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Total Energies from Numerical Self-Consistent Field Calculations*

E. C. SNOW, $ J. M. CANEIELD, t AND J. T. WABER

lfnioerscty of Catcfornca, Los Atamos Sccenttfic Laboratory, Los Alamos, 1Veto 3Eextco
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Total energies computed by using a Hartree, a Hartree-Fock-Slater, and a relativistic Dirac-Slater nu-
merical self-consistent 6eld calculation for the normal ground states of all the elements are reported. These
results are discussed and compared with those from two Hartree-Fock analytical wave functions and from a
nonrelativistic Thomas-Fermi approximation. The methods of calculating total energies are also presented.

INTRODUCTION

ECENTLY, several different self-consistent field
calculations have been completed for a wide range

of atoms, and a few total energies have been reported.
The purpose of this paper is to report the total energies
obtained by using three numerical calculations and to
compare these results with those of three independent
calculations. Also, an attempt is made to explain some
of the diIIferences.

The three numerical calculations are those of Boyd,
Larson, and %aber, ' Herman and Skillman ' and Liber-
man, Waber, and Cromer. ' These three methods differ
in that the Boyd-Larson-Waber (BLW) one is a non-
relativistic Hartree (NR-H) calculation with an ex-

change correction used only in the total energy, the
Herman-Skillman (HS) one is a nonrelativistic Hartree-
Fock-Slater (NR-HFS) calculation, while the Liberman-
Waber-Cromer (LWC) one is a relativistic Dirac-Slater
(R-DS) calculation. These are compared with two
analytical nonrelativistic Hartree-Fock (NR-HF) re-
sults, namely those of Clementi and of Watson. ' A
comparison is also made with the results of a nonrela-
tivistic Thomas-Fermi (NR-TF) approximation.

THEORY

In the following discussion, the three numerical calcu-
lations will be described together with the methods
used in calculating total energies. These descriptions
will be followed by a discussion of the Thomas-Fermi
approximation.

In the hitherto unreported BLW calculation, no
exchange term appears in the (NR-H) potential func-
tion. In this calculation the total energy is approximated
by use of the Slater I, Ii~, and G~ integrals, which in-
clude exchange, as described in Vol. I of Slater's book. '
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The LKC wave functions are solutions of the coupled
Dirac relativistic equations, in which the Slater p ~'

approximation" for the exchange term is used in con-
junction with the Latter' self-interaction correction, in
constructing the central field potential. The total
energies were calculated from the expressions described
below.

First, consider the single eigenvalue e; of the Hartree-
Fock equation, which is given by

.,=(T';+v;)+p, v,,+p, w...
where T; is the kinetic energy of the ith electron, V; is
the potential energy of the ith electron with respect to
the nucleus, P; V;; is the average electrostatic potential
energy of the ~th electron with respect to the other
electrons, and P, W,, is the average exchange potential
energy of the ith electron with respect to the other
electrons. The total energy Ez is then equal to

I.'r Qe;——', Q Us ————,
' Q lv,;,

where, lb;(r) is a two-component spin orbital represent-
ing the wave function for the ith electron, and

p(r )=Z lb (r )4'(r )

Then,

Q Vcs= Q P;*(r)U(r)g;(r)dsr

p(r) V(r)d'r. (4)

r J. C. Sister, Phys. Rev. 81, 385 (1951).' J'. C. Sister, Quantum T'keory of Atomic Structure (McGravr
Hill Book Company, Inc. , New York, 1960), Vol. II, Chap. 17.' R. Latter, Phys. Rev. 99, 510 (1955).

since pair interaction is counted twice. Consider the
direct potential of the ith electron to be given by
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Now consider the exchange potential of the ith electron
P; W';; to be given by

In Slater's method, summation over j and integration
over r' can be replaced by the expression

where W(r) is the free-electron exchange potential,
namely

(in atomic units). Scott and later March and Plaskett"
made corrections to account for boundary effects and
exchange which lead to the expression for total energy

Ezg= —0.7687Z'"+-,'Z' —0.266Z'" (10)

for the nonrelativistic case. This expression was used
in calculating the (NR-TF) total energies.

RESULTS AND DISCUSSIONS

Table I gives the total energies Ez for the normal
ground state of the elements with atomic numbers in the

Thus,
W(r) =—(8—1/8sr)' 'Pp(r) j' '. (6) TABLE I. Comparison of the total energies of low

atomic number, free atoms.

l (r)W(r)d'r, (7)

and the total energy is then

~(r) LV(r)+ W(r)ld'r, (8)

which is the expression used in this method.
The HS wave functions are solutions of the so-called

Hartree-Pock-Slater equations since the Slater p'" ap-
proximation of exchange and the Latter self-interaction
correction are employed in the (NR-HFS) potential.
The HS eigenfunctions were recomputed by using the
program Herman and Skillman published. ' Total
energies were also calculated using the HS eigenfunction
by the same method as that used in the LWC eigen-
functions. The main difference between these two calcu-
lations is that the HS solutions are nonrelativistic.

Using the Thomas-Fermi approximation, Scott"
showed that the total energy E» of a free atom of
atomic number Z is related to the potential V produced
at the nucleus by the surrounding electron cloud by the
expression

Erp= V(Z)dZ

Helium
Lithium
Beryllium
Boron
Carbon
Nitrogen
Oxygen
Fluorine
Neon
Sodium
Magnesium
Aluminum
Silicon
Phosphorus
Sulfur
Chlorine
Argon
Potasssum
Calcium
Scandium
Titanium
Vanadium
Chromium
Manganese
Iron
Cobalt
Nickel
Copper
Zinc
Gallium
Germanium
Arsenic
Selenium
Bromine
Krypton

Nonrelativistic
BLW HS

(NR-H) (NR-HFS)
E~ ET

(Ry.) (Ry )

5.723403 5.755868
14 89197 14.45243
29.18997 28.51049
49.08519 48.15778
75.36043 74.15735

108.6992 107.1735
149.7843 147.8756
199.2962 196.9160
257.9155 254.9587
324.7861 321.1638
400.5313 396.3616
485.2652 480.5428
579.4141 574.1268
683.2948 677.4286
797.2583 790.7725
921.6204 914.4536

1056.708 1048.808
1201.752 1193.142
1357.265 1348.033
1523.321 1513.684
1700.687 1690.624
1889.630 1879.218
2090.317 2079.636
2303.446 2292.255
2528.877 2517.282
2767.050 2755.001
3018.249 3005.750
3282.825 3269.843
3560.796 3547.192
3851.847 3837.523
4156.293 4141.200
4474.261 4458.455
4805.937 4789.378
5151.519 5134.158
5511.164 5492.977

Relativistic
LWC

(R-DS)—Er
(Ry )

5.599126
14.38286
28.46454
48.11982
74.13347

107.1'?77
147.9225
197.0350
255.1814
321.5484
396.9741
481.4286
575.3637
679.1096
792.9992
917.3633

1052.532
1197.862
1353.955
1520.993
1699.582
1890.033
2092.599
2307.735
2535.593
2776.529
3030.850
3298.948
3580.873
3876.316
4185.716
4509.257
4847.161
5199.642
5566.928

and that V is related to the Thomas-Fermi" potential
p by

V(Z) =Zdy/dr i, ,
The gradient dp/dry, s has been shown by Scott to be
—. j..7936Z4" which gives as an expression of total energy

Ez s =0.7687Z"'—
'e J. M. C. Scott, Phil. Mag. 43, 859 (1952).
"A general review of Thomas-Fermi theory and applications

is given by N. H. Marsh, Advalces ea Physics (Taylor and Francis,
Ltd. , London, 1957), Vol. 6, p. 1.

range 2 to 36 for the self-consistent (NR-H), (NR-HFS),
and (R-DS) calculations described above. Figure 1 gives
the curves of energy versus atomic number for these
three numerical calculations. Therein the (R-DS) curve
is labeled LCW. In the same 6gure, points are also given
for Clementi's and for Watson's analytical (NR-HF)
solutions.

iv N. H. Marsh and J. S. Plaskett, Proc. Roy. Soc. (London)
A235, 419 (1956).
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I I I I I l I I I I I I I ALE II. Comparison of total energies obtained two
ways with BLW wave functions.
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Fzo. i. Variation of the total energy as a function of atomic
number in the range Z &36 for the BI W, HS, and I-WC numerical
self-consistent field solutions. Also plotted are every third point
for Clementi's and for Watson's analytical (NR-HF) solutions.

It can be seen in Pig. 1 that the results of all calcula-
tions are comparatively close, up to about aluminum.
From that point, the three numerical calculation results

agree fairly closely with the Watson analytical(NR-HF)
solution. However, Clementi's (NR-HF) results begin
to deviate at that point and become significantly lower
at krypton. Although not shown in Fig. 1, the results
of the (NR-TF) and the (NR-HFS) of HS agree within
2 Ry throughout this range of Z.

It is also evident from Table I that there is a slight
difference between the BLW Hartree values and the HS
Hartree-Pock-Slater values. The main difference be-
tween these two calculations apparently arises from the
methods of calculating the total energy. The method
used for B~ in the HS calculations gives total energies
of smaller magnitude than does the method using the
proper combination of Slater integrals. In order to make
a more valid comparison, the Slater I integrals and total
electron densities from the BLW wave functions were
also used in the method for Ez outlined above to esti-
mate the electrostatic and exchange corrections. That
is, the total energy was calculated by considering

(Slater I with
angularly dependent
F~ and G" integrals)

Helium 5.723403
Aluminum 485.2652
Chromium 2090.317
Krypton 5511' 164

(Slater I integrals
and I WC Ep

method)

5.439943
480.56083

2079.607
5492.945

diGerence

4.95
0.97
0.51
0.33

between the results for elements of low atomic numbers,
but less than 1% difference for elements with atomic
numbers larger than that for aluminum.

One may expand

7—
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K
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3

I
4J
I

oo

P"(cosy), (13)
r—r' ~=0 r&'+'

where r& is min(r, r') and r& is max(r, r') and where y is
the angle between r and r'. In the method outlined above
only the dominant term appropriate for a spherical
average (namely, with k=0) is used and the angular
dependence of orbitals is neglected. However, in making
the perturbation corrections for electrostatic and ex-
change interactions to the BLW (NR-H) total energy,
we have used the proper linear combination of F~ and
G integrals (i.e., with 0&k&lt+ls, where lt and ls are
the angular momenta of the two orbitals).

Table III gives the total energies for the normal
ground state of the elements with atomic numbers 37
to 102 for the BLW and LWC calculations. Figure 2 is

I;=(T,+U;),
'~''=Z'+s Z Ue+s Z ~v

I
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I I I
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FIG. 2. Variation of the total energy as a function of atomic

The typical results of four elements are given in Table II numberinthera ge35&Z& 103 fo the LWC a d BLW numericae ypica resu s o our e emen s are given in a e ' solutions and for the (NR-TF) approximations. Also plotted areIt can be seen that there is an appreciable difference three results for the Herman-Skillman (NR-HFS) solutions.
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Tax.z III. Comparison of the best nonrelativistic and relativistic total energies.

Atomic
No.

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
eo
61
62
63
64
65
66
67
68
69

Symbol

Rb
Sr
Y
Zr
Nb
Mo
Tc
Ru
Rh
Pd
Ag
Cd
In
Sn
Sb
Te
I
Xe
Cs
Ba
La
Ce
Pr
Nd
Pm
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm

BLW
(NR-H)—Er(Ry )

5884.120
6270.831
6671.286
7086.023
7515.214
7959.148
8417.816
8891.750
9380.742
9885.273

10 405.05
10 940.09
11 490.43
12 056.19
12 637.51
13 234.51
13 847.31
14 476.02
15 119.95
15 779.46
16 454.70
17 145.71
17 853.86
18 578.84
19 320.88
20 080.10
20 856.67
21 650.66
22 462.43
23 291.93
24 139.36
25 004.94
25 888.73

LWC
(R-DS)
Er(R—y.)

5948.433
6344.676
6755.713
7182,037
7632.832
8081.506
8555.174
9045.133
9551.567

10 074.80
10 641.88
11 171.96
11 745.84
12 336.93
12 945.41
13 571.29
14 215.39
14 877.31
15 556.82
16 254.40
16970.23
17 704.96
18 459.21
19 233.16
20 027.07
20 841.25
21 e75.93
22 531.26
23 408.05
24 306.10
25 225.88
26 167.70
27 131.88

Atomic
No.

70
71
72
73
74
75
76
77
78
79
80
81
82
83

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101

Symbol

Yb
Lu
Hf
Ta
W
Re
Os
Ir
Pt
Au
Hg
Tl
Pb
Bi
Po
At
Rn
Fr
Ra
Ac
Th
Pa
U
Np
Pu
Am
Cm
Bk
Cf
Es
Fm
Md

BLW
(NR-H)—Ez (Ry.)

26 790.93
27 711.99
28 650.08
29 606.98
30 582.21
31 575.74
32 588.15
33 619.02
34 669.17
35 737.85
36 824.89
37 930.54
39 054.76
40 197.88
41 359.73
42 540.66
43 '?40.39
44 958.67
46 195.44
47 451.08
48 725.72
50 019.80
51 333.53
52 667.03
54 020.61
55 394.05
56 787.27
58 200.96
59 635.45
61 088.34
62 564.37
64 059.92

LWC
(R-DS)—&~(Ry)

28 118.75
29 128.41
30 160.98
31 216.78
32 296.11
33 399.23
34 526.51
35 678.29
36 854.92
38 056.81
39 284.19
40 536.92
41 815.68
43 120.71
44 452.49
45 811.42
47 197.93
48 611.95
50 054.17
51 524.94
53 024.97
54 554.87
56 115.77
57 707.91
59 332.09
60 988.83
62 678.77
64 402.80
66161.e2
67 956.08
69 786.97
71 655.21

TmLz IV. Comparison of nonrelativistic and relativistic values
of Ep based on free electron estimate of exchange.

Herman-
Skillman

(NR-HFS)

Lib erman-Waber-
Cromer
(R-DS) difference

Cerium
Praseodymium
Neodymium
Promethium
Samarium
Thorium
Protactinium
Uranium
Neptunium
Plutonium

17 114.10
17 822.23
18 547.22
19 289.26
20 048.59
48 685.93
49 980.51
51 294.42
52 628.10
53 982.08

1.7 704.96
18 459.21
19 233.16
20 027.07
20 841.25
53 024.97
54 554.87
56 115.77
57 707.91
59 332.09

3.34
3.45
3.57
3.68
3.80
8.18
8.38
8.59
8.80
9.02

a plot of Ez versus atomic number for these two calcu-
lations. Also shown in the 6gure is a plot of the (NR-TF)
approximations and three points of the HS calculations.
Again, these four calculation results are comparatively
close throughout the range of atomic numbers, except
that the results for the LWC relativistic calculations are
higher at large values of Z. Of course, this increase in
difference at higher atomic numbers is to be expected,
since the relativistic effects are more significant in the
heavier elements.

A better indication of how this difference due to rela-

tivistic effects varies with Z is found in comparison of
the results of the Herman-Skillman (NR-HFS) with the
I.iberman-Waber-Cromer (R-DS) calculations. Table IV
gives such a comparison of several elements with atomic
numbers ranging from 58 to 62 and from 90 to 94. Prom
this table it is evident that the difference increases uni-
formly with increasing atomic number, as is expected.

CONCLUSIO5 S

In view of the differences among approximations
made in the self-consistent 6eld calculations, it is felt
that the results of the total energy calculations pre-
sented here are in good agreement.

It was found that, if the same Slater I integrals and,
total electron densities are used to calculate total
energies both by the LW C method described above and
by means of the Slater F~ and G~ integrals, there is an
appreciable difference between the results for elements
of low atomic number. However, this difference is less
than 1%%uo for elements having atomic numbers higher
than that of aluminum.

It was also found that the Hartree calculations (with
perturbation estimates of the exchange contribution)
give total energies of larger magnitude than do the
Hartree-Pock-Slater calculations. For example, the
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Hartree total energy is larger by as much as 38.53 Ry
for plutonium.

Total energies calculated from the relativistic solu-
tions are of about the same magnitude as those obtained
from the nonrelativistic solutions at low values of
atomic number, but are signihcantly larger at high
atomic numbers. This difference increases uniformly
with increasing atomic number from 1.06% for ger-
manium to 9.02%%u~ for plutonium.
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The magnetic susceptibility of the 2 S& state of helium and some like ions is computed using a thirty-6ve
term wave function of the type originally proposed by Hylleraas and Vndheim. It is found that it is possible
to obtain highly accurate values for the magnetic susceptibility using this wave function if the parameters are
accurately determined. Finally, an argument is given which suggests that the magnetic susceptibility ob-
tained in the present work is accurate to at least 6ve signi6cant figures.

I. INTRODUCTION
' 'N atomic helium the only electronic states of prac-
~- tical importance are those for which at least one
electron is in the ground state. Thus, as is well known, '
the Pauli antisymmetry principle is satisfied for wave
functions for which either the spatial function is sym-
metric and the spin function is antisymmetric or for
wave functions having antisymmetric spatial functions
and symmetric spin functions. These two possibilities
lead to two term schemes, the former giving the singlet
system whose lowest member is 1 '50 while the latter
leads to the triplet system whose lowest member
ls 2 S1.

Inasmuch as the 2'S1 triplet state lies above the
ground state by 19.8 eV and transitions to the ground
state 1 'So are rather rigorously forbidden, both by the
orthogonality of the spin functions and by the sym-
metry differences of the spatial functions, this meta-
stable state has of late been the subject of a number of
investigations. Experimentally this state is an attractive
metastable system to study as it is possible to obtain an

*Present address: Carnegie Laboratory of Physics, Queen' s
College, Dundee, Scotland. Research supported by Cornell Aero-
nautical Laboratory, Inc. (CAL Project No. RA-1761-P).

t Research supported by the U. S. Air Force Once of Scientiiic
Research, Contract Number AF-AFOSR-191-63.' H. A. Bethe and E. E. Salpeter, Qnantnm 3IIeckanics of One
and Tvoo Electron Atoms (Academi-c Press Inc., New York, 1957),
p. 124.

appreciable concentration of these metastable atoms
under experimental conditions. From the point of view
of the theorist it is attractive as an approximate wave
function and triplet state energy are obtained in which
the energy is a rigorous upper bound to the true triplet
energy simply by requiring that the spatial part of ones
variational wavefunction be antisymmetric.

To mention just a few of the recent papers on 2'S&
helium, Pekeris, ' Hart and Herzberg, ' Davis, 4' and
Traub and Foley' have all made accurate variational
calculations of the energy. Hughes~ ' and his co-
workers have made rather de6nitive experimental and
theoretical studies of the magnetic moment in this state.
Finally, Benton, Ferguson, Matsen, and Robertson"
have recently made a number of measurements of the
cross sections for de-excitation of the metastable atom
by collisions with other atoms.

' C. L. Pekeris, Phys. Rev. 115, 1216 (1959).
e J. F. Hart and G. Herzberg, Phys. Rev. 171, 83 (1963).

H. L. Davis, J. Chem. Phys. 37, 1508 (1962).' H. L. Davis, J. Chem. Phys. 39, 1183 (1963).
e J.Traub and H. M. Foley, Phys. Rev. 111, 1098 (1958).
& V. Hughes, G. Tucker, E.Rhoderick, and G. Weinreich, Phys.

Rev. 91, 828 (1953).
8 V. Hughes, G. Tucker, E.Rhoderick, and G. Weinreich, Phys.

Rev. 91, 842 (1953).
9 V. Hughes, G. Tucker, E.Rhoderick, and G. Weinreich, Phys.

Rev. 112, 627 (1958)."E.E. Benton, E. E. Ferguson, F. A. Matsen, and W. W„
Robertson, Phys. Rev. 128, 206 (1962).


