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A quantum-mechanical calculation of the scattering rate of light by light in the polarizable medium of a
plasma is carried out. It is shown that if the frequency coo of the incident light is much greater than the elec-
tron plasma frequency co~, the pA term in the nonrelativistic Hamiltonian coupling the radiation to matter
dominates the j A interaction, provided the frequency shifts der satisfy Ace«coo. In this approximation, the
scattering amplitude is proportional to the Green s function for electron-density fluctuations (which reduces
to the electron-density correlation function in the classical limit). This leads to an expression for the diBer-
ential scattering rate which is formally exact to all orders in the interparticle interactions. The spectrum of
the scattered light in this approximation has resonances at the collective modes of the plasma if coo/c«k~,
the Debye wave number. The total scattering rate is estimated in the collisionless (random-phase) approxi-
mation. Under the conditions of this calculation, rather high plasma densities and temperatures are required
to obtain a detectable rate.

Sec. II it is shown that the 5-matrix element as calcu-
lated in this approximation is proportional to the
density-density Green's function of the plasma. The
conditions for the validity of this approximation are dis-

cussed in Sec. III. In Sec. IV the kinematics for this
process are analyzed, a formally exact formula (in the
pA' approximation) for the differential scattering rate
and an estimate of the total scattering rate for this proc-
ess in the collisionless approximation are given.

I. INTRODUCTION

'HE development of the optical laser has stimu-
lated interest in nonlinear electromagnetic in-

teractions. A polarizable medium such as a plasma or
even the vacuum provides the nonlinear interaction
making possible the scattering of one photon by another.
The process can be described as the absorption of the
radiation by a virtual density fluctuation of the medium
(virtual pair production in the vacuum case) which is in
turn de-excited by producing new radiation. An energy
of mc2 is necessary to appreciably polarize the vacuum so
that the resulting cross section is of order' rssn'(Ace/mc')'
for low energies and is extremely small at optical fre-
quencies. A plasma, on the other hand, is very easy to
polarize and one expects a much larger cross section.
This paper is concerned with a quantum-mechanical
calculation of this cross section. The most interesting
features of the result are the relatively large and
probably observable scattering rate using typical laser
parameters and hot, dense plasmas and the resonances
in the scattered spectrum at the collective modes of a
plasma.

Since we use a nonrelativistic Hamiltonian, the in-
teraction of the radiation with matter consists of a
j A term (j is the current density operator and A is the
vector potential of the transverse radiation field) and a
pA' term (p is the charge-density operator). The key
approximation in this calculation is that the j A inter-
action can be neglected compared with the pA' inter-
action if the frequency coo of the incoming light is muc
greater than the plasma frequency co„provided the fr
quency shifts in scattering are much less than oro. I

II. SCATTERING AMPLITUDE IN
HIGH-FREQUENCY LIMIT

Our treatment will be based on the nonrelativistic
Hamiltonian for matter and radiation which can be
written

(2.1)Hm+HB+Hint

where II is the complete Hamiltonian of the inter-
acting many-particle system, II& represents the free
radiation field and

(2.2)H;„i——Hi+H„

(2.3)d'xj(x, t) A(x, t),
C

$2g 2

Hs ——P
28$gC

d'xrs, (x,t) A(x, t) A(x, t), (2.4)

' A comprehensive summary of the vacuum theory is given by
J. M. Jauch and I". Rohrlich, The Theory of Photons und Electrons
(Addison Wesley Publishing Company, Inc. , Reading, Massa-
chusetts, 2955), Chap. 23. Here re=es/mc is the classical electron
radius.

h where j(x,t) is the total current-density operator (pro-
c- portional to e) for the matter (in the absence of radia-
n tion), r4(x, t) is the number-density operator for par-

ticles of species s with mass m, and charge es, . A(x, t) is
the transverse vector-potential operator for the elec-
tromagnetic field which we treat in the Coulomb gauge
(p' A=O). Because of the mass dependence of (2.3) we

need only consider the interaction with the electron
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density to terms of order m, /m;. Similarly, only the elec-
tron component of the current is important in this case.

We wish to calculate the S-matrix element between an
initial state of two photons (ei,ki,' es,k2) and a final state
of two photons (es,ks, e4, k4). The Dyson-Wick expansion
in the interaction picture of the matter-6eld interaction
(which is the Heisenberg picture of the interacting
system without radiation field) yields the following
terms of fourth order in the vector potential:

kp)

X(Trt.(1)j,(2)j,(3)) X/A2(1)A„(2)A, (3)7, (2.6)

i 4 1
S("=

A 4tc4

X (Tj.(1)j (2)2 (3)j.(4))

Xt A„(1)A,(2)A, (3)A,(4)7. (2.7)

Here T is Wick's chronological operator and N is the
normal product. Of these contributions only S"' makes
an important contribution if co~ and co2 are high fre-
quencies compared, say, to the plasma frequency. This
is a crucial argument in simplifying the calculation. The
argument for this approximation will be given in Sec.
III following the calculation of the S('& contribution.

The S(2& matrix element for this problem is

(kse, ; k,e4~5&'&
~
k,e„kse2)

/' e' )' (4sr)'c'Vo '(nrrt2)' '

&mcsi (16M]M2Msto4)

5 ts& = —— —
~

d'x, d'x,
i'2 2! 2mc2i

X(Ttt,(1)rt,(2)) E[A2(1)A2(2)7, (2.5)

i)'1 f e'
S('& =3 —— — d4xj d4x2 d4x3

fi 3!&2mc'i

(b) tc)
FIG. 1.The three basic contributions to the scattering amplitude

in the pA' or high-frequency approximation. The wavy lines
represent the photons and the shaded bubble represents the elec-
tron density Green's function II„(h) which carries the momentum
and energy denoted in parenthesis (h) = (k,co). a, h, and c refer,
respectively, to the three terms in the amplitude of Eq. (2.9).

The transforms are related by'

11„(k,to) =Rell„+(k,to)

Xi coth —'phoo ImII„+(k,&o) . (2.12)

The brackets (. .) denote the average in the equilib-
riurn ensemble of the matter. II„(1,2) is the Green's
function for electron-density Quctuations. A useful
graphical representation of this amplitude is given in
Fig. 1.The shaded bubble represents the propagation of
a density Ructuation in the system. For certain values of
the k's the resonances of II,.will contribute and we can
describe the scattering process as involving an exchange
of plasmons. To take the classical limit of this result we
express II„in terms of the retarded commutator'

II,.+(1,2) =k 'rt(ti —ts) (/tt, (1),rt, (2)7 ). (2.11)

Xe,oe2"es e,oG„...&"(ktk2k3k4) (22r)

X&'(k,+k2—ks —k4) &(toi+oo2 —tos —~4) . (2.8)

So
lim l'tII„(k,co) =2i(Imii„+(k, &o)/Pto ) . (2.13)

The electromagnetic field is normalized to n~ and n2
photons in the incident beams in a volume Vo corre-
sponding to the interaction volume of the two laser
beams and we have used the notation kr ——(kt,&oi) and
to& ——

I
ki

I
c where

ei"e2 es e4 G„(kik2k8k4)
k((er ' e2)(e3 e4)II (kl+k2)

+(ei es)(e2'e4)II„(ks —ki)

+(ei e4)(e2 es)II„(k4—ki)) . (2.9)
Here

II„(k)= d'(xi —x2)e'""" ""II (1 2), (2.10)

II„(1,2) =k '(Trt, (1)rt,(2)).

In the classical limit only ImII„+ occurs which de-
scribes real density Quctuations (in distinction to ReII„+
which describes virtual processes). Therefore, this ampli-
tude involves a real intermediate state and is closely
related to the cross section for incoherent scattering. '
(The function II„+differs by a factor 42res from the func-
tion II,+ defined in Ref. 3.) The functions II„+can be re-
lated to the partial conductivities of the system and the
longitudinal dielectric function as shown in Ref. 3. Here
we consider only a classical plasma in the random-

~A. A. Abrikosov, I. P. Gorkov, and I. E. Dzyaloshinskii,
PIethods of Qstantstm Field Theory il Statistical 3Ilechartics (Pren-
tice-Hall Inc. , Englewood Clips, New Jersey, 1963).

3 D. F. DuBois and V. Gilinsky, Phys. Rev. 1BB, A1308 and
A1317 (1964), parts I and II.
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er+(k, or) = 1+k 'Qo+(o)/k)+k 'Q +(or/nk)

n = (m./rN;) '",
(2.15)

(2.16)

Qo+(or/k) = 1——e—&~""&'

k 0'
dte&'.

(rr) 1/2 or

+il -
I

-e """'. (217)
E2)

III. HIGH-FREQUENCY APPROXIMATION

Next, we consider the contributions of S('& and S(4& to
the scattering amplitude. It is easily shown that the
total amplitude including these contributions is given

by (2.8) by adding to G„..."'(krk2, k4k4) the terms

6„, ,('& and G„„.,"'.The S{"contribution is

81"em"es'e4'G„, ,"'(ki,k2, k3,k4)

= e 1"e "2e 4' e4'A(m /e')

X{3,pR„„(kr)km, krr+k4)+&„pR„.(kr)k~) k4 —km)

+ t')„.R„p(kr,k4, k4 —k,))
+(3 similar terms with 1 3; 2 4). (3.1)

Here

R„,(k krkrr)
—=h ' gsc4r1tIg tbl3t3

X(TjP(~4tr) j.(&3,t3)p(k, O)), (3 2)

where the Heisenberg operator j„(k,t) is defined by

j„(kt) , d'=xe'~'*j (x t) (3.3)

with a similar definition for p(k, O).
The S(4& contribution is

81"e2 e3'e4'G„, , '"(kr, k2 k3 k4)

= e1 e2"es'e4 k(rr4/e')'{ T„„.,(kr, k2, ka, k4)

+T„,p(kr)ka) k2)k4)+ T„p„.(kr)k4) k2)k4) j
+(3 terms with 1 3; 2 4), (3.4)

where here

T„„.p( ,krkk24, k4)

dt~ dt2 dt git4r ltlgi2t2g —ic4r3t3
3

X(Tj„(ki,ti) j,(k2, t2)j,(ks, t4)j,(k4,0)) . (3.5)

phase approximation (RPA)':

1/2 or Q +(or/k) 2

ImiI„+(k,or) = —
l

—e-«""r' 1—
2& k k'er, +(k,or)

, Q"(-/k)
+ l

e—f(&o/ar)) & (2.14)
2) nk k'4 /+(ko))

where k and co are measured in units of the Debye wave
number kD ——( 4re' rP4)' '/and or„, and

An exact evaluation of these contributions is difFicult

to carry out beyond the RPA for reasons to be discussed.

However, the criterion for the neglect of these contribu-

tions can be established by general physical arguments.

First, let us backtrack a moment and notice that in

(2.9), the last two terms in the amplitude depend only
On the frequenCy digereeCeS o»—or&, o)2 —o)4, WhereaS

the first term depends on the sum orr+o)2. If we let ori

and a&2 become large compared with co„while keeping

l
orl o)3

l ) l
o)2 or4

l
&orr o)2 the term depending on

ori+orm becomes negligible in comparison with the terms

depending on the frequency differences. This follows

from the exact asymptotic form of II„:
4re'11„(k, o))- (Lj„(k,0), p( —k, 0)$)/o)2= k'o)„'/o)'.

This can be seen explicitly for II„in the RPA as given
in (2.14).

Similarly, the functions E.„„and T„„,depend on the
individual frequencies co&, co2, co3 and not only on the
frequency differences. For any physically realizable
functions of the time variables in (3.2) and (3.5) it fol-

lows from the general properties of Fourier transforms

lim R„„(k„~„k„~,; k) =0, (3.7)
oe 1 ~QQ @73 ~oQ

lim R„„,p(kr)o)1, k2,or2) k&)or4) k4) =0. .(3.8)
&14&2»3 ~oQ

This statement applies if the time functions in the inte-

grands of (3.2) and. (3.5) have no singular behavior
worse than step functions. To define the transforms in

(3.2) and (3.5) we must, as usual in S-matrix theory in-

sert the convergence factors e ~ 'l ti for each tixne variable

t; where the limit 4 ~0+ is ultimately to be taken. The
asymptotic limits can actually be carried out formally

by expanding the integrands about t;= 0. This leads to a
result for E.„„,for example, involving a series of terms in-

volving inverse powers of or~ and co3 with numerators
which are averages of products of p(k, O) with various

time derivatives (including the zeroth) of the current

operators. The explicit results are too complicated to
give here.

It is clear then that for supcier4tly high 101 and o)2, i.e.,
~~, A&2))co, the contributions from S"' and S(4) can be
neglected relative to those of S(2& provided we restrict

l
orr —or)r l, l

or2 —
o)4 l «o)1. It remains to be shown what

scale of frequencies is involved. Of the parameters of the
plasma e', e, m, 3f, T the only frequencies that can be
formed are the plasma frequency M„=(4)re'r4/m)'" or

co„ times some function of the dimensionless parameters
X= kryo'/rr, n= (rN/M)' '. If we include the parameters k;
describing the radiation, we can also form the fre-

quencies k;v, =k,(kT/m)r/'=(k;/kD)or„or some com-

bination of X and n times these. If X«1 and ki(k~, the
highest frequency of significance in plasma physics is

cv„. Therefore, a reasonable conservative estimate is to
take co =~„.Since we must have ~I, ~2))co„for the inci-
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ks+ gks

Qks

kI

/k'
k

+kp

FIG. 2. Diagrams for resonant processes in the collisionless
(RPA) approximation; (a) contribution to G~„„&2'; (b) contribu-
tion to G„„,('); (c) contribution to G„„„'.The total amplitude
is obtained by including all permutations of the photon vertices
which lead from the same initial to the same final state. The
braided line represents the dynamically screened Coulomb
interaction. (d) Detail of the triangular vertices.

time of the order of A(E„—E,) ' where E„E—s are the
excitation energies of the atom. Thus, for Ace«E —Eo
we have the well-known result that the j A terms and
the pA' are of comparable magnitude with an important
cancellation leading to Rayleigh scattering. On the
other hand, for hro))E„—Es, the j A terms are negligible
compared to pA' which give rise to Thompson scattering.

Finally, let us discuss these results in terms of the
diagram expansion of the amplitudes R„„and T„„p.
Here we must make use of the theory of temperature
Green's functions' ' ' in which, for example, we go over
to imaginary temperatures P=ir so in the averages we
have

(3.10)

This allows us to impose periodicity conditions in time
on the imaginary temperature Green's functions4 R„,
and I'„„p and we can then use Feynman diagram
methods as discussed in Ref. 5.

In Fig. 2(a) we draw a contribution to G„..."l in the
collisionless approximation (RPA). Here the braided
line represents the dynamically screened Coulomb inter-
action' which has resonances at the collective modes of
the plasma. In Figs. 2(b) and 2(c) we draw the analogous
contributions from G„„„("and Gy p&", respectively.
The double photon or pA' vertex in Fig. 2(a) transfers
the difference frequency ~&—co3 to the simple polariza-
tion loop. The single photon or j A vertices in the tri-
angular loops in Figs. 2(b) and 2(c), however, depend
on the separate frequencies ~&, co2 and so introduce large
energy denominators for ~&, or2))cv„ into these terms.

dent light to penetrate the plasma, this is not a serious
restriction.

More detailed arguments (see Ref. 3 and below) show
that actually, co is of the order of the electron-ion col-
lision I'„ frequency if v,&&c,

0.0100

0.0064-
k2 ~ 01

I'„=XC cu„ in(C, X
—'), (3 9)

0,0036-
I

where Ci and C2 are constants. This can be made plausi-
ble, for example, by expanding the integrand (3.2)
around t&= 0 and t3= 0 to obtain the asymptotic form for
large co&, co3. It is easily shown that for the transverse
components (i.e., et"es"R„„) the leading terms involving

j„(kt,0) and j„(ks,0) vanish leaving only higher order
terms involving time derivatives of j„(kr,ft) and j„(ks,fs)
at t=0 and ts ——0. The frequency associated with the
time rate of change of the current is the electron-ion
collision frequency.

From these arguments we can abstract the general
statement that the j A interaction can be neglected if
the frequency of the incident light in a scattering
problem is so high that in one period of the light the in-
duced currents in the system cannot change appreciably.
The currents in a plasma (ks,((cu) can change ap-
preciably only in a time of order F„. '. For bound elec-
trons in an atom the current changes appreciably in a

k2 05

0.0016—

Q,0004-

k2 ~ 10

0—
-10 IO

4 P. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).' D. F. DuBois, V. Gilinsky, and M. Kivelson, Phys. Rev. 129,
2376 (1963).

FIG. 3. The spectral shape of the scattered light. Here we plot
dpjda& in the RPA versus cd= (cdp —GJg)/co~ various values of
k=k'= ik& —k&iko '. The vertical scale is arbitrary. The ra scale is
normalized to nk. The relatively weak resonances at co=&1 are
not shown on this graph.
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For small k and «e (in plasma units) we can find the
explicit contribution of the j A interaction by appealing
to a type of Ward identity. The amplitude for the
triangular loop in Fig. 2(d) is given by Lremembering
kp=ki+k, «os ——«pi+«o and identifying pp with «e' in
Fig. 2(d)$

4m-e'

ei&es"a»'(ki, hip, k,«o) =-
SZ2

«Pp
(p ei)(y+ki) es

(2')'

1 i zx-p
&o pp $p pp+)rip $p+k. pp+~p fp+k

+(similar term with hip~ —kio, ki —+ —ki) (3.11)

using here the rules of Ref. 5. The transverse photon
self-energy part as discussed in Ref. 6. Equation (4.41)
is given by

4m.e'
gr o(k,kp) =

m2

«I p
(p'e )(0+k )'e

(2n)'

X Q . (3.12)
ro PP

—
$p PP+ko —

Pp+k

This is represented by a simple polarization loop. Were
we generalized slightly from Ref. 6 by taking the
polarizations of the incident and outgoing photons to be
diferent.

Next, expand Z»o in powers of k and kp (in plasma
Units)

e,~es"5„„o(k»)«'io, k,kp)'
= ei "eo"rK»"(ki,kio,' 0,0)+0(ko,k) . (3.13)

we can then use a Ward identity of the form

Qr (k, ,«o,) .- Qr+(ki, «o,) .
&I ~o0

(3.17)

Therefore, for large co~ we can write

e, e,"6»+(k,,«o, ; 0,0) =i(«)/«)p)Q (rk , i)«.pi(3.18)

From Refs. 5 and 6 it follows that' if 'A«1, k&v,((m~
(ug)) I'„.

6„„.Differentiation with respect to p is equivalent to
attaching one zero momentum, zero-frequency screened
interaction line in all possible ways in the particles lines
of Qz and is therefore equivalent to ei"eo"Z»(kl klo 0,0).

In order to use (3.15) in the present problem, we must
be able to analytically continue the tilde functions of
discrete energy variables k~0 to obtain the Green's func-
tions Qr(ki, «oi) and h»(ki, «oi, 0,0) of the continuous
variables «oi. For the two point function Qr(ki, pot)
the procedure is well known. ' We de6ne a function
Qr+(ki, «oi) analytic in the upper half-plane by setting
k~o=co~ for values of co~ in this half-plane. Then for
real ~~

Qr (ki,«oi) = ReQr+(ki, «oi)

+s coth-,'Ph«ei ImQ&+(k»a») . (3.16)

To our knowledge a comparable continuation procedure
for three point functions such as D»(ki, «oi, k,«o) is not
known. We shall therefore assume that for A»(ki, «oi, 0,0)
the continuation procedure is the same as for Qr(ki, «pi).
In the asymptotic limit this is probably valid. The
analytic continuation procedure is a prescription for
treating the poles of the denominators in A„„(ki,«pi, 0,0)
by proper assignment of &i&'s. In the asymptotic limit
in which cv& is much greater than any of the important
states of the system this assignment is not important.
For example, as «pi ~~ in (3.16) we see

(po —
g )' &p pp

—(,
8 1

(3.14)
~p Lpo

—(1 '/2~)+~3

8 &r'~ 4

——
Q "(k, )=l(e e)

P «)l«kn «Pi

My
2

+2i(ei Ps) I'„(1—e e""') (3.19)
PEG' y

(where l« is the chemical potential) to conn ectr
3»o(ki, kio, 0,0) with Qro(ki, hip):

ei"ep"Z»(kiPio, 0,0)= i(«)/Bp)Qz (ki,hip) . (3.15)

This is useful because the properties of Qr have been
given in previous work. More importantly, it is not
hard to see that this identity applies to the fully cor-
rected loops as signi6ed by the omission of the zero
superscripts in (3.15). We may include all possible self-
energy and vertex corrections in the loops for Qr and

' D. F. DuHois, V. Gilinsky, and M. Kivelson, Rand Corpora-
tion, Report RM-3224-ABC, August 1962 {unpublished).

The limit co —+0, k —+0 is actually ambiguous. It is easily
shown that the limit implied by (3.15) is «o —+0, k —&0 with
s&/k ~ 0. Therefore, this limit applies near the acoustic ion reso-
nance where «e/k «««1.

where I'„is roughly as given in (3.9). An exact formula
is given in Ref. 5. In this formula we have kept only
the leading terms in the real and imaginary parts. The
real part is contributed by Q&o+, i.e., the RPA )which
has no imaginary part if «pi

——kic (see Ref. 6)$ while the
leading term in the imaginary part comes from the col-
lision corrections to Qr+.

The expression for D»(ki, «oi, 0,0) obtained from (3.18)

To derive this expression we note that the density n enters
these expressions only via the chemical potentials p, and p;. In the
limit of classical statistics considered here 8/Bp, = e/Bp; =npe/8„
The expression for 471- Ima-p{k, co) =Qz {k,co) co ' given in Ref. 5,
Eqs. (6.23) and (6.25) are proportional to n' and in the high-
frequency limit «e))«e„/see Eq. (6.24)g this is the only density
dependence and F„(«e)=Ra„(6&27«'i') 'ln(4e o/Pit«e)& where C is
Euler's constant. We have also restored a factor (ftk«e) i(1 ee&~)-
which was taken to be 1 in Ref. 5 for the gage Pk@(&j.,
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and (3.19) is to be compared with the corresponding
pA' vertex which is (1/m)Q, +(k,a&) where Q,+(k,cu) is the
complete electron polarization part defined in Refs. 3 and
4. In these references it is shown explicitly that in the col-
lisionless approximation and in the collision dominated
approximation that Q,+(k,~p) =kii' when kv, ))~o. This
limit appears to be generally valid. Since in this case
(1/rg)Q, +=Ppi„' we see that the first term in (3.19) aris-

ing from the collisionless approximation can be neglected
relative to (1/m)Q, + provided kT«mc' (noting that
&oi——kic). Likewise the second term or collision correc-
tion can be neglected provided ~»&~~))F„.

The requirement ki&k& discussed preceding (3.9)
is unnecessarily restrictive as we see from the argument
just given. Equation (3.19) is valid for all values of ki
for which k»v, «co» =k»c. This is satisfied independent of
k» as long as k~7 &(mc'. The argument above applies
when k= Iki —kpl«kii for frequency shifts co in the
neighborhood of the collectively narrowed ion reso-
nance and therefore the diagrams considered above
dominate in this case.' In the case k))k~, on the other
hand, it is physically clear that the scattering must re-
duce to the scattering from independent free electrons,
i.e., essentially to Thomson scattering. In this case it is
well known that only the pA2 interaction contributes for
frequenCieS Such that A~», Aco&((mC2.

We conclude then from these arguments that the
pA' interaction dominates the j A interaction provided

l~p —~4I«~i, ~„and
k T&(mc'. A more detailed study of these requirements in
the vicinity of the plasma resonance is in progress. The
general arguments made preceding (3.9) indicate that
the same restrictions apply in this case. It is clear that
the pA' approximation is valid in the RPA if k~T&gmc2.

IV. SCATTER|.NG RATE AND KINEMATICS

The total scattering rate I' is found from the ampli-
tude using the well-known relation'

r= V,(2~5)4

x (2 I(il If) I'~(E'—&~)~'(P' —P~)).-, (41)

where we sum over final states and average over initial
states. The amplitude (ilail f) is related to the 5
matrix element by

(f I
~

I
~)= (2~@)'~(E;—&r) &'(P;—Pr)(f I ~ If). (4.2)

The volume Vp that must be considered for this problem
is the actual volume of interaction of the laser beams in
the plasma.

The density of final states for this problem is

If we observe only one of the scattered photons, say,
kp for some particular small range of values, then we in-
tegrate over k4 and we find

where

Vp 'dQ3 o)3'

p(&r) =-
2m c' 1—cos20'

h h

cos28 =ks ' k4 ~

(4.4)

(4.5)

cos28o+ 1+2{p&/~p)
cos03 ——

2 cosgp(1+~p/(op)
(46)

A A

where or =or3—co» =o)3—Gap and cos28p =k» ' k2. In the
case &o/~p&&1, for which our approximations are valid,
we see that

03= ep, (4.7)

to terms of order cu/~op. The scattered radiation thus is
found in a cone of angle Op which subtends a solid angle

B,Qo ——27r(h(o/&op) (sin'Hp/cos8p), (4 g)

where des is the eRective range of frequency shifts of the
scattered radiation. We shall see that hip/cop«1 when
collective eRects are taken into account so that the
scattered radiation is confined to a very thin cone.

If we use (4.2), (4.4), and (2.8), we obtain for the dif-
ferential scattering rate into dQ3

dI' rp2 e»e2c 1 co3

d03 4m' Vp co»co2 ~4 1—cos29'

X I(4me')ei&ep"eo e4'G„...(ki, kp, kp, k4) I', (4.9)

where ki, k&, kp, k4 and Mi, pp&, &op, co4 are restricted by
conservation of energy and momentum. For co», co»)or„
we have seen that the first term in (2.9) for G„„.,
[Fig. 1(a)], which transfers an energy coi+pp& to the
density fluctuation, is negligible compared to the other
termS WhiCh tranSfer an energy ~»—co3, m» —co4 prOVided
these di6'erences are small. Keeping only these ampli-
tudes, using (2.9), (2.13), and (4.9) we have

dr e m c(co„)' 1—r2
dQp Vp k pop) 1—cos20'

COnSider the SymmetriC CaSe in WhiCh or»=co2 ——orp.

Then the total momentum of the incoming radiation
defines an axis of symmetry. The final wave vector kp
is restricted by conservation of energy and momentum
to lie in a cone of angle 03 from the axis of symmetry
where

p(&r) =
d k3 dk4

(2~)'Vo'
(2~)' (2~)'

8 (ki+kp kp k4)6(Mi+Mp Mo —M4) . (4.3)
~

I I
Imll„+(k, &u)+ ImII„+(k', co) . (4.10)
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Here we have also chosen the symmetric case co~ =~2——cop

and e~ ——e2 and have summed over outgoing polarizations
es and e4.

If the scattered radiation is observed in the plane
perpendicular to that of the incoming radiation, then
k~k'=V2ks sings. In Fig. 2 we plot the frequency dis-
tribution of the scattered light

The total rate over the central line is then roughly
Lusing et=(m/M)'~'j for photons scattered in a plane
perpendicular to the incoming light

0.3rp' tstttsc(M '" oi,)'pk„)
lr

/ / /

—/cosgp
2 Vs Em ceps 4k)

dt' dt' 2m sin'Op

dc@ d03 cop costIp
(4.11)

tstttsct'3ll ' ' 1 1
~10 "

~

— —— . (4.17)
Vs km (us'k T'"

as a function of co in the RPA using (2.14). This rate
being proportional to te '~ Imil„(k, ce)

~

' is proportional
to the square of the rate or cross section for incoherent
scattering. ' For k«kD the spectrum is dominated by a
central line of width approximately given by

pm, q'" k f kT '"—cu„=ki
Em) kn km;

(4.12)

which arises from the low-frequency ion acoustic plasma
resonance. At ~= &~„ there is also a resonance but in
this experiment it is weaker than the central line by a
factor of (k/kii)'. A more detailed discussion of the be-
havior of ImlI„(k, te) including the effect of collisions
is given in Ref. 3.

The total scattering rate integrated over the central
resonance can be obtained by integrating

Imll„+(k, (u) '
(4.13)

Using only the second term in (2.14) which is the only
contribution Dear the central line

1 Qo(te/k) 4

Cko e—("' ~&' (4.14)
2 „nsk' k'+Qp(o)/k)+Qp(a&/nk)

Changing variables to s=te/uk, this becomes

0.3m.

(Se
k'+ 1+Qs(s)

(4.15)
2Qk

a(k/kD)cu„)) I'„&u~X ln(X '),

then (4.15) can be used.

(4.16)

using lim „sQ(ns) = 1 and k«1 to carry out a numeri-

cal integration. This integral becomes anomalously large
as nk —+ 0 because of the very large contribution from
small a& in the collisionless approximation for II„(k,~).
The collisionless approximation, however, is valid only
for co))I'„,wheret'„ is the electron-electron collision fre-
quency. ' To take this into account we can cut oG the co

integral at a lower limit of I'„and we find that (4.15)
is valid to terms of order (I'„/ak). Therefore (in ordi-
nary units) if

These photons are confined to a solid angle

Ace sin-'Oo

Af)s= AQ
cop cosop

m '"k co„sin'8p
(4.18)

M kD Mp cosop

where we have used (4.8) and (4.12). Here AP is the
increment of azmuthal angle subtended by the detector.
This formula applies to a well collimated beam in which
the angular divergence of the beam is much smaller
than 603 a situation which is easily obtainable from a
laser. '

Including (4.16) we have placed the following restric-
tions for the validity of (3.17): (i) ~o=oit=ces))~& so
that the j A interactions can. be dropped; (ii) ki =ks«kD
so that collective effects dominate and the principal
scattering is confined to the narrow central line. (iii)
) =k,s/ts«1 so that we have a weakly coupled plasma
and (iv) n(k/kD)))X ln(1/X) as in (4.16).

9 Because of the smallness of the solid angle AQ into which the
light is scattered for a well collimated beam, the competing back-
ground of incoherent scattering can be greatly reduced. The dif-
ferential scattering rate d'I'/d~adQq for incoherent scattering inte-
grated over the frequency range of the central ion resonance is
(see Ref. 3)

dr' nIclV, - - nIcS
d0 t/'

ras-'L1+(kg ks)'g rPy

where E is the total number of electrons illuminated by the beam.
Note that this rate is proportional to the solid angle d03 in which
the scattered photon is observed. If we take this solid angle to be
DQ& of Eq. (4.18) which contains the entire central line in the light
by light scattering, we Qnd the ratio of the scattering rates

I't,&(light by light) 1.221- n2 3II co„' kz
P (incoherent) V2 E m a&o k

The factor n2/S can be made at least of order unity using a ruby
giant pulse laser and 5~10". The factor (M/m)(kn/k)~
easily be made large enough to overcome the small factor (w„/a, )'.
Therefore, this ratio can be made greater than unity. This feature
of the experiment makes it possible to discriminate against the
background of competing processes. In addition, since this is a
two-beam experiment, coincidence techniques can be used to dis-
criminate against background. This feature has also been pointed
out by Platzman, Buchsbaum, and Tzoar (to be published) who
consequently believe that even the weaker plasma line can be
observed in light by light scattering. The formula for the scattering
rate at the electron plasma resonance is obtained from our general
results (4.9), (2.9), and (2.13), by noting (see Ref. 3) that if
ks,«co, then 4~e'Imii„+(k, ~) =k'ImLer+(k, cv)] '. This approxi-
mation, however, is not valid near the ion resonances. The authors
are indebted to Dr. P. M. Platzman for communicating these
results to us prior to publication.
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Under these conditions, a rather high plasma density
and temperature are required to achieve an observable
counting rate using existing laser technology. For ex-
ample, using an amplified giant pulse ruby laser, it is
possible to obtain ei=e2 ——10" photons in an inter-
action volume t/'=10 ' cm' with k1——10' cm ', coo ——3
&10"sec '. To achieve a counting rate of 10"photons
per second or 10' photons in a 10 ' second laser pulse
requires [with (M/rtt) 't'= 10'] (T in 'K)

n'/Z'") 10».

This restriction as well as those listed above can be met
for the minimum values m~3)&10'7 cm ' and T~2

X10' 'K= 20 eV. Such plasrnas are probably obtainable
in various magnetic pinch machines. "
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"The main restriction involved in the above estimate is the
requirement k&«ko which requires n/T&10" if kq=10' cm '.
However, if the experiment could be performed at extremely small
scattering angles 0 then we have k = king and we can relax the condi-
tion k~&kD. In this case the principal limitations are n(k/kn)
))X Ink ' and the requirement (4.19) on the counting rate. These
conditions can be satisfied for the minimal values n~10" cm
and T 3 eV. For forward angles, however, the problems of back-
ground discrimination would become more dificult.
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Mobility of Positive Ions in Li(luefied Argon and Nitrogen*
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Drift velocities of positive ions in liquid argon and liquid nitrogen have been measured for applied electric
fields in the range from 0 to 4300 V/cm. These data were taken at pressures of 1 atm and at temperatures
corresponding to the respective liquids' boiling points at this pressure. A time-of-Bight spectrometer, con-
sisting of an ion source, an electronic shutter, and a final drift space, was used. The ions were produced by the
technique of 6eld ionization. This was accomplished by immersing a tungsten point (etched down to a radius
of less than 1000 A) in the respective liquefied gases and applying a high potential to it. The times of Qight of
the ions across the final drift space were determined by amplifying the ion current and displaying it on an
oscilloscope. It was found that step-like changes in the curves of ion mobility versus E occurred in both
liquid argon and liquid nitrogen. Five such constant-mobility regions were found in liquid argon and four in
liquid nitrogen. These constant mobilities were found to be 6.0)&10, 9.75X10, 8.50&(10, 7.75&(10
and 7.25X10 cm /V-sec in liquid argon, and 2.50X10 ~, 1.80X10 ~, 1.54X10, and 1.36X10 3 cms/V-sec
in liquid nitrogen. It is suggested that these mobilities may correspond to ionic clusters.

I. INTRODUCTION

'PARTICULARLY during the past 12 years, the
measurement of mobility of ions in gases has been

developed as a powerful tool for the identification of the
ions. Enough cross comparisons with mass spectro-
graphic data have been made to establish the validity
of mobility measurements for such identification. The
existence of several types of ion in one gas, for example,
He+ and Hes+ in helium, ' and the change of one ion to
another with changing Geld strength to pressure ratio,
E/p, as for example, Ns+ changing to N4+, ' are illus-

trations of the successes of mobility measurements in
accomplishing ion-type identi6cation.

In gases, the cross section for ion-molecule collisions
regulating the mobility is a momentum transfer cross
section. There are at least three diferent atomic phe-
nomena now well known which contribute to this cross
section. The 6rst and most obvious is the hard-sphere

*Work supported by a grant DA-ARO-D-31-124-6432.
~ J. A. Hornbeck, Phys. Rev. 83, 374 (1951);84, 615 (1952).
s R. N. Varney, Phys. Rev. 89, 708 (1953).

cross section. While the actual form of interaction is
probably an inverse ninth power repulsive force, a
hard, -sphere model is a good approximation. The second
critical atomic characteristic influencing momentum
transfer cross sections is the inverse fifth power attrac-
tive polarization force acting on ions in the vicinity of
atoms or molecules. (In this work, only nonpolar sub-
stances are contemplated so that atomic or molecular
polarizations must be induced by the field of the ions in
the near proximity. ) The combination of these two
forces was assembled into a single theory of mobilities
by Langevin' in 1905 in a monumental work both in
point of effort and importance. In it, by laborious
numerical integrations, he deduced equivalent momen-
tum transfer cross sections. Quantum-mechanical
modernizations by Hasse and Cook' in the period 1926
to 1931 have improved but only slightly altered Lange-
vin's results.

The third atomic phenomenon of key influence on

e P. Langevin, Ann. Chim. et Phys. 8, 245 (1905).' H. R. Hasse and W. R. Cook, PhiL Mag. 12, 554 (1931).


