Atomic Negative Ions: The Iron Series

ENRICO CLEMENTI

IBM San Jose Research Laboratory, San Jose, California (Received 12 March 1964)

Results of the Hartree-Fock calculations on the ground state for the ions $K^{-}({}^{1}S)$, $Sc^{-}({}^{3}F)$, $Ti^{-}({}^{4}F)$, $V^{-}({}^{5}D)$, Cr2^{-(§}S), Mn^{-(§}D), Fe⁻⁽⁴F), Co⁻⁽⁴F), Ni⁻⁽²D), and Cu⁻⁽¹S) are reported. By first-order perturbation calculation on the Hartree-Fock functions, the relativistic energy has been computed. The relativistic and the Hartree-Fock energies now available, and the correlation energy of the corresponding neutral atoms, previously obtained, make it feasible to obtain accurate estimate of the electron affinities for the above series of negative ions. These are 0.92, -0.14, 0.40, 0.94, 0.98, -1.07, 0.58, 0.94, 1.28, 1.80 eV for K⁻, Sc⁻, Ti⁻, V⁻, Cr⁻, Mn⁻, Fe⁻, Co⁻, Ni⁻, and Cu⁻, respectively, for the states above indicated. The uncertainty on the above data is estimated to be from 0.1 to 0.35 eV.

I. INTRODUCTION

N this third paper on the negative ions,^{1,2} we extend the theoretical analysis of the stability of the negative ions to the elements of the iron series. As done previously we have computed the Hartree-Fock energy and wave functions. A careful optimization of the orbital exponents for the basis set, although somewhat laborious and expensive in terms of the required computer time, was necessitated by the fact that the computed total energies must be accurate to within a few parts in 107. Indeed only with such an accuracy can we draw meaningful conclusions about the stability of the negative ions in the third period of the atomic system. A simple example can illustrate the need for such accuracy. Let us consider $F(^{2}P \text{ state})$, $F^{-}(^{1}S \text{ state})$, Cu ($^{2}D \text{ state})$, and $Cu^{-(1S \text{ state})}$: the corresponding Hartree-Fock total energies are -99.409293 a.u., -99.459360 a.u., -1638.9606 a.u., and -1638.9624 a.u. The relative stabilities of F⁻ to F and Cu⁻ to Cu are therefore (considering only the Hartree-Fock energy for the moment) 0.050077 a.u. and 0.0018 a.u., respectively. In the first case (F and F⁻) an uncertainty of ± 1 in the seventh decimal figure corresponds to 0.003 eV uncertainty, in the second case (Cu and Cu⁻) the same uncertainty of

 ± 1 in the seventh figure corresponds to 0.03 eV uncertainty. Since the electron affinities are at the most on the order of a few electron volts, it is clear that an uncertainty of 0.03 eV can not be neglected if one wishes to obtain an accurate prediction of the stability of the negative ions. To make this above consideration even more stringent, we note that we heavily rely on such accuracy since we have to compute small differences between large quantities, as the Cu and Cuexample illustrates. For this reason, although more work has been devoted to this computation than to the preceding one,^{1,2} the results might be less accurate.

On the other hand, our experimental knowledge³ on the stability of the negative ions in the third period is so limited at present that our prediction, even if less accurate than those for the first two periods of the atomic system, should be extremely useful.

II. THE HARTREE-FOCK FUNCTIONS

The computation of the Hartree-Fock functions for the negative ions is not simply a by product in the analysis of the stability of the negative ions. Indeed these functions are of intrinsic value in that they furnish the first required information in order to com-

TABLE I. Potassium negative ion $({}^{1}S)$.

	S basis	1 <i>s</i>	2 <i>s</i>	35	4s		P basis	`2 <i>p</i>	3p
1s 1s 2s 2s 3s 3s 3s 4s 4s 4s 4s 4s	$\begin{array}{c} 19.06810\\ 30.84670\\ 16.87060\\ 7.51000\\ 6.54286\\ 3.95350\\ 2.61230\\ 2.54324\\ 0.34514\\ 1.26173\\ 0.6152 \end{array}$	$\begin{array}{r} +0.93330\\ +0.01816\\ +0.05955\\ +0.00462\\ -0.00273\\ +0.00209\\ -0.00225\\ +0.00116\\ -0.00001\\ -0.00010\\ +0.00004\end{array}$	$\begin{array}{r} -0.27169 \\ -0.00348 \\ -0.14146 \\ +0.98301 \\ +0.15045 \\ +0.00151 \\ +0.00602 \\ -0.00289 \\ +0.00004 \\ +0.00034 \\ -0.00014 \end{array}$	$\begin{array}{r} +0.09046\\ +0.00068\\ +0.04934\\ -0.35132\\ -0.19797\\ +0.48726\\ +0.61958\\ +0.08752\\ +0.00094\\ +0.01040\\ -0.00331\end{array}$	$\begin{array}{r} +0.01243\\ -0.00001\\ +0.00641\\ -0.04711\\ -0.03200\\ +0.08399\\ +0.08092\\ +0.01425\\ -0.37571\\ -0.25517\\ -0.57465\end{array}$	2p 2p 3p 3p 3p 3p	$\begin{array}{c} 8.63410 \\ 15.20120 \\ 6.91269 \\ 3.48000 \\ 2.28513 \\ 1.65156 \end{array}$	$\begin{array}{r} +0.66861 \\ +0.04211 \\ +0.34538 \\ +0.01382 \\ -0.00465 \\ +0.00140 \end{array}$	$\begin{array}{c} -0.20571\\ -0.01263\\ -0.13525\\ +0.42887\\ +0.50698\\ +0.18452\end{array}$
	$-\epsilon^{a}$	133.41312	14.37001	1.62894	0.01021			11.39934	0.83454

^a The orbital energies ϵ , are given in atomic units.

¹ E. Clementi and A. D. McLean, Phys. Rev. 133, A419 (1964).
 ² E. Clementi, A. D. McLean, D. L. Raimondi, and M. Yoshimine, Phys. Rev. 133, A1274 (1964).
 ³ L. M. Branscomb, Atomic and Molecular Processes (Academic Press Inc., New York, 1962).

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} 2p \\ +0.68533 \\ +0.04662 \\ +0.31769 \\ +0.01444 \end{array}$	3p -0.22979 -0.01504	<i>D</i> basis 3 <i>d</i> 3.26577	3d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.68533 +0.04662 +0.31769	-0.22979 -0.01504	3d 3.26577	1 0 20758
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	+0.01444 - 0.00470 - 0.00142 - 0.0	-0.14425 +0.43160 +0.48038 +0.21725	3d 8.54690 3d 4.87290 3d 1.62554 3d 0.73442	+0.30738 +0.0229 +0.07922 +0.54356 +0.28721
$-\epsilon^{a}$ 165.61011 18.76899 2.26563 0.01553	15.36041	1.28758		0.05999
^a See footnote to Table I. TABLE III. Titanium negative io	n (4F).			
S basis 1s 2s 3s 4s P basis	2 <i>p</i>	3 <i>p</i>	D basis	3 <i>d</i>
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	+0.69304 +0.05359 +0.29913 -0.00100 +0.00023	$\begin{array}{c} -0.23102 \\ -0.01995 \\ -0.16469 \\ +0.40944 \\ +0.70805 \\ +0.03661 \end{array}$	3d 1.88584 3d 9.10000 3d 4.40390 3d 3.17000 3d 0.92696	+0.51194 +0.02858 +0.24042 +0.17625 +0.25473
$-\epsilon^{a}$ 182.95594 21.08303 2.54613 0.01576	17.45537	1.48341		0.11734
^a See footnote to Table I. TABLE IV. Vanadium negative io	n (⁵D).			
S basis 1s 2s 3s 4s P basis	2 <i>p</i>	3 <i>p</i>	D basis	3 <i>d</i>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrr} +0.66059 & -\\ +0.07195 & -\\ +0.30355 & -\\ +0.02327 & -\\ -0.00157 & -\\ +0.00041 & -\end{array}$	$\begin{array}{c} -0.21206 \\ -0.03122 \\ -0.19509 \\ +0.33494 \\ +0.78740 \\ +0.05007 \end{array}$	3d 1.77900 3d 9.90720 3d 4.77520 3d 2.85268 3d 0.94564	+0.40026 +0.02732 +0.28121 +0.32610 +0.16928
$-\epsilon^{\mathbf{s}}$ 201.16366 23.51204 2.83469 0.01628	19.66408	1.68653		0.16150
* See footnote to Table I. TABLE V. Chromium negative ion	n (6S).			
S basis 1s 2s 3s 4s P basis	2 <i>p</i>	3p	D basis	3d
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-0.19320 -0.05155 -0.23309 +0.27956 +0.85988 +0.07120	3d 1.92376 3d 10.35870 3d 5.22640 3d 3.29019 3d 0.95000	$\begin{array}{r} +0.45143\\ +0.02875\\ +0.25903\\ +0.33025\\ +0.13007\end{array}$
$-\epsilon^{a}$ 220.22237 26.04511 3.12346 0.01668	21.97562	1.88959		0.21121

TABLE II. Scandium negative ion (^{3}F) .

* See footnote to Table I.

A982

ENRICO CLEMENTI

S basis 1*s* 2s 3s P basis D basis **4**s 2p30 3d+0.31622 +0.0266924.60960 +0.95313-0.30382 +0.11249-0.015879.58940 +0.85705-0.339811*s* 2t3d3.53372 $+0.0005\overline{5}$ 1*s* 37.60670 +0.027060.00102 +0.000352p16.26990 +0.14813-0.042563d11.17720 2s 21.11770 +0.024850.16251 +0.062370.00798 3p 6.08000 +0.01849-0.16547 3d5.61570 +0.268192s 10.66850 +0.00560+0.96989-0.37978 +0.051143p 5.28000 +0.01164+0.691163d2.11562 +0.436593s 9.75659 -0.00369 -0.19202 -0.23928+0.039693p 3.43000 0.00909 +0.413863d1.05601 +0.15609+0.02111-0.08033 3s 5.73348 +0.00269+0.464063p 2.60000+0.00406+0.17873-0.00238-0.091643s 4.14800 -0.00712 +0.59485+0.15611-0.009453.65000 +0.00084+0.002384s+0.30545 +0.56438 +0.35499 $1.81690 \\ 0.94167$ -0.00016**4**s -0.00011-0.00632 ++0.000064s 4s +0.000040.00158 +0.000480.46670 -0.00001-0.00002240.18541 28.74044 3.45333 0.01778 --- 6⁸ 24.44740 2.13065 0.21354

TABLE VI. Manganese negative ion (^{5}D) .

^a See footnote to Table I.

TABLE VII. Iron negative ion $({}^{4}F)$.

	S basis	1 <i>s</i>	2 <i>s</i>	3 <i>s</i>	4 <i>s</i>		P basis	2 <i>p</i>	3 <i>þ</i>		D basis	3 <i>d</i>
1s 1s 2s 2s 3s 3s 4s 4s 4s 4s 4s	25.87820 38.73300 21.33300 11.01230 9.50024 6.99020 4.67090 3.92345 1.92680 0.97817 0.47310	$\begin{array}{r} +0.95055\\ +0.02055\\ +0.04065\\ -0.00494\\ +0.00639\\ -0.00533\\ +0.00255\\ -0.00085\\ +0.00013\\ -0.00005\\ +0.0001\end{array}$	$\begin{array}{c} -0.31123\\ +0.00638\\ -0.18072\\ +1.04045\\ +0.14508\\ +0.00138\\ +0.00433\\ -0.00034\\ +0.00007\\ -0.00002\\ +0.00001\end{array}$	$\begin{array}{r} +0.11569\\ -0.00299\\ +0.07178\\ -0.41687\\ -0.31096\\ +0.37788\\ +0.73550\\ +0.20282\\ +0.00836\\ -0.00218\\ +0.00026\end{array}$	$\begin{array}{c} -0.01609 \\ +0.00065 \\ -0.00896 \\ +0.05494 \\ +0.05400 \\ -0.06852 \\ -0.11125 \\ -0.01984 \\ +0.29883 \\ +0.57819 \\ +0.35663 \end{array}$	2p 2p 3p 3p 3p 3p	10.09080 17.02370 6.07960 5.46805 3.32897 2.55178	+0.85985 +0.14309 +0.04426 -0.01638 -0.00331 +0.00220	+0.34628 +0.04066 +0.24371 -0.83640 -0.45476 -0.07263	3d 3d 3d 3d 3d	2.65000 11.50000 6.09290 4.16000 1.37669	$\begin{array}{r} +0.43340\\ +0.02764\\ +0.24144\\ +0.23945\\ +0.25609\end{array}$
	$-\epsilon^{a}$	260.99733	31.53787	3.78210	0.01849			27.02015	2.36998			0.23025

^a See footnote to Table I.

TABLE VIII. Cobalt negative ion $({}^{3}F)$.

	S basis	1 <i>s</i>	2 <i>s</i>	3s	4 <i>s</i>		P basis	2 <i>p</i>	3 <i>p</i>		D basis	3 <i>d</i>
1s 1s 2s 3s 3s 3s 4s 4s 4s 4s 4s	26.82720 41.36000 22.00000 12.16050 10.54700 6.28224 5.20835 4.55000 2.01586 1.05393 0.51285	$\begin{array}{r} +0.95651\\ +0.01824\\ +0.03556\\ -0.00308\\ +0.00283\\ -0.00435\\ +0.00392\\ -0.00084\\ +0.00006\\ -0.00003\\ +0.00001\end{array}$	$\begin{array}{r} -0.31021 \\ +0.00422 \\ -0.19747 \\ +0.94455 \\ +0.27318 \\ -0.02555 \\ +0.03105 \\ -0.00614 \\ +0.00056 \\ +0.00023 \\ +0.00007 \end{array}$	$\begin{array}{r} +0.11687\\ -0.00262\\ +0.07618\\ -0.37352\\ -0.29637\\ +0.62255\\ +0.21304\\ +0.42074\\ +0.01490\\ -0.00449\\ +0.00135\end{array}$	$\begin{array}{c} -0.01548\\ +0.00028\\ -0.01058\\ +0.05097\\ +0.04156\\ -0.06724\\ -0.07763\\ -0.03236\\ +0.28048\\ +0.55388\\ +0.39407\end{array}$	2p 2p 3p 3p 3p 3p	11.11190 19.95740 7.16122 5.67893 3.47914 2.70842	$\begin{array}{r} +0.89058 \\ +0.07682 \\ +0.11035 \\ -0.05554 \\ +0.01574 \\ -0.00564 \end{array}$	$\begin{array}{r} -0.35251\\ -0.02026\\ -0.13405\\ +0.72240\\ +0.43569\\ +0.07798\end{array}$	3d 3d 3d 3d 3d	2.33789 12.07030 6.56390 4.52420 1.09462	+0.49292 +0.03074 +0.18767 +0.37022 +0.12389
	$-\epsilon^{a}$	282.67423	34.45397	4.12084	0.01938			29.71005	2.61790			0.24891

^a See footnote to Table I.

pute cross-section scattering and transition probabilities of the negative ions. It is known that there are important parameters in the interpretation of the data which leads to the experimental electron affinity.³ As was done for the first,⁴ second,⁵ and third⁶ row isoelectronic series of neutral and positive ions, the basis set, in which the Hartree-Fock atomic orbitals are expanded,

was chosen to consist of Slater type functions of the form

$$\chi = Nr^{n-1}e^{-\zeta r}P_l^{|m|}(\cos\theta)e^{im\phi}$$

where N is a normalizing factor; n, l, m are integers, ζ is a variational parameter, and r, θ, ϕ are the spherical polar coordinates centered at the nucleus.

The expansion coefficients for the basis set of a given Hartree-Fock atomic orbital are obtained variationally and the number of the basis set as well as the values of the parameters ζ are tentatively assumed and finally

⁴ E. Clementi, C. C. J. Roothaan, and M. Yoshimine, Phys. Rev. **127**, 1618 (1962). E. Clementi, J. Chem. Phys. **38**, 996 (1963).
⁵ E. Clementi, J. Chem. Phys. **38**, 1001 (1963).
⁶ E. Clementi, J. Chem. Phys. **40**, 1944 (1964).

	S basis	1 <i>s</i>	2 <i>s</i>	3s	4 <i>s</i>	i	P basis	2 <i>p</i>	3 <i>þ</i>		D basis	3 <i>d</i>
1s 1s 2s 2s 3s 3s 3s 4s 4s 4s 4s 4s	$\begin{array}{c} 27.78100\\ 40.98670\\ 22.66670\\ 12.65000\\ 10.71570\\ 6.77220\\ 5.51882\\ 4.80234\\ 2.13400\\ 1.36272\\ 0.65772 \end{array}$	$\begin{array}{c} +0.95286\\ +0.02299\\ +0.03502\\ -0.00462\\ +0.00454\\ -0.00697\\ +0.00598\\ -0.00155\\ +0.00015\\ +0.00008\\ +0.00002\end{array}$	$\begin{array}{c} -0.31399 \\ +0.00534 \\ -0.20540 \\ +0.96677 \\ +0.27429 \\ -0.06393 \\ +0.05931 \\ -0.01204 \\ +0.00136 \\ -0.00070 \\ +0.00016 \end{array}$	$\begin{array}{r} +0.11861 \\ -0.00294 \\ +0.08151 \\ -0.38917 \\ -0.31953 \\ +0.60995 \\ +0.23951 \\ +0.43811 \\ +0.02054 \\ -0.00814 \\ +0.00167 \end{array}$	$\begin{array}{c} -0.01389\\ -0.00060\\ -0.01436\\ +0.05897\\ +0.02631\\ +0.02479\\ -0.19065\\ +0.01427\\ +0.18026\\ +0.43775\\ +0.57280\end{array}$	2p 2p 3p 3p 3p 3p	11.34410 18.00300 11.35750 6.30257 4.13333 3.32861	+0.77060 +0.15814 +0.08351 +0.03094 -0.01475 +0.00704	$\begin{array}{r} -0.27908 \\ -0.05975 \\ -0.09638 \\ +0.50178 \\ +0.38195 \\ +0.27257 \end{array}$	3d 3d 3d 3d 3d	2.40323 12.67910 6.87180 4.63000 1.13064	+0.47493 +0.03049 +0.20784 +0.37846 +0.11402
	$-\epsilon^{\mathbf{a}}$	305.20260	37.48017	4.46255	0.01801			32.50837	2.86762			0.26335
a	See footnote	to Table I.		· · ·				·····				
					TABLE X. Co	opper n	egative io	n (1 <i>S</i>).				
	S basis	1 <i>s</i>	2 <i>s</i>	3s	4 <i>s</i>		P basis	2 <i>p</i>	3 <i>þ</i>		D basis	3 <i>d</i>
1s 1s 2s 3s 3s 4s 4s 4s 4s	$\begin{array}{c} 28.74260\\ 42.11330\\ 23.33300\\ 13.14530\\ 11.41790\\ 6.66320\\ 5.03278\\ 2.14219\\ 1.15760\\ 0.55896\\ -\epsilon^{a} \end{array}$	$\begin{array}{c} +0.95368\\ +0.02397\\ +0.03287\\ -0.00468\\ +0.00403\\ -0.00869\\ +0.00816\\ -0.00126\\ +0.00009\\ -0.00004\\ +0.00001\\ 328.59633\\ \end{array}$	$\begin{array}{c} -0.31974\\ +0.00758\\ -0.20573\\ +0.96833\\ +0.25735\\ -0.02090\\ +0.02740\\ -0.00378\\ +0.00035\\ -0.00015\\ +0.00004\\ 40.62345\end{array}$	$\begin{array}{c} +0.12161\\ -0.00398\\ +0.08124\\ -0.38914\\ -0.29605\\ +0.87316\\ -0.09108\\ +0.48426\\ +0.01630\\ -0.00538\\ +0.00154\\ 4.81586\end{array}$	$\begin{array}{c} -0.01469\\ -0.00003\\ -0.01248\\ +0.05443\\ +0.03239\\ -0.01477\\ -0.13158\\ -0.01288\\ +0.26578\\ +0.52421\\ +0.43598\\ 0.02031\end{array}$	2p 2p 3p 3p 3p 3p	12.11030 19.00000 12.18720 7.48146 4.62620 2.84094	$\begin{array}{r} +0.74691 \\ +0.14460 \\ +0.11297 \\ +0.03786 \\ -0.00563 \\ +0.00182 \end{array}$	$\begin{array}{c} -0.25451\\ -0.06111\\ -0.13748\\ +0.31550\\ +0.71488\\ +0.14391\\ \end{array}$	3d 3d 3d 3d 3d	4.73170 13.00000 7.34375 3.06659 1.62434	+0.30474 +0.02662 +0.23842 +0.37446 +0.25444 0.29411
a	See footnote	to Table I.										
					TABLE 2	XI. Co	pper (2S).		-			
	S basis	1 <i>s</i>	2s	3 s	4 <i>s</i>		P basis	2 <i>p</i>	3 <i>p</i>		D basis	3d
1s 1s 2s 3s 3s 3s 4s 4s 4s 4s 4s	$\begin{array}{c} 28.74260\\ 42.11330\\ 23.33300\\ 13.14530\\ 8.02300\\ 6.64662\\ 5.03278\\ 3.16106\\ 1.75420\\ 0.86248 \end{array}$	$\begin{array}{c} +0.95331\\ +0.02418\\ +0.03354\\ -0.00596\\ +0.00702\\ -0.00959\\ +0.00659\\ -0.00110\\ +0.00029\\ -0.00007\\ +0.00002\end{array}$	$\begin{array}{c} -0.32022\\ +0.00785\\ -0.20473\\ +0.96623\\ +0.26346\\ -0.02451\\ +0.02452\\ -0.00212\\ +0.00069\\ -0.00014\\ +0.00003\end{array}$	$\begin{array}{c} +0.11945\\ -0.00276\\ +0.08571\\ -0.39847\\ -0.27171\\ -0.04254\\ +0.83877\\ +0.43364\\ +0.02962\\ -0.00071\\ +0.00021\end{array}$	$\begin{array}{c} -0.01740 \\ -0.00135 \\ -0.02206 \\ +0.08500 \\ +0.00229 \\ +0.18178 \\ -0.34309 \\ -0.01019 \\ +0.01705 \\ +0.65070 \\ +0.46716 \end{array}$	2p 2p 3p 3p 3p 3p	12.11030 19.00000 12.18720 7.48146 4.62620 2.84094	$\begin{array}{c} +0.74696 \\ +0.14459 \\ +0.11292 \\ +0.03787 \\ -0.00564 \\ +0.00183 \end{array}$	$\begin{array}{c} -0.25454\\ -0.06105\\ -0.13729\\ +0.31523\\ +0.71456\\ +0.14448\end{array}$	3d 3d 3d 3d 3d	5.03170 13.00000 7.34375 3.06659 1.70984	+0.31049 +0.02938 +0.20893 +0.38617 +0.25756
	6 ⁸	328.78967	40.81586	5.00921	0.23525			35.61491	3.32224			0.48963
-												

TABLE IX. Nickel negative ion (^{2}D) .

^a See footnote to Table I.

.

fixed via a laborious (for a large set) process of trials. Since we have started with smaller and easier systems¹⁻⁴ we are confident, on the basis of our previous experience, that the Hartree-Fock functions reported are accurate to at least three decimal places and the corresponding energies are accurate to about 7 figures.

In Tables I to X we give the basis set, expansion coefficients, and orbital energies for the negative ions $K^{-}({}^{2}S)$, $Sc^{-}({}^{3}F)$, $Ti({}^{4}F)$, $V^{-}({}^{5}D)$, $Cr^{-}({}^{6}S)$, $Mn^{-}({}^{5}D)$, $Fe^{-}({}^{4}F)$, $Co^{-}({}^{3}F)$, $Ni^{-}({}^{2}D)$, and $Cu^{-}({}^{1}S)$. The program we have used was kindly supplied to us by Professor

C. C. J. Roothaan and information about this program is available in a number of papers.⁷ The ground-state Hartree-Fock functions for the corresponding neutral atoms are given elsewhere,⁶ with the exception of $Cu(^2S)$ which is reported in Table XI. In Table XII we list the Hartree-Fock total energies of the ground-state atoms, the corresponding energies for the negative ions ions and their differences, hereafter referred to as

⁷ C. C. J. Roothaan and P. Bogus, *Methods in Computational Physics* (Pergamon Press, New York, 1963), Vol. I; see also C. C. J. Roothaan, Rev. Mod. Phys. **32**, 179 (1960).

TABLE XII. Hartree-Fock total energies (in a.u.).

Atoms	Ions $\Delta(HF)^{a}$
$\begin{array}{c c} K(^2S) & -599.16447 & K^-\\ Sc(^2D) & -759.73554 & Sc^-\\ Ti(^3F) & -848.40526 & Ti^-\\ V(^4F) & -942.88266 & V^-(Cr(^5D) & -1043.3061 & Cr^-\\ Mn(^6S) & -1149.8651 & Mn\\ Fe(^5D) & -1262.4424 & Fe^-\\ Co(^4F) & -1381.4134 & Co^-\\ Ni(^3F) & -1506.8689 & Ni^-\\ Cu(^2S) & -1638.9606 & Cu^-\\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

a In eV.

 Δ (HF). With exception of Cr⁻ and Cu⁻, all the negative ions given in Table XII are unstable in the Hartree-Fock model. It should be noted that the $\Delta(HF)$ of -0.731 eV for the chromium case is computed with reference to the $Cr({}^{5}D)$ state which lies 0.9608 eV above the ground state of the Cr ground state. Hence the reported value of $\Delta(HF)$ for Cr does not indicate that Cr⁻ is stable in the Hartree-Fock model.

III. CORRELATION AND RELATIVISTIC ENERGY

As known, the correlation energy⁸⁻¹⁰ is the main factor in the stability of the negative ions^{1,2} at least for the cases where the electrons added to the neutral atoms create a new electron pair in the negative ion. This is the case of $K^{-(1S)}$, $Cr^{-(6S)}$, $Mn^{-(5D)}$, $Fe^{-(4F)}$, $Co^{-}({}^{3}F)$, $Ni^{-}({}^{2}D)$, and $Cu^{-}({}^{1}S)$. For the K⁻ negative ion the electron pair formed is the $4s^2$; if we use for this case the same correlation energy obtained in the formation of the 4s² pair in the Ca atom from the Ca⁺ ion,⁹ then we obtain for K a stabilization due to the correlation energy of 0.0365 a.u. = 0.993 eV. The computed value of $\Delta(HF)$ for potassium and the above value of the correlation stabilization gives an electron affinity of 0.920 eV for the K^- ion.

The same arguments presented for the $K^{-}({}^{1}S)$ negative ion hold, in general, for the $Cu^{-}({}^{1}S)$ negative ion, but one should note that the use of the correlation stabilization from $Ca^+(^2S)$ to $Ca(^1S)$ is insufficient for the $Cu^{-}(^{1}S)$ ion, because of the 4s-3d intra-pair correlation present^{8,9} in Cu⁻ but not in Ca⁻. For this reason one should use the correlation stabilization from $Zn^+(^2S)$ to $Zn(^1S)$, which is computed to be 0.0644 a.u. = 1.752 eV. The computed value of $\Delta(HF)$ for copper (Table XI) and the above value for the correlation stabilization gives an electron affinity of 1.801 eV for $Cu^{-}({}^{1}S)$.

From previous work⁹ the introduction of a 3d electron, brings about a variation in the correlation energy which is given in Table XII. Although these data were obtained for the neutral atoms, they should represent a reliable estimate for the case of negative ions as we have discussed in the case of second period negative ions.² It is gratifying to note that this independent estimate of the Cu electron affinity, obtained by considering the addition of one 3d electron to Cu in the ²D state, with configuration K(2), L(2), 3s(s) 3p(2) 3d(9) 4s(1), leads to a value of 1.799 eV in nice agreement with the value of 1.801 eV obtained previously by adding a 4s electron to Cu in the ²S state, with configuration K(2), L(8), 3s(2) 3p(6) 3d(10) 4s(1).

The limits of uncertainty for the correlation energy stabilization reported in Table XII are those given in our previous work on the correlation energy for the neutral atoms. Since this uncertainty is up to 0.35 eV, we have not included in this work the small effects due to the relativistic correction. It is noted that this correction is larger in the third row than in the second row, but smaller than the uncertainty we have given in Table XIII.

TABLE XIII. Electron affinity for III row elements (energies in eV).

Case	HF stability	Corr. stability	Elec. affinity ^d
$ \frac{K^{-}({}^{2}S)}{Sc^{-}({}^{8}F)} \\ Ti^{-}({}^{4}F) \\ V^{-}({}^{6}D) \\ Cr^{-}({}^{6}S)^{a} \\ Mn^{-}({}^{5}D) \\ Fe^{-}({}^{4}F) \\ Co^{-}({}^{3}F) \\ Ni^{-}({}^{2}D) \\ Cu^{-}({}^{1}S)^{b} \\ Cu^{-}({}^{1}S)^{c} $	$\begin{array}{r} -0.073 \\ -1.285 \\ -0.915 \\ -0.587 \\ +0.721 \\ -3.739 \\ -2.084 \\ -1.758 \\ -1.445 \\ +0.049 \\ +0.365 \end{array}$	$\begin{array}{c} 0.993 {\pm} 0.05 \\ 1.143 {\pm} 0.1 \\ 1.306 {\pm} 0.2 \\ 1.524 {\pm} 0.25 \\ 1.220 {\pm} 0.35 \\ 2.666 {\pm} 0.20 \\ 2.694 {\pm} 0.15 \\ 2.721 {\pm} 0.20 \\ 1.752 {\pm} 0.10 \\ 2.823 {\pm} 0.08 \end{array}$	$\begin{array}{c} 0.902 \pm 0.05\\ -0.142 \pm 0.1\\ 0.391 \pm 0.2\\ 0.937 \pm 0.25\\ 0.980 \pm 0.35\\ -1.073 \pm 0.20\\ 0.582 \pm 0.20\\ 0.936 \pm 0.15\\ 1.276 \pm 0.20\\ 1.801 \pm 0.10\\ 1.799 \pm 0.08\end{array}$

Subtract in the second column 0.961 eV due to excitation between the

Cr(2D) and Cr gound state. ^b Hartree-Fock stability relative to the Cu(2S) ground state. ^e Hartree-Fock stability relative to the Cu(2D) excited state; subtract 1.389 eV from second column due to electronic excitation. d Neglecting relativistic effects.

IV. CONCLUSIONS

The computed stability of the negative ions in the third row might be somewhat in error as we have indicated, but it is worthwhile to note that by computations on the first and second row negative ions we have predicted electron affinities within a few percent of the experimental one. This gives us confidence in the above estimate.

In a forthcoming paper,¹⁰ we shall discuss the negative ions from Ga- to Br-. However, this will require some time, because we shall need, in addition, correlation data obtained from presently incomplete computations on the neutral and positive ions from Ga to Kr.

⁸ E. Clementi, J. Chem. Phys. **38**, 2248 (1963); **39**, 175 (1963); see also L. C. Allen, E. Clementi, and H. Gladney, Rev. Mod. Phys. **35**, 465 (1963).

⁹ E. Clementi, J. Chem. Phys. 41, 295 (1964).

¹⁰ A collection of Hartree-Fock functions for the first three periods of the periodic system (He to Kr) will appear in or supplement to the IBM J. Res. Develop. This collection of about one thousand Hartree-Fock functions was previously reported, *in part*, in several papers (Refs. 1, 2, 4-6).