pp Xl, s alld 211,2 being defined by Eqs. (7) and (8) ~

The coordinate functions ~~ and s2 can be written in
terms of a single function g(rl, rs, rs) which is symmetric
in its first two arguments.

for the Irving wave function and

3] 22/2/1s B (/2 —p) (f/2 —432)

(/32+ Ps) (///2+ jP)3v2ns

2/1(rl, rs, rs) = Lg(rl, rs, rs)+g(rl, r, ; rs)
—2g(rs, rs, r,))/g6, (28a)

Ii'(ll*) =
2/2(rl, rs, rs) = Lg(rl, rs, rs) —g(rl, rs, rs))/W2. (28b)

We have separately normalized the S and S' parts of
11/, so that sins' is the S'-state probability. Using Eq. (26)
for the initial wave function modifies the cross sections
given in Eqs. (9) to read

-Q'E1+Q'+ (1+Q')'") (1+Q')""

Q2 (1+Q2) 3/2
Q

4 (]+Q2) 8/2I. e+He' ~d+ p+ e'

d ~,idE dQ dQ =,oo~cos8Iy+sinSIy ~ ~29a~ for the Irving-Gunn wave function where

dk, (33b)

II. 8+He ~ (fs+P)g p+P+o
d'o/dZydQ/dQ&= 20p~ cos5Ip s'in/1Ip'~'; (29b)

III. e+H'-+ (f3+f3)z=p+P+e'
dso/dEydQqdQ~= o p

~

cos5Ip —sinl1Ip' ~'. (29c)

In similar manner to Eq. (11)we define the S' integrals

Q'= (8&'+6p")/(3~') (34)

The effect on the coincidence cross section of a 4%
(sin5=0. 2) S' state as indicated by the analysis of the
elastic-scattering data is shown in Figs. 3 and 4. The
experimental conditions. are the same as above, i.e.,
E;=549.1 MeV, By=443.4 MeV, and 0=51.68 deg.
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The experimental data indicated in the 6gures are those
ot Johansson. " From Figs. 3 and 4 it is evident that
such a large admixture of S' state d.oes not improve the
agreement in the case of the Irving wave function and

clearly destroys the agreement in the case of the
Irving-Gunn wave function.

VI. SUMMARY

6.0

EXPERIMENT
/ —No S STATEI

I y
—- 4%i S STATE

I
I
s
I
I

In conclusion we wish to emphasize that the coinci-

dence cross section provides a sensitive means for in-

vestigating the three-body wave function. The present
calculations when compared with the experimental data
indicate that the Irving-Gunn wave function is some-

what better than the Irving wave function and that the

Gaussian wave function is a rather poor approximation.
It is consistent with this approximate calculation to
neglect the eBects of admixtures of states other than the
dominant S state amounting to a few percent, with the

exception of the S' state. The results of including the S'
state indicate that an admixture as large as 4%%u~ is
inconsistent with the present data. This conclusion is
corroborated by recent calculations of the slow neutron

capture rate on deuterium. "
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FIG. 4.The cross section d'0/dEfdQfdD„ for the process e+He' ~
d+p+e' as a function of the proton scattering angle 8~ for the
conditions E;=549.1 MeV, Sf=443.4 MeV, and 0=51.68 deg.
The curves are the results obtained using the Irving-Gunn wave
function (n = 152 MeV) with no S' state and with a 4% admixture.
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APPENDIX A: KINEMATICS

2.0

We denote the initial and final electron (proton)
momenta in the laboratory by k; and kf (p; and pf),
respectively, so that momentum conservation requires

pi+ki=yf+kf. (A1)

I.O

0
40

I I

50 55
8& (deg)

60 65

Fro. 3.The cross section d'0/dEfdOfdQr for the process e+He' ~
d+p+e' as a function of the proton scattering angle 8„ for the
conditions E;=549.1 MeV, Ef=443.4 MeV, and 8=51.68 deg.
The curves are the results obtained using the Irving wave function
(a=250 MeV) with no S' state and with a 4% admixture.

Notice that —p; is also the total momentum of the re-
coiling two-nucleon system. Denoting the initial and
6nal electron energies by E; and Ey, respectively, we
have

E ' EQ—Ef+ (yf /2M)+ (yp/2M&), (A2)

where the binding energy En ——M+M& —MH, '. We
define the angles 8, 8~, and 0~ such that cos8=k; kf,
cos8„=k; pf, and cosO~ =pf kf. The kinematic relations
useful in evaluating the cross section are the following:

' N. T. Meister, T. K. Radha, and L. I. Schiff, Phys. Rev.
Letters 12, 509 (1964). qs = (k,—kf)'= 4E;Ef sin'(8/2), — (A3)
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Pfsg1+ (Me/M) j+2Pf (kf coso" —k, cos8„)
+q'+2Me(E/s E—t+Ef) =0, (A4)

k," (2y, —tl)=2Pf Cos8o+kf COS8—k;)

kf (2pf —tf) = 2pf cosO —kt cos8+kf )

(A5)

(A6)

(2yf —tf)s= 4pf'+ tfs —4pf (k; cos8o—kf COSO~) . (A2)

APPENDIX 3: EVALUATION OF INTEGRALS

Throughout we neglect the rest mass of the electron. In
the case when the incident electron, scattered electron,
and ejected proton are coplanar, which corresponds to
the experimental conditions considered in the text, we
have simply 0~=8+8o.

The integral then becomes

AX(b' —a')
d3p d3f

(a'+ k') (b'+ ks)

Rr, s,s= (ss)'/snp; Rt, s, s= (s) /nr (85a)

Qr, s, s= (8/3)'"(1/n)y; Q4, s, s= (92/n)k. (85b)

The six-dimensional integral can then be written as

expLi(p r+k 8)—rsn(2rs+ss p')'/s]
(84)

(2rs+ s ps)n/2

Next, one transforms the two three-dimensional inte-
grals over y and r into one six-dimensional integral
with the substitutions

The integral required in the calculation of I&(p)
for the Gaussian wave function is

Ir(p) =AS d'p d'r expLiy. r—n'r' —en'p']

AX(bs —a')
Ir(p) =

/ (a'+ k') (b'+ k')

64n" expLiQ R—Rj
d'R. (86)

XL(e-"-e— )/pj, (»)

expLip r—sr n (2r'+-' p') "/')
Ir (y) =AX d'p d'r

(2rs+ s ps) n/2

where e has the values 0 and 1 for the Irving and
Irving-Gunn, respectively. The normalization constant
A is given by either Eq. (21) or Eq. (24), whichever is
appropriate. To evaluate this integral we follow the
method of SchiQ' and introduce the Fourier transform
of the deuteron wave function.

1 $(b' —a')
d'x '"'e*q (x) =

(27r)s 47rs/'(a'+k') (b' +k')
(83)

where the normalization factors A and E are given in
the text. This factors into the product of tabulated in-
tegrals giving as a result Eq. (18) of the text.

In the case of Irving and Irving-Gunn wave functions,
the required integral is

expLiQ R—Rj ssr'
d'R=

2
0

e "Js(QR)R' "dR. (82)

For m, either 0 or 1, the radial integral may be written
in terms of elementary functions, while more generally
the result may be expressed in terms of hypergeometric
functions. "Ke give the result only for e equal to 0
or 1 since these are the cases of interest here.

e ~J's(QR)Rs "dR=
2s—nQ2P (& rt)

7r&/s(1+Qs) (r—»)/s
(88)

Combining the results given in Eqs. (86)—(88) we
arrive at the results given in the text for the Irving
(N=O) and Irving-Gunn (I=1) wave functions.
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The angular part of the six-dimensional integral may be
performed by expanding the plane wave in Gegenbauer
polynomials and using their integral properties. "The
result is


