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The general formalism developed in the preceding two papers of this series is applied to the dilute gas of
Bose hard spheres. The well-known results of I ee, Huang, and Yang for the ground state of this model gas
are duplicated. The possibility of including a weak attraction in addition to the repulsive cores is considered,
and it is shown that the simple scattering length approximation is valid for positive scattering lengths.

i. INTRODUCTION

" 'N the preceding two papers of this series, ' ' we have
~ ~ developed a general quantum statistical theory of
the degenerate Bose system. This work extended the
x-ensemble formulation of quantum statistics, de-
veloped by Lee and Yang' for the theoretical study of a
Bose system in which a single quantum state is macro-
scopically occupied. The single quantum state for a
Bose system at rest is the lowest, or zero-momentum
state and the quantity x is the density of zero-momen-
tum particles.

In the present paper, our goal is to apply the general
result of our previous papers to a specific and well-

known problem. This is the dilute Bose gas of hard
spheres. Although Secs. 2 and 3 of this paper are valid
for all temperatures T, our principal objective is to
duplicate the ground-state (T= 0) results of Lee, Huang,
and Yang. 4 ' One may inquire, of course, as to the value
of studying this model. One answer is that the problem
that is of great interest is liquid helium II, and helium
atoms have repulsive cores due to their electronic struc-
ture. Moreover, London' has shown that the considera-
tion of these repulsive cores is essential to the micro-

scopic understanding of helium II. The other answer is
that this simplified model is of great value for investi-

gating the details of the general theory, before proceed-
ing to apply the theory to helium II. Thus, the object
of this paper is not so much to reproduce well-known

results, but to show how these results may be derived
from our theory. A general theory is not of value until
it can be shown that it is "usable. "This is particularly
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true of a new and dificult theory, such as the one which
we are using.

It is to be emphasized that the theory which we
apply here is not restricted to the imperfect Bose gas, or
to the dilute hard-sphere Bose gas. It is just as appli-
cable to the helium II problem as it is to the low-density
Bose hard-sphere gas. Thus, in Sec. 2, where we derive
the first-order expression for the quasiparticle energies
e+(k) and e (k) for a Bose hard-sphere gas, we have in
mind that the corresponding derivation for helium II
will only require a simple generalization of this deriva-
tion. Similarly, in the determination of the important
functions A &&(t,k), A,' &(t,k), and f'(t, k), we have in
mind that these functions can be determined for
helium II in analogy with the procedure of Sec. 2. In
fact ln Sec. 7 we indicate these geDerallzatlons quite
explicitly.

Section 3 is devoted to the rather simple calculation
of the functions Ã, ,„', which give the dominant con-
tribution of the Bose statistics to the line factors
g„,„' of the theory. Then, in Sec. 4, the zero-momentum
self-energy quantity 6&" is calculated to first order for
the ground-state problem, and discussed for general T.
It is found that at T=0 the E„,„' do not contribute to
5~'&, in keeping with the general belief that the ground
state of a Bose gas is the same as the ground state of a
Boltzmann gas. ~

In Sec. 5 the Lee„Huang, Yang expression for the
ground-state energy of a dilute hard-sphere Bose gas is
derived. In this calculation, the assumption that the
chemical potential g= —6'", made at the beginning. of
Sec. 2, is shown to be correct. For the ground state, this
checks our interpretation that —6'" is the energy per
particle of the zero-momentum superQuid. As expected,
we find that the X„,„' do not contribute to the ground-
state energy.

The Lee, Huang, Yang expressions for the momentum
distribution and the pair-distribution function are de-
rived in Sec. 6. one interesting point here is that the
very low-momentum behavior of the momentum dis-
tribution for TAO is found to vary as P '. This result is
not predicted by the I.ee, Huang, Yang expression, be-
cause their expression is only valid for all p in the limA
T —+0.

' See footnote 15 of Ref. 5.
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expansion of X«, «'(t2, t«,k),
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and the six second-order
transformed master (1,1) I.
graphs shown explicitly.
The graphical notation is
that of ML The symmetry
number of each of the
graphs shown is 1 except
that of the third graph,
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The question of short-range attractive interactions
outside of the repulsive cores is examined in Sec. 7. It is
shown that the simple replacement a —+ a„where g is
the hard-sphere diameter and u,. is the two-particle
interaction scattering length, is correct provided that
g, &0. For a negative scattering length the system
collapses, thereby invalidating the low-density approxi-
mation which has been made.

The interpretation of the double quasiparticle spec-

trurn, e+(k) and c (it), is not considered in this paper.
This interesting consequence of the theory' is left as a
subject for further investigation. The understanding of
the nonzero temperature behavior of a dilute Bose gas4

has also been left for further study. Finally, it should be
emphasized that although we believe that the generali-
zation of the present calculation to helium II is straight-
forward, it nevertheless remains to be done. In par-
ticular„ the physical interpretation of the results of such

FIG. 2. The graphical
expansion of Xpp(fp ff k), ,

with the single erst-order
and the six second-order
transformed master (0,2) L
graphs shown explicitly.
The graphical notation is
that of MI. The symmetry
numbers of the second and
third graphs are each 2, and
the symmetry number of
each of the remaining graphs
shown is 1. The 6rst two
graphs contribute to the
function Itp, p&'&'(tp, t&,k), in
which case the external lines
are free-particle lines.

(t-t} + |.'tg- tt& +
Sg Sg

+ e ~ ~

The possibility of a double quasiparticle spectrum has previously been suggested by Elliot H. Lieb and Werner Liniger,
Phys. Rev. 130, 1605 (1963);Elliot H. Lich, ibid 130, 1616 (1963). .
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Pro. 3. The graphical
expansion oi Xs, o'(t~, t&,k),
with the single first-order
and the six second-order
transformed master (2,0) L
graphs shown explicitly.
The graphical notation is
that of MI. The symmetry
numbers of the second and
third graphs are each 2, and
the symmetry number of
each of the remaining graphs
shown is 1. The first two
graphs contribute to the
function Es, oo&'(t2, ti,k), in
which case the external
lines are free-particle lines.
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a calculation in terms of a simple quasiparticle model,
and the correlation of this interpretation with the
existing macroscopic theories are questions which we
have not even touched upon in this paper.

2. FIRST-ORDER CALCULATION OF a AND g

The 6rst quantities which must be calculated in any
application of the transformed theory of MII are the
functions X„,,'(ts, ti,k), where tt+ v= 2. In Figs. 1—3, we

show the graphical expansion of these three functions,
using the graphical notation of MI. It is to be noted that
in each case there is one erst-order transformed master

(tt, v) L, graph and six second-order graphs. The order of

a graph is henceforth defined t.o be the number of
independent momenta in the . graph instead of the
number of cluster vertices. The reason for this change in
nomenclature is that for the dilute Hose gas of hard
spheres each order of graphs then corresponds for T —+ 0
to an extra power of (tta')"' in the power-series expan-
sion of the function being considered. [This statement is
based on a dimensional argument and it does not take
into account logarithmic dependences on the parameter
(tttts)1/s j

In this paper we shall only be interested in the first-
order calculation of the functions X„„'(t&,ti,k). From
Figs. 1—3 and Sec. V of MII we 6nd for the erst-order
terms X„,,'(ts, ti,k) s the expressions

Xi,i'(ts, ti, k)s=- L(1+&"')~«xpP(g+~'")j ~$ G-~'($)
'2'-k 0-'

P

X0,2 (t2, tl, k)0 sLM exp2p(g+6 )j 8$18$2Go t, ($1)Go t ($2)
~ 0

S2S1-0 0
8 (ts —ig),

tit2-
(/s LG -'($)3'.

0 0

In, these expressions we shall immediately niake the approximations 8'"=0, G;„'($)=1, and G,„&'($)=-5(P—$).
These approximations correspond to the neglect of higher order terms in the parameter (tta')"'. Moreover, we shall
henceforth adopt the assumption of Eq. (115) in MII that

g == -- d (0) .

This assumption can always be checked by comparing the calculation of 6'+ (Sec. 4) with the final thermodynamic
expressions for the system (Sec. 5). The assumption is based on our interpretation of —6"& as the self-energy per
parti')e of the zero-momentum superAuid of the system. %&th the aid of this assumption, the above approximations,
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and Eqs. (41), (43), (44), (48), and (49) of MII, the functions X„,„'(t&,t&,k)p of Eqs. (1) can be rewritten as

~ k 0-' '&-k 0-'
x, ,,'(t, ,t„k),-=(xn)f-'(t„k)l(t, ,k) Q i a;«)(t„k) —0(ts —t()

(;,o) k (L„ (;,p) k 0„

& 0 0
Xo,s'(ts, t&,k)o——'(xn)l (t&,k) expt t(p((, —k) j0(ts—ti)

(&), &)) k —k „
'&-k —k-'

+A, (»(t„k)
0 '

0(t,—t,), (3)
(i,o) -~ 0- t1

(4)

x, ,'(t„t„k);——,'(xn)i —'(t„k) ds Q s A, «)(t„k) 0(t2 s) 0(t& ——tg)
(', I) -0

+A, (»(tp, k) 0(ti—ts)+ 0(t,—t&) 0(t,—s) . (5)
(~ c) 0 0 (, , ~) -0

The primed pair functions in these expressions are given
by Eqs. (38)—(40) of MII. The subscript (0) refers to
the zero-momentum energy eo =—0, and its associated
transformation functions. The subscript (1) refers to
the energy

in MII appears, and we have set t2
——t~, since this is the

only case of interest for this function.
We now make the low-temperature, low-density

approximations of this paper,

ea'&&1, a&&3 p,
pg( —k) = p( —k) —6(') (—k)

p(k) = «) (k)+6"' (&)(k) = h'h'/2M
(6) where the thermal wavelength )(~ is defined by

)(p ——(2s.h'P/M) '&',

and its associated (—k) transf'ormation functions )see
above Eq. (66) in MIIj. In this connection, we shall also
set the function 8("(—k) =0 in the low-order calcula-
tions of this paper.

We shall also require the first-order calculation of the
function X) i(')'(t, ,ti—k) which, according to Eqs. (78),
(48), and (49) in MII and Eq. (3), is given by

X&,&(')'(ts, ti, —k) &)
—(xn)

0 '

XexpL —tip(( —k)j 0(ts —t,) . (7)
(1,0) -k 0- &&

Its, o""(ti,t(,k) p=s (xn)
tI tj -Q

ds

XexpL2sh("'7. (9)

I&) E&l. (9), on]y (he unprime&l pair function of Eq. (6)

Similarly, we shall require the functions Kp, s(')'(ts, t(,k)
and Es,o""(ts,t),k), which according to Figs. 2 and 3,
and Eqs. (83) and (84) in MII, are given to first
order by

Zp, (')'(t, ,t, ,k) p
—-', (xn) exp( —tiLc(k)+ p( —k)))

~-0 0 -'
X&(to—ti) (8)

(0 0) k k ty

e is the density of bosons in the system, and a is the
diameter of a Bose hard-sphere atom. We then observe
that the momenta of interest satisfy the inequality

ha&&1, (10')

because the momenta are determined by the parameters
of the problem to be &h/)(r and &A(rta)'&'. These last
two quantities are found to govern the cutoRs of
momentum integrals. It can also be seen why it is a good
approximation to set the quantities B(k), 8&') (k), and
8("each equal to zero, for a dilute gas. These quantities
enter into the theory as correction terms when one
makes the mathematical idealization that there exist
infinite repulsions between the Bose atoms. ' (The
atoms are then hard spheres. ) The correction terms are
called excluded volume terms, because they give the
correction effect due to the finite size of the hard spheres
on the size of the volume 0 in which the particles are
moving. They give contributions which are at most

(ea') times the quantities which we shall calculate in
this paper for the Bose hard-sphere gas.

With the aid of the approximation (10'), we may write
down a greatly simplified expression for the pair
functions which enter into Eqs. (3)—(9). For the primed
pair function we use Eqs. (6), (38), and (39) in MII
together with the explicit expression derived in Ref. 9
for the untransformed pair function. This yields the

«F. Mohling, Phys. Rev. 122, 1043„(1961).
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approximate expressi. on, for a hard-sphere interaction,

"-k k -'
1 2 =—0 '(2m)'(5'a/Mm') 5(k&+k2, k3+k4) expt&[e, (kg)+E'(k2)]

(;,;) k3 k4„

1—0 '(27r)'(It'u/2M''-) P b(k~+k2, kg+k6)

x~'l —
l
exp(t &

—ti) [e,(ki)+ e, (k2) —e(k„)—c(k6)], (12)
E e;(kg)+ e, (kp) —e(kr, )—e (k6) &t

where the factor 6(k, ,k,) is a Kronecker 6 function. The corresponding expression for the untransformed pair
function, omitting the second term, is

" kg kg- ——g—'(2~)'(A'g/M7r')8(k)+k2, k:+k4) expti[(v(ki)+co(k2) —u)(k3) —~(k4)].
k, k4, 1

(12')

The second O(a') term of (12) will be required in Secs. 4 and 5, but not at present.
Upon substituting the expressions (12) and (12') into Eqs. (3)—(9), one obtains the foHowing "6rst-order"

functions:

X1 1 (t2 tl k)0— (II 4)S (t2 k)t (tl k) 2 t «p[tlr (k)][~ (t2 k)t (tl t2)+~ (t2 k)t (t2 tl)] (3a)

x„,'(t„t,,l ),=—-', (Wp)i. (t, ,k) exp[ —t...(—k)]S(t,—t,),
( 1

X,.'(t, t,k)o=——l(lI k)r-'(t, k) 2 '~l - — --- --
I

=-+,— & e, (k)+ eg( —k))

&( (2,'&' (t2,k) [expt&(~, (k) +~,(—k) )—exptp(e, (k)+ f & (—k) )]8(t~
—t ~)

+A;&&'(t2,k) [expt2(e, (k)+e&(—k))—1]0(t&—t2)

(4a)

xi, i &

'&' (t2, ti„ —k) o=—(14'8 tt(t2 ti) , —
+A,;r»(tg, k)[expts(e, lk)+e, (—k))—1]0(4—tz)}, (Sa)

Eo,~r'&'(t„t, ,k)0——-', (W() exp( —t,[e(k)+r(—k)])8(t;—t,),

I«, ,,r»'(t„t„k),=——,
' (W()El expt&[e(k)+ r (—k)]—1],

ke(k)+ e(—k) 3
(qa)

where the energy 8" is defined by

1V= 8~A, 'crt/M-,

and the quantity $ is the fractional occupation of the zero-momentum state;

(=x/n

We can now derive our 6rst result from the A-transformation equations. Upon comparing Eq. (7a) with Eqs. (70)
and (72) in MII, we 6nd that

6"&(—k) = —%/[1+0(a/) r) jO(ma')'"],

K, , ,&»'(t„ t„-k)=0.
(15)

Thus, there is no 6rst-order contribution to the function E~ ~i ', and from Eqs. (67) and (69) in MII we may set
Gj, l&'&'(t2 tl, —k)=b(t2 —t&). From Eq. (15) we see that 6&'& is independent of momentum to 6rst approximation.
The estimate of the correction terms in (15) is based on the statement about the orders of graphs in the 6rst
paragraph of this section.

Using the above result, we next write down the function (P (t2, t~,k) of Eq. (74) in III. To 6rst order, this
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function is

(P (t2)tl)k)=X1, 1 («2)«ilk)0+ dSX2, 0 («2)$)k)OX0, 2 (tl)S)k)0

=i '(t2, k)("ttl, k) Q i empt)e, (k)[A.;(&)(«2k)0(«) —«.,)+ A., (»(«2, k)g(«. —«„)]

—W$+(WP/2)2PI — —

[
+(W$/2)2P] —— ——-

[
exp[(t2 —tl)el( —k)+«2e;(k)]

he;(k)+ el( —k) ) he.;(k)+el( —k) &I

X[A,'~& (t2,k) —A,'~& («2,k))e(tl —«2) —(W$/2) 2~I
~
exp[ —

« (el (—k))A;(» (t2,k), (17)
ke, (k)+el( —k) &)

where we have used Eqs. (3a)—(5a) to obtain the second line of this expression. We next wish to identify terms of
the form

A(t2, t„k)={—(t„k)f.(t„k) p ia;(k) exp[«.e.(k))[A,«&(t„k)t&(t,—t,)+A;(»(t„k)0(t,—t,)]

g i exp[«-"'(k))~l
'=+.— (e;(k)+el(—k))

X[A;(~&(t,k) —A, (~&(t,k)) =0, (20)

p a((
1

iA(»(t„k, ) 0=
'=+,— 5 0; (k)+el (—k) )

The remaining two equations for the determination of
the A;( & and A (+& are the basic identities (20) and (21)
of MII. According to Eqs. (40) and (42) of MII, these
two identities can be written as

i exp[«2e;(k))[A;( & («2, k) —A;«& (t,,k)) = 1,
2 +2 (21)

i exppe;(k))A;(~&(t2, k) =0.

The four Eqs. (20) and (21) are completely equivalent
to the four Eqs. (127) of MII [see also Eq. (132) of
MII). Therefore, we may immediately write down their

in 6' (t,,tl, k), where the form of this function is given by
Eq. (51) in MII. This can be done if we set

6;00= —0'(+(W$/2)'P( — -—
i

. (VJ)
1

0;(k)+ el (—k) i

Equation (19) determines the quantities t1, (k). More-
over, in order to insure that (P'(t2, tl,k) will not lead. to
exponentially large terms when it is substituted into
the basic integral equation (59) in MII of the theory
(see also Sec. 2 of MII), we must set the coefficients of
exp(t2 —tl)el( —k) and exp[—tlel( —k)) in Eq. (17)
equal to zero. This results in two indentities for the
determination of the A;&~& and A ~~, which are

solution, as given in Sec. 9 of MII (for the case r=P),
A+'" (t2) =

A «&(t,)=

(&&(t )=
()&(t )—

(6 —&+) '(0++el)(e +el)
X t. (P) c«&~ (e &2'+— —c &2~ —)—-

(D. —5 ))-'(e.++el) (e +el)
Xr(~) s"(-'"- '--), (»)

(~ —~.)-'("+ ){-(t;),

(~ —&.)-'( -+ )~(t.),

In these equations, we have suppressed the k depend-
ence of the various quantities, for simplicity of notation.
In order to insert the momentum dependence into these
expressions, one has only to observe that the quantity
el is always associated with the momentum —k.

Returning to Eq. (19) for h, (k), we see that this
equation is equivalent to Eqs. (25) and (130) in MII,
provided that we set A= —W$ and CD= (tW/2)2.
Then, from Eq. (15) and Eqs. (40) and (131) in. MII we
have for e+(k)

e~(k) = e(k) —D~(k) =(0(k)—A~(k)+A(0&
= ~{[e(k)+(W]'—(PP/2)2}'«2 (24)

Of course, this result can be derived directly from Eq.
(19), but it is valuable to relate the explicit expressions
of this paper with the general expressions of MII. By
anticipating the result of Sec. 4, that 6(0& = ——2'($W) to
zeroth order, the expression (24) can be rewritten in

where

i (t) = [(e++e))ee'+ (e +el)—ee'-) '

XL(++ )c" ""—(e-+e)e" "'-1

~ [(0++el)e'+—(e-+e))e' ) '(~-—~+) &23)
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the form

"(k)= ~L-(k) (-(k)+~W)]"&'
=~ (@'/2~)«(«'+16~5«)'".

3. DETERMINATION OF N„, „'(p)

The results of Sec. 2, and in particular of Eqs. (16)
and (27), have demonstrated that the transformed
integral equations of MII may be solvable by a simple
iteration procedure. The iteration procedure is, in fact,
the graphical expansion described at the beginning of
Sec. 2, and it will be clarified further in the following
t.wo sections. The first-order results of Sec. 2 can,
therefore, be expected to lead to meaningful expressions
for the other quantities of the transformed quantum
statistical theory. In this section, we shaH use these
results to determine the important functions 1V„,„'(p).

As was discussed in connection with Eqs. (16) and
(27) we may write the functions G' and G "&' as

G'(4)&l,k)—G&'i'(4)&i)k) —5(4—&,) (28)

to 6rst order. Therefore, the first-order expressions for
the functions L0,2' and L2, 0', of Eqs. (81) and (82) in
MII, are

L0, 2 ($2qf1)k)=X0, 2 ($2)/iqk)0 E0,2 ($2)f1k)0)

L2, 0 (4(~i)k):X2,0 (4p~l)k) 0

~ (~2ytl)lf 2, 0 (/lp~l)k) 0 ~ (29)

The functions E„„'(p) of Eqs. (85) in MII, where
k ~ p when k cannot be zero, are then obtained by
substituting Eqs. (29), along with Eqs. (4a), (Sa),
and (27).

&l, l'(y)—=o,

&0,2'(p)—=—
2 (Wk) dt's (t,p) expL —hit —y)]

(30)

= ——,'(Wt)L(0++el)ee'+ —(0 +el)ee'-]-'

X E.
ee'+ —e~'-), (31)

This is the well-known result of Lee, Huang, and Yang, 4

except that we have obtained two functions 0+(k) and
0 (k) which differ only by a minus sign to first order.
From Eqs. (24) and (25), we find for the quantity
(6= 6+), which enters into Eqs. (22) and (23),

Ls (k) —a, (k)]=2;(k)
= (A'/iV)«(«'+-162r $«)"'. (26)

We finally return to Eq. (17) for P'(t2, tl, k). Upon
comparing this expression with Eqs. (18)—(20) and with
Eq. (60) in MII, we see that the function E'(t2, tl,k) is
zero to 6rst order

P'(4, ti,k)=0. (27)

Therefore, according to Eqs. (55) and (59) in MII, we

may also make the approximation G'(/2, tl, k)=-8(4—tl)
to first order.

&2,0'(p):—X2,0'(P,P,y) 0

= —-'(W$) (6 —6 )
—'(e '+—e '-)e ' (32)

The second lines of Eqs. (31) and (32) are derived with
the aid of Eqs. (22) and (23). As pointed out below
Eqs. (85) in MII, the functions E0,2i "and K2, 0&"' do
not contribute to E0,2'(p) and K2,0'(p), respectively.
The limit (tl, f2) ~ p in Eq. (Sa) can be performed by
keeping either t'~&$2 or t~& t2, and either choice leads to
the second line of Eq. (32). In order to insert the
momentum dependence into the expressions (31) and

(32), one has only to observe that the quantity ei is
always associated with the momentum —y. Of course,
the distinction between p and —p is unimportant for an
isotropic system, which is the case we are concerned
with in this paper, and we henceforth drop the distinc-
tion. We finally observe that with the aid of Eq. (2), it
is a simple matter to verify that Eqs. (31) and (32)
satisfy the first of Eqs. (97) in MII.

We now turn our attention to the functions LV„„'(p).
From Eqs. (91), (92) and (97)—(100) in MII, we obtain
the following first-order expressions for these functions.

~', i'(p) = '(p)( 1—L1+ '(p)]'L&o, '(p)]') ', (33)

~'(p) =l(P,p)L1 —t(»p)] ' (36)

These equations will be of value in the subsequent
calculations of this paper.

The zero-momentum behavior of the X„„'(y) is
subject to the theorems of Eqs. (101) in MII. The
simplest way to show that our first-order results are in
agreement with these theorems is to check the first of
Eqs. (102) in MII, which is equivalent to these
theorems. Thus, one finds from Eqs. (30)—(32), (36),
(25), and (26) that

lim
I ~'tp)] '= —»m L&-'&»p)&0, 2'&p)]

p-+Q p~Q

= —',PW$ Q.E.D. (37)

4. FIRST-ORDER CALCULATION OF dE«&

In this section we shall describe the first-order
calculation of d('&, which results in the ground-state
expression

hi'i = '(W() [1—+-(40/3) (22&a'/2r) '"
+0(«')+0(«hr2) ']. (38)

This calculation will illustrate the graphical iteration
procedure described at the beginning of Sec. 2.

The determination of 6('& has been discussed in detail
in Sec. 7 of MII, and it begins with the calculation of
either X,„i'(t) or X;„'(/). We shall investigate both of

&o, '(y) = '(y)[1+ '(p)]&o, '(y) -'"'"
y (1—[1+p'(y)]2LK0 2'(p)]2) —i, (34)

-~'2.0'(p) =- (1+~'(p)]'&0, 2'(p)

& f 1 —L1+~'(p)]'3&0, 2'(p) l') ' (35)
where
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these quantities by writing down the 3 one-vertex terms zeroth- and first-order contributions to these quantities.
of Fig. 5 in MII for X,«'(t) and the 3 one-vertex terms Using the rules for transformed master graphs, we ob-
of Fig. 6 in MII for X; (t). These terms give all of the tain the expressions:

X. 1'(t) =X.„1'(t)0+x.„o'(t)1+x.„l'(t)2+
s1s2 -0 0- I

X&&~2 (t)0= 2L(1+8"')xQ expp(g+6&")] dslds2G, «'($1)G»&'($2) G;„'(t),
0 0 0,

(39)

X.«'(t)1 ——P
P s2s1-0

dsldsogl, l (t Sl k)Go t ($2)
0

X„«'(t)2=2 (1+&' i) expt —P(g+hi )]P dsldsog0, 2'($2, $1,k)
s2sl

G;.'(t),
0 0

X (t) = X; (t)0+X (t)1+X (t)2+

P '"0 0'
X; '(t)0=2 t (1+8 ' )xQ expP(g+6 )] dslds2G, «'(s2) LG -'(»)]',

0 0 0 „

(41)

x;.'(t)1——Q dsldsogl, l ($1)$2)k)
0

G; '(sl),

X; '(t)2 ——-', (1+8'0&) ' expP(g+5&0&)p dslds2G. „,'(s,)
'"0 0

—sl
g2, 0'(sl, si, k) .

The 6rst factors in X,«'(t)2 and X; '(t) 2 are due to the definitions of X„«'(t) and X; '(t) by Eqs. (106) in MII.
We see from Eqs. (40) and (42) that the first-order calculation of X, 2'(t) and X;„'(t) requires expressions for

the line factors h„,,'(to, tl,k). From Eqs. (93)—(96) in MII, and with the aid of Eqs. (28) and (29), we obtain the
first-order expressions for these line factors.

gl, l (t21tl)k)=tl(t2 tl)+E2, 0 (p) dSX0, 2 (tl)$)p)+1V0, 2 (p)X2, 0 (t2)pqp)8(p tl)+El, l (p)5(p tl)

+El, l (—p)X2, 0 (t2 p p) dsX0, 2 (tl, s,p)&(p, —y), (43)

g0, 2 (t21tl&k)—LX0, 2 (t2)tipk) +0,2 (t21tl,k)]+2%1,1 (p) 8(p t2) dsx0, 2 (sftlpp)

+F02'(p)B(p , t,) ds—G0(p, s, —y)G0"' '(s, tl, —p)

+%2,0 (p) ds2dslX0, 2 (t2)$2)p)X0, 2 (slqtl)p) ) (44)

B2,0 (t2&tl&p)=t. x2, 0 (t2&tl&k) 8(t2&ti)E2, 0 (tl, tl,k)]+2%1,1 (p)X2, 0 (p, tl, p)

++2,0 (p)+ (tl, p)++0, 2 (p)X2, 0 (t2,p, p)X2, 0 (p&tl, p). (45)

In these expressions, the function R(t,p) is given by Eq. (91) in MII as

R(t,p) =&'(t,y) expL —to (p)]. (46)

The functions E0,2
"i' and K2 0"i' of Eq. (29) occur only in the first terms of Eqs. (44) and (45), because they are

wiggly-line double-bond subtraction terms (see discussion below Eq. (84) in MII].
Rather than write down a number of lengthy equations required in the derivation of the general first-order

expression for d "~, we shall describe the steps of this derivation in detail. These steps, which use only expressions
and manipulations already given, are as follows:
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(1) One first sets 8(P) =0 and g= —6(" in Eqs. (40) and (42). The justification for this step has been given in
Sec. 2.

(2) One next uses Eqs. (41), (44), (48), and (49) of MII, and the approximate expression (12) for the pair
function to obtain simplified forms for X, t ()')p and X; '(t) p W. e shall write these particular expressions down,
using ep ——0, in order to clarify the discussion of the subsequent steps.

P

t (~)p: 2(W$) (E~ld~2G. t (~2)G. t (~1)G(.'(/) ——', (ttQ) '(W'p)p I'~
~
exp(p —t)L —24(k)],

p(k) I
p t

X(~'(t) p———,'(Wg) dsi ds2G«t'(s2) )G;„'(si)]' ', (t—tQ—) '(W—'g) g I'i
i

ds exp(t —s)L
—24(k)j.

p „ " I,p(k)3 p

(47)

The second terms in each of these expressions are first-
order terms, and for these terms, only, is it justified to
set

for X,„t'(t), Eq. (39), and X. '(t), Eq. (41).
g(P) —gP(P) jgi(P)+ /2(P)+. . . (49)

G-.'( )=—~(~—),
G;„'(s)—1. (48)

K.„t'(/) =E.„t'(t)p+E.„t'(t)1+E.„t'(t)2+, (50)

K;„'(t)=It;.'(t),+E;.'()'),+It;„'(1),+ . . (51)

(3) The zeroth-order calculation of 6(P), resulting in
the term —2(W)), is now straightforward. According
to Eqs. (109) and (112) of MII, and the associated
discussion in Sec. 7 of MII, one has only to set one
G,„t'(s)=()(P—s) and one G; '(s)—1 in each of the
expressions (47) to obtain the zeroth-order term in 6(".
Both expressions (47) yield the same result, as they
must. We see that E;„'(/) and E,„t'(t) are both zero to
zeroth order, and this justifies the use of the approxima-
tions (48) in Sec. 2. As we shall see in step (8), however,
it does not justify the use of these approximations in
the first terms of the expressions (47).

(4) The use of the approximations (48) in the second
and third of Eqs. (40) and (42) is now justified.

(5) One nexts substitutes the line factor expressions
(43)—(45) into the second and third of Eqs. (40) and
(42). It is well to observe in this connection that for
TWO, all of the terms in Eqs. (43)—(45) can be expected
to, and do, give first-order terms. %e also note that the
use of the Ep,2" '()'2, ti,k) term of (44) in X,„t'(t)2 causes
the corresponding pair function to be an untransformed
pair function Lsee Eq. (83) in MII and subsequent dis-
cussions. The temperature integration of this term then
yields two further terms, one of which cancels the
second term in X,„t (/)p, Eq. (47). A similar situation
exists with the E2 p("'(s),si,k) term in X; '(t) 2, Eq. (42).
We finally observe that the next to last term of Eq. (44)
is associated with an integral which only has the eGect
of changing a A-transformation function from Gp(') to
Gp in the transformed pair function of X,„t'(t)2. This
situation has been discussed in connection with Eq. (94)
in MII.

(6) One inserts Eqs. (45) and (46) from MII,
together with an approximation of the type (12) for the
functions g;;(kik2~ kpk4) into the expressions derived in
step (5) for X.«'(t)1, X«t'(t)2, X;„'(t)1, and X; '(t) 2.

(7) One writes the functions h(P), K,„t'(t), and
K; '(t) as a series of terms corresponding to the series

The second and third terms in these series can be
written down, after comparing the final expressions
obtained in step (6) with the general forms for X,„t'(t),
Eq. (109) in MII, and X;,'()'), Eq. (112) in MII. It is
important to keep in mind the discussion at the end of
Sec. 7 in M II when deriving these terms. The final
expressions which one obtains are still much too lengthy
to be written down. However, in the low-temperature
limit nuX&'»1, one can easily extract from these terms
the ground-state contributions to 6( ).This limit corre-
sponds to the neglect of the p (k) exponential terms,
because when muham'»1, then

exp(Pp (k)j«1, (k&0) . (52)

- —(8/3) W(42$'u'/pr) 'I', (53)

:14pW2(42Q)-1 p L(g —+)-1—(2p)-tj

- —4W()tg'a'/tr) 'I', (54)

where W is defined by Eq. (13).These terms are just
those which one obtains by keeping in the line factors
(43)—(45) only the first terms, which do not depend on
the AT„,„'(p). This is a very reasonable result, because it
is generally believed that the ground state of a Bose gas
can be understood by considering only the case of
8oltzmann statistics, ' and this case corresponds to
neglecting the "statistics" terms .V„,„'.

(8) The expressions for E«&'(t)1, Kp«(/)2, E;tt (/)1,

The reason for this is that the largest cutoff momentum
when T~ 0, in all the integrals which occur, is the
momentum ))4(22a)')'. This fact combined with Eq. (25)
then yields the inequality (52). One finds for 61(P) and
62 ('~ when T —+ 0 the expressions

- —W(nQ) 'Q(ib. —+) '(e +41)
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(2)

('4)

FIG. 4. The graphical expansion of
QF(z,p, g,Q), showing the one zeroth-
order, three erst-order, and eight
second-order transformed master (0,0)
graphs. The symmetry numbers of
these graphs have been indicated
whenever they differ from unity. For
convenience, the temperature and
momentum labels of the graphs have
been omitted.

It is now necessary to determine the function A "&(ts, ti,k), where from Eq. (121) in MII

A ' (ts, ti,k) =f, '(ts, k)f, (ti,k) P jD;(k) exptie, (k)LA;, , &(ts, k)8(ti —ts)+2;, ~
~ (ts, k)t&(ts —ti)]. (59)

The determination of this function for the general parameter 7 ) (ts, ti) has been discussed in Sec. 9 of MII. One
follows in complete analogy through the analysis of Sec. 2, arriving at a set of relations (22) and (23), with P
replaced by r. One also finds that

P&'&'(ts, ti,k)—0,
G&'&'(t2, ti,k)=t&(t.—ti),

to first order. The expression (58) can therefore be further simplified to

(60)

f(x,P,Q)——,'Q 'Q lnL(1+(m(p)))(1+»'(y))]+-', Q 'Q Ct&A&"&(tii & tik)

P 1—l&~e
ke(k)

where we have substituted Eq. (57) for QFs, and used
Eqs. (41) and (44) of MII along with Eqs. (12), (8a,),
(9a), and (14) of the present paper. We observe that
we may use the approximations (48) in the second term
of (57), after the approximate pair-function expression
(12) has been substituted. An analogous situation oc-
curred in connection with Eqs. (47). The last term of
Eq. (61), which is not well defined, combines with the
A"" term to give a well-defined final expression [see
Eq. (63)j. We note that we must insert a minus sign
superscript in the A('» term, in order to indicate that
the first term, and not the second term of (59) is to be
used when we take the limit ts~ ti )see also Eq. (58)j.
Finally, we have used the fact that the integral of a
8 function times a step function of the same argument
equals g.

We now write down the terms 2;,~,
' &(ti) and l t (tl)

which occur in the function A"~&(tit &,ti) of Eq. (59).

Setting P= ts ——ti in Eqs. (22) and (23), we obtain (using
e+=- —e )

&; ~,
' &(ti)= (t&-—~+) '(e++ei)(e-+el)

(t ) (s i/1+ z il! )e il&%

I3efore substituting Eqs. (59) and (62) into the grand
potential (61), we consider the low-temperature limit
isa), z'»1. In this case, we may set Eo~g (t)=&in (t)=0
everywhere in (61), because in this limit these terms
give no first-order contribution to p 'f. This statement
is a consequence of the investigations discussed in Sec. 4.
We may also omit the first term in I3 'f, because it gives
no contribution when eu)z'&)j. . Then, using the in-

equality (52) we obtain for the very low-temperature
grand potential of a dilute gas of Bose hard spheres, the
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final expression

(ey)-iy(~, P,17)=—Pa ~o& ——,'WP+-,' (W~)'(en)-' P [(.+~.,)-'—t2.)-'$

——+ —/hi ' —~~ WP —(32/15) (WP) ( ega'/m) 'i' = riWP'[1+ (272/15) (ega'/s) "'+0(ea')+0 (euhr') 'j. (63)

( W '(e/B&) =Bc/B& (65)

where according to Eqs. (2) and (38)

g=l(WE)[1+(40/3)( 5 '/ )"'
+0(ea')+0(eaXr') '). (66)

One then finds

(1—])= (8/3) (ea'/ir)"'+0(ea')+0(euler')-'. (67)

The quantity (1—P) is often referred to as the "deple-
tion factor" of the zero-momentum state. At T=0, it is
due entirely to the particle interactions.

The pressure is given by Eq. (11) in MI as

e '6'= (eP) 'f=-', W[1+ (64/5) (ea'/m)"'
+0(ea')+0(emir') 'j (68)

where we have substituted Eq. (67) into Eq. (63) to
obtain this result. Notice that the pressure does not
vanish at T=0 for a Bose gas of hard spheres, as it does
when the diameter of the spheres is zero (i.e., when

W —+ 0).
The energy per particle of the dilute Bose gas of hard

spheres is found by substituting Eqs. (63) and (66) into
Eq. (13') of MI.«),e-= g—e-'—+~—:g (e)-'f—
(X) BP BPr '

= i~ W[1+ (128/15) (e /a~) "'
+0(ea')+0(eAr') 'j. (69)

This is the well-known result of Lee, Huang, and Yang. '
In order to check that our assumption (2) is correct. We
calculate the thermodynamic potential g thermo-
dynamically by using the relation

B(&) «) B «)~
g= = +e— i, (70)

B(E) s,a (S) Be (1V)is,a

To obtain the first line of Eq. (63) we have used the
first-order identity

('i+ &+) ('i+ &-) = 4 (Wk)' ~ (64)

which can be proved by combining Eqs. (15) and (19).
To obtain the last line of Eq. (63), we have used Eq.
(38).It should be observed that the functions 1V„,,' have
not contributed to this final result, which shows once
again that the ground state of the Bose and Boltzmann
systems are the same.

The fractional occupation P of the zero-momentum
state, near T=O, can now be determined by using
Eq. (3') of MI.

where S is the entropy. At zero temperature, holding
the entropy constant is equivalent to holding the tem-

perature constant, and, therefore, Eq. (70) is equivalent
to the statement that the pressure is given at T= 0 by

B ((I;)
e '(P —+e—

i

Be((E)
(71)

Rembering that W depends linearly on ~, we find that
Eqs. (71) and (69) are in agreement with Eq. (68).
Therefore, the assumption (2) is shown to be valid in

this first-order calculation.

(e(p)) i =(P'p)&, i i (p. )'1— (72)

where we have used Eq. (2) and set B(p)=0. The first-
order expression for the momentum distribution is
obtained by substituting Eqs. (33) and (36) into (72):

(e(p))= {~'(p)+[1+~'(p)3'[&o.~'(p)3')

X( —[ +~'(p)]'[I~o '(p))')-' (7 )

Now, in the very-low-temperature region of (52), the
function i (P,p) of Eq. (23) is exponentially small for
p/0. Therefore, when eaXr'))1, the quantity i'(p) in

(73) can be set equal to zero, and the expression for the
momentum distribution becomes

(74)

where we have used the explicit expression (31) for
Eo,i'(p), and defined

~.=—2 (Wk) (~++«) '
=(!W~)-'( + ). (75)

The second line of Eq. (75) follows from the
identity (64).

Equation (74) has been previously obtained by Lee,
Huang, and Yang. ' lt is not correct, however, when

P~~&& (eaXr') '&&1.In this case the inequality (52) is not

6. DISTRIBUTION FUNCTIONS

In this section we shall begin by determining a first-
order expression for the momentum distribution, valid
for all T. The zero-temperature limit of this expression
will then provide us with an independent means for
checking the expression (67) for the depletion factor
(1—$). Finally, we shall write down a first-order
expression for the pair-distribution function.

According to Eq. (103) in MII, the momentum
distribution is given by
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valid, and one obtains instead of (74) the expression

(e(y))=(4Pppp)-', Pip,«(naze') —'«1. (74')

The result shows that the momentum distribution
diverges as p ' when p —& 0, contrary to the prediction
of (74).

The momentum region, governed by (74') is vanishing
small in the low-temperature region (nake')))1. There-
fore, we may use only Eq. (74) to compute the depletion
factor, by the equation

i.
—

&) =(~~t) '2 (~(p))~ (8t'3)(~('~'iw)"' (7 )

Equation (76) is in agreement with the result (67),
because we may set $= 1 on the right-hand side of (76)
to first approximation.

We next investigate the pair-distribution function,
D(r). An exact expression for this quantity is given by
Eq. (100) of MI. To first order, this expression is

D (r)—1+2$LFi,i(r)+Fp, p(r)]
+ l Fi,i(~)]'+LFp, p(~)]', (77)

where the functions Fr, i(r) and Fp, ,(r) (in the limit
0 —k ~) are given by Eqs. (98) in MI as

F, ,(r) =I-'(27r) —' d'pe'p'(e(p)),

Secs. 2—6, to the case when on attractive potential is
added to the hard-sphere repulsions. This problem has
previously been examined by Huang" for a long-range
attraction, with the aid of the pseudopotential method.
In this section, we shall approach the question from a
general point of view, in order to indicate how a micro-
scopic theory of liquid helium II might be developed.
In this approach, we shall retain the general convention
regarding the orders of graphs, de6ned at the beginning
of Sec. 2. Our principal modification will be to abandon
the approximat, ions (12) and (12') for the pair functions,
and we shall then derive general first-order expressions
for the energies e+(k) and e (k).

Suppose now, that the general expression (38) in
MII for the primed pair functions is substituted into
Eqs. (3)—(5), and that these equations are, in turn,
substituted into the first line of Eq. (17). In this case,
the two identities which one obtains instead of (20), are

i expLtse„(k)]F
i=+- e, (k)+pi( —k))

X l
A, i» (t, ,k) —A,;«&(t,,k)]G,(t,,k) =0,

(81)
1

i F A, &~& (ts, k)
e,(k)+ pi( —k)

xg, ,(k—kl 00) =0,

Fp, ,(r) =e-'(2w)-' d'pe'p'Xp s (p)

where

G, (t„k)

X expP(pp, +re, —2g)

=I '(2pr) —' d'pe"&'1Vs p'(p) .

To obtain the second line of Eq. (79), we have used the
second of Eqs. (87) and (97) in MII. In the low-tem-
perature limit (52), the expression for Fp, s(r) can be
v ritten as

Fp, s(r) -k —I '(2pr) ' d'pe'&'n (1—np') ' (80)
T—ko

where we have again used the explicit expression (31)
for Ep s'(p) along with the definition (75). When Eqs.
(78) and (80) are substituted into Eq. (77), then one
finds, once again a result previously derived by I ee,
Huang, and Yang. '" We observe that the F~, i' and
Po,~' terms are really second-order terms, according to
our convention, and that a neglected term Fr, ,(r) in
Eq. (100) of MI can be the same order of magnitude as
these terms for certain regions of r. We have not pursued
this investigation any further, at present.

=gp, o(oolk —k)+ & fs(k —klkpkpl00)
k6k6

XexpL —ts(e (ks)+ e(kp) )]
1

x &I
k (k,)+ (k )—;(k)— (—k) )

(—Fl . (82)
k e(k p)+ e (kp)

The function g, , (kiks
l
ksk4) is defined by Eq. (39) inMII,

and the function f, (kkk, lkpkpl kpk4) is determined by
comparing Eq. (6) in MII with an explicit expression
for the untransformed pair funct. ion. " Equations (81)
and (82) are valid even for the mathematical idealiza-
tion of an infinite repulsive core interaction. That is to
say, they are the completely general first-order identities
which replace the approximations (20). It is convenient,
however, to assume that the repulsive interaction is
not infinite, in which case the various B(k) functions are
identically zero. Then, both of the identities (21) are

7'. ATTRACTIVE INTERACTIONS

It is of considerable interest to determine the general-
ization of the expressions which we have derived in

"See also L. S. Garcia-Colin, J. Math. Phys. 1, 87 (1960).

"Kerson Huang, Phys. Rev. 115, 765 (1959);119, 1129 (1960)."F. Mohling, Phys. Rev. 124, 583 (1961),gives explicit expres-
sions, in terms of two-particle reaction matrices, for the functions
fk and fs which determine g;, , ikkkk ( kkk4l. Section V also shows how
all three of these functions can be related to matrix elements of
scattering operators. Equations (30) and (66) of this reference are
required in order to obtain the form (82) of the function G;(t2,k).
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In a similar manner one can show that the general first-
order expression for 6'" (—k) is

t), l'i( —k) = (xQ)gr p( —ko~ —ko) (84)

This expression replaces Eq. (15), and Eq. (16) is
replaced by the expression

Et, t&'&'(ts, ti, —k)

=(s'Q)8(t2 tl) P fs(—ko~ksks~ —kO)
k5k6

(
1

xI'

Xexp (ts —ti) [et (—k) —e (ks) —e (k,)]. (85)

It is only to the extent that this last expression can be
neglected that one is entitled to use the first line of
Eq. (17) to calculate (p'(ts, ti,k), as we have done. We
shall not write down the corresponding first-order
expression for P(t, ,ti,k), Eq. (27).

The expression (83), for the determination of the 6,,
has coefficients (the g;,;) that result. in a solution which
differs in several ways from the solution (25) to Eq.
(19). As with Eqs. (81), this difference is due to the
i1 transformation. Thus, one can solve Eq. (83) alge-
braically to find for" e, (k)

e, (k) = —,'(xQ) [g, ,(—ko
~

—ko) —g, , s(ko( ko)]
+t'1 [&o(k)+6&'& ——,

' (xQ)

X (gt, s(—ko
~

—ko)+g, , s(ko
~

ko))]'
—-'(SQ)'[gs, f&(oo

~

k—k)]')"' (86)

"It is interesting to compare Eq. (86) with Eq. (4.7) in S. T.
Belisev, Zh. Eksperim. i Teor. Fiz. 34, 433 (1958) LEnglish transl. :
Soviet Phys. —JETP 7, 299 (1958)j. Thus, e+(k) reduces to
Beliaev's e(k) when the g;, , 's are all replaced by free-particle
scattering amplitudes.

also correct, and we have four equations for the deter-
mination of the four A ' and A, & '. It is important to
observe that the coefficients of the 3;&~) and 2;& ) in
Eqs. (81) have a different form after the A. transforma-
tion from the form (20) which they had before the
A transformation. On the other hand, Eqs. (21) are
unchanged by the A transformation. This point has been
discussed in detail in MII. We shall not consider these
equations further, as their solution is not required in
the present calculations.

The calculation of (P'(t&, tt, k) just described, starting
from the first line of Eq. (17), also yields terms of the
form (18) for A(ts, tt, k). By identifying these terms with
A(ts, tt, k) one finds a general first-order expression for
D, (k), which replaces Eq. (19),

6, (k) = ( ~Q)g;,p(ko
i
ko)

+4(SQ)'[gs, s(00~k —k)]'j'~ —
~

. (83)
( 1 'I

ke,;(k)+et(—k))

where to first approximation 6&" is given by

6 l'& =-', (xQ)gs, p(00
~
00) . (87)

There are two significant differences between the
solutions (86) and (25). One is that e+(k) and e (k) no
longer differ only by a minus sign. The second difference
is that Eq. (86) is actually an integral equation for the
determination of tI, (k), because g;, s depends functionally
on 6;(k). In fact, in a higher order calculation one would
find that Eqs. (81) also become integral equations.

It is not our purpose to pursue the analysis of a
general Bose system any further in this paper. Rather,
we shall consider the specific example of a weak, short-
range, attractive square well of depth Vs ——(A'p'/M) and
diameter b outside of the repulsive core of diameter a.
For such a problem the first thought which might come
to inind is to merely replace the quantity a in Eq. (25)
by the scattering length

a,,=a—(b —a)(y ' tany —1)

—~ a '; (b a)y—'+0—(y'), (88)y((1

where y=ti(b a). Clea—rly, for a weak. , short-range
attraction (y((1) the scattering length cannot be
negative.

The proper way to consider this problem is to write
down the general expression for g;;(kiks

~
ksk4), and then

to take the limit k; —+ 0 [see Eq. (10')].In Ref. 14, we
have written down the exact expression for the 5-wave
part of g, , (k&ks~ ksk4) for this problem, which is the
only part which survives in the zero-momentum limit.
If one examines the zero-momentum limit of this expres-
sion for a weak, short-range attraction (outside of a
repulsive core), then one finds the limiting expression
for y«1:
g, ,, (OO~OO) = —Q-i(8 as/m)

[a,+e, ,,"'a,se(e, ,)+0(e;,a,s)], (89)

where 8(s) is a step function and

egj(kl)k2) ~12 + (~/It )[~i(kl)+~j(k2)] y (90)

k, ,=--', (k,—k,).
Therefore, since e, ,, will be ~—ea for weak attractions,
the guess (88) is essentially correct to the order which
we are calculating.

We finally consider the possibility that the parameters
of the attractive interaction give a negative scattering
length (a,(0). In this case, the energies e;(k), as given
by Eq. (25) with a —& a,„would become complex. Such a
result should not occur for a real problem when using
the methods of equilibrium quantum statistics. More-
over, the consideration of the second term in (89) does
not alleviate this difficulty, even though it has the
correct sign, because it is much smaller than the first
term when e~ a,

~

'((1.
"F.Mohling, Phys. Rev. 128, 1365 (1962).
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The only conclusion which can be drawn from the
preceding paragraph is that the low-density Bose gas
near T=O does not exist when a, &0. That is to say, a
Bose gas having short-range interactions with u, &0 will
collapse to densities such that the low-density approxi-
mations (10) and (10') are not valid. For a Bose gas
with weak long-range attractions, the calculation of
Huang" has shown that the low-density approximations
(10) and (10') may remain valid in certain circum-
stances even though a, &0. To show this, Huang con-
siders a nonlocal, or velocity-dependent, two-particle

interaction, which is equivalent in this case to consider-
ing a very-low-momentum variation of g;,; in the
approximation (89).
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Silicon-Crystal Determination of the Absolute Scale of X-Ray Wavelengths*f
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In a recent evaluation of the atomic constants, the value of Avogadro's number is %=6.02252)(10"
(g mole) '&11 ppm (probable error). Measurements on the atomic weight of silicon give 3 =28.0857
~10 ppm. Precision measurements of the density of silicon combined with the above values in the Bragg
equation a= (fA/pN)'I' result in an absolute grating constant of high precision. X-ray diffraction measure-
ments with the same crystal yield the grating constant in x units; thus the conversion factor from x units to
cm can be evaluated. X-ray and density measurements have been made on 17 selected silicon crystals from
four different sources. The statistical error in the measurement of the densities of the 17 crystals was ~0.4
ppm. To obtain the absolute density error, a 3 ppm probable error in the density of water must be added,
giving a total error of %3.1 ppm. The measured densities of two of the 17 crystals differed from the average
by more than 3 0-, probably indicating a difference in the density of the crystals. The x-ray diffraction
measurements were made with a double-crystal spectrometer using the copper En& and En2 lines. The wave-
lengths in angstroms were evaluated from the Bragg law for each of the 17 crystals and for the of1 and 0.2
lines. The average wavelengths were Cu En1 ——1.540563 A&5 ppm, and Cu Ea~ ——1.544390 A&5 ppm.
Taking the Peak wavelength values of 1537.400 xu~1 ppm for the CuEa1 and 1541.219 xu&6.5 ppm for the
Cu E0.2 lines yields a wavelength conversion factor from angstrom to thousand x units of A=1.002057
A/kxu+5ppm. Recalculation of the best measurements in the literature with current values of the atomic
weights gave values which agree with the present work within probable errors. Plane-ruled-grating measure-
ments of x-ray wavelengths yield a value of A = 1.00203+30 ppm, which is lower than the above values, but
the probable errors overlap.

INTRODUCTION

~ 'HE absolute (cm or A) scale of x-ray wave-
lengths has been established primarily by the

ruled grating measurements' ' of a few x-ray lines which
gave the correction factor' 1.00203 for converting wave-
lengths in x units to mA. The impossibility of accurately

*This work was supported by the U. S. Atomic Energy
Commission.

1 Based in part on a thesis (I.H. ) submitted to the Department
of Physics, The Johns Hopkins University, 1961.

f. Present address: Los Alamos Scientific Laboratory, University
of California, Los Alamos, New Mexico 87544.' J. A. Bearden, Phys. Rev. 37, 1210 (1931);48, 385 (1935).

s E. Backlin, Z. Physik 93, 450 (1935).' M. Soderman, Nature 135, 67 (1935).'F. Tyren, Z. Physik 109, 722 (1938); Nova Acta Reg. Sci.
(Uppsala) 12, No. 1 (1940).

~ R. T. Birge, Am. J. Phys. 13, 63 (1945). In 1947 W. L. Bragg,
M. Siegbahn, B. E. Warren, and H. Lipson recommended A
=1.002020&0.000030 for general adoption, J. Sci. Instr. 24, 27
(1947); Phys. Rev. 72, 437 (1947).

correcting Tyren's concave grating measurements for
the Lamb shift, 6 DuMond and Kirkpatrick's~ difficul-
ties in repeating Tyren's measurements, theoretical
questions, ' and the experimental problems involved in
attempting to improve the plane grating measurements
by the use of crystals for separating the 0.1, e2 lines,
emphasize the importance of establishing the x-ray
wavelength scale by other methods. Actually only one
set of plane grating measurements' is free of serious
errors, and this has a probable error of 30 ppm.

Bragg' was the erst to calculate the grating constant

' J. W. M. DuMond and E. R. Cohen, Phys. Rev. 103, 1583
(1956).

7 J. W. M. DuMond and H. A. Kirkpatrick, Final Report to
NSF, 1963 (unpublished).' J. A. Bearden and J. S. Thomsen, Bull. Am. Phys. Soc. 8, 313
(1963); and W. C. Sander, thesis, Department of Physics, Johns
Hopkins University, 1963 (unpublished).

'W. H. Bragg, Proc. Roy. Soc. (London) SSA, 428 (1913);
89A, 246 (1914);89A, 430 (1914).


