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In the first paper of this series, the master-graph formulation of the Lee-Yang quantum statistical theory
for a degenerate Bose system was derived. In the present paper, this entire theory is transformed from a free-
particle description to a quasiparticle description by means of a A. transformation. This transformation
leaves the master-graph formulation of the theory essentially unchanged, while at the same time introducing
the quasiparticle energy-momentum relation and the quasiparticle interaction function into the theory.
The transformation is motivated by a study of the very low-temperature behavior of the fundamental
integral equation of the theory. An interesting feature of the transformed theory is that it contains two
quasiparticle energy-momentum relations, e+(0) and e (k). The understanding of this result is not
achieved in this paper, although the possibility of a double quasiparticle spectrum has previously been
suggested by Lieb.

l. INTRODUCTION
' "N the first paper of this series, ' we have developed a
- - quantum statistical theory of the degenerate Bose
system, extending the earlier work of Lee and Yang. '
In our first paper, particular attention was devoted
to the self-energy structure of the graphs of the theory,
and a final master-graph prescription was developed for
the various physical quantities, in which the line factors
included the sum over all possible self-energy structures
In particular, both the grand potential and the mo-
mentum distribution were written down in the master-
graph formulation of quantum statistics.

In the present paper the formal analysis is continued
and concluded by the A. transformation of the entire
theory from a free-particle description to a quasiparticle
description. The reader will undoubtedly wonder at the
tremendous detail which has been included in a formal
way in this paper. The explanation for this detail is
twofold. In the first place, it seems to be mathematically
necessary to go through all of the steps of this paper in

- order to arrive at a transformed theory, with which the
application to a real or model degenerate Bose system
may be relatively straightforward. Thus, it is extremely
likely that the results of this paper can be applied to the
study of the microscopic theory of liquid helium II,
throughout its temperature range, by a simple perturba-
tion or graphical series expansion of the general ex-
pressions. If so, then this will be a tremendous ad-
vantage of the theory. In the second place, this detail
has been a consequence of the studies of the model Bose
system of a dilute gas of hard spheres. Continued
attempts to arrive at the well-known Lee-Huang-Yang
expressions for the ground-state properties of this
system' have uncovered the many subtleties of the
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theory which are presented here. Without their results,
the research which has led to this paper might easily
have failed to uncover the most important features of
the quasiparticle theory.

What does one mean by a quasiparticle theory' The
interpretation which we give to a quasiparticle theory is
that it is a theory in which the quantum mechanical
normal modes of a system are exhibited. Thus, although
real systems consist of real interacting particles, nature
allows a description of real systems in terms of inter-
acting quasiparticles for which the interactions are
minimized. Of course, it would be nice if nature would
allow a description in terms of free quasiparticles, but
this seems never to be the case. For example, the quasi-
particles in a crystal, called phonons in this case, can
only be considered to be free to first approximation.
Similarly, in the microscopic theory of nuclear matter,
one can deduce a quasiparticle description which is in
agreement with the macroscopic Landau theory of a
Fermi liquid, and in this case one also finds that the
quasiparticles interact. If one has once (theoretically)
discovered the quasiparticle description of a system,
then the physical properties of the system can be calcu-
lated by using an appropriate perturbation theory
applied to the quasiparticle (or residual) interactions.
This is the advantage of a quasiparticle description.

In the present paper we do not exhibit a quasiparticle
model for a degenerate Bose system, yet we nevertheless
believe that we have arrived at the quasiparticle de-
scription. The reason for this belief is that we feel that
the quasiparticle description must be intimately associ-
ated with a correct treatment of the momentum space
ordering in the degenerate Hose system, and this latter
problem is the one we have considered in detail here.
Thus, we consider a degenerate Bose system at rest, for
which the occupation of the zero-momentum state is
macroscopic. This macroscopic occupation is charac-
terized by a nonzero value for the density (x) of zero-
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momentum particles. One can calculate (x) in this
theory, as shown in MI, and if one finds that (x)=0,
then the theory reduces to that of a "normal" system.

In the case that (x)WO, and this is the case for liquid
helium II, we find in this paper a quantity —6( & which
we identify as the energy per particle of the "superAuid"
zero-momentum particles. Since, for the superQuid, the
energy is the same thing as the free energy, we set this
quantity equal to the chemical potential g [Eq. (115)],
a step which we can mathematically justify on an
a priori basis only at T=0. Similarly, the study of the
momentum space ordering of the nonzero-momentum
particles in the system leads to a self-energy —6+(k),
Eq. (26), which we can identify as the potential energy
of a quasiparticle with momentum k. The energy of this
quasiparticle, relative to the superHuid, is then given by
6y(k) =&a(k) —A~(k)+6 "&, where (u(k) is the free-
particle energy [see Eqs. (40) and (131)].Now, the
peculiar thing is that we have obtained tao quasiparticle
energies e+(k) and e (k), and this is a result for which
we do not yet have an interpretation. It is interesting
to note, however, that the suggestion that a double
quasiparticle spectrum might exist in a degenerate Bose
system has previously been made by Lieb. ' Finally, we
have also arrived at the quasiparticle interaction func-
tion, and this is the transformed pair function of Sec. 4.

It is very convenient to think in terms of the above
quasiparticle interpretation when proceeding through
the formal analysis of this paper. %e have avoided the
use of this language in writing the formal analysis, how-

ever, because the analysis is mathematically motivated
with the interpretation coming afterwards. Therefore,
we now proceed with a discussion of how the momentum
space ordering is achieved from the mathematical point
of view.

In Sec. 2 we itemize the basic quantities used in the
master graphs of MI. In this way, we are able to empha-
size those relations which form the basis of the sub-
sequent analysis. In particular, we observe that the
kernal E(s,i,k) in the most important integral Eq. (12)
of the theory has a part Po(s, i,k), which does not permit
an iterative solution of (12) at very low temperatures.
Thus, one is forced to solve the integral Eq. (18), and
an exact solution of this equation is given in Sec. 3.

It should be remarked here that the integral Eq. (18)
provides the important stepping stone to the A trans-
formation of Sec. 5. Now, when the A transformation
was first studied for the case (x)=-0, and for Fermi

systems, ' it was found that only the first two terms of

~o(4, ti,k), Eq. (16), entered into the theory. It is

therefore quite natural to use this simplified form for

Po(i2, fi,k) when (x)NO. Such an attempt fails com-

pletely, because the very low-temperature behavior of
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the theory is not properly treated when this is done

This simplified approach also fails to yield the I.ee-

Huang-Yang results' for the hard-sphere Bose gas. One

is thus forced to consider the entire complicated ex-

pression (16) for P,(f2,ii,k).
In Secs. 5—8, the A transformation of the theory is

performed. This transformation starts from the observa-
tion that the solution Go(tm, ii,k) to the integral Eq. (18)
is really only a 6rst approximation to the solution to the
basic Eq. (12). Therefore, the function G, (t, , ti, k) can
occur along any of the internal lines of the master

graphs as part of the self-energy factors, and therefore
one encounters integrals over pair functions (the vertex
functions of the theory) everywhere. These are the

integrals (35) which are studied in detail in Sec. 4. In
simplest terms, the A transformation is nothing more

than the elimination of the explicit appearance of the

(large) function G,(t2, ti, k) in the theory by performing
the integrals (35). It is only when one wants to insure
that these integrals are actually performed everywhere

that one arrives at the concept of a linear integral
transformation (on a very nonlinear theory). The full

study of this A transformation, of which there are four

different cases, is the content of Secs. 5—8. Thus, the
basic A transformation is introduced in Sec. 5. In Sec. 6,
the transformation of the line factors of the master

graphs is studied, and an expression for the momentum
distribution in the transformed theory is derived. In
Sec. 7, the zero-momentum factors are transformed, and
in Sec. 8, the grand potential is transformed. Finally,
in Sec. 9, the four functions A(t~, ti,k) are discussed in
detail, for it is these functions which really characterize
the A transformation equations. These functions and the
related functions f(t,k) appear explicitly in the expres-
sions for the transformed momentum distribution and
grand potential.

From the above discussion one can see that the
A. transformation provides the solution to the low-tem-
perature self-energy problem, which is presented by
terms of the form Po(t2, fi,k). Thus, after the A trans-
formation, the transformed basic integral equation (59)
can be solved approximately by iteration (as can all the
other transformed integral equations of the theory).
The A transformation is therefore also a key to the
microscopic understanding of the momentum space
ordering in the degenerate Bose system, although this
key can really only be turned by making an application
of the theory to a real or model system. One is able to
make a start towards understanding this ordering, how-

ever, by considering the few quantities which have
already appeared in the formal analysis. Thus, the
A. transformation changes the free-particle energies
(almost) everywhere to the functions ca(k) —6+(k),
~(k) —6 (k), and —6&'&, and this change strongly sug-

gests the quasiparticle interpretation given above.
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2. INVESTIGATION OF THEORY AT VERY
LOW TEMPERATURES

In the development of a quantum statistical theory
of the degenerate Bose system in MI, our principal
objective was the analysis of the self-energy graphs of
the theory. Thus, in the final formulation derived in

MI, the grand potential and the distribution functions
for an arbitrary Bose system are expressed in terms of
master graphs whose line factors represent the sum over
all possible self-energy graphs. %e shall not repeat the
rules and equations of this final prescription here; but

rather, we shall summarize the ingredients, or building
blocks, for master graphs. It is the investigation of
these basic quantities which provides the motivation
for the analysis of the present paper.

The first quantity which we shall write down is the
pair function [MI, Eqs. (18)—(20)], which is the vertex
function of the theory. The dynamics of the Hose system
is determined by the pair function because it is the only
function of the theory which explicitly depends on the
elementary two-body interaction between two free
bosons. In a preceding paper, ' we have studied the pair
function in detail. Thus, its general definition is
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where

R(ts, tl) = —W2(ts, tl) U(tl),

W2(ts, ti) = 1— dsW2(ts, s) V(s),
(3)

V(t) = exp(tH0&2&) V2 exp( —tH0&2&), (4)

H"' =H0"'+ V2.

Equations (3) give the operator form of the pair function
in terms of the two-body potential in the interaction
representation (4). Equation (5) expresses the two-body
Hamiltonian H&'& as a sum of a free-particle part Bo "
and the two-body interaction U2. The 8(y) in Eq. (1)
are step functions, defined by 8(y)—= 1 if y)0 and

8(y) —=0 if y(0. It can be seen by iterating the expression
for W2(ts, ti) and then substituting the result into R(ts, ti),
that the pair function (2) is a sum over all "ladder
diagrams" (using the language of field theory). For a
weak potential, one can use simple perturbation theory
to determine the pair function.

Most realistic two-particle interactions contain a
repulsive core, and this is certainly true of the interac-
tion between helium atoms. Since the repulsive core
plays a dominant role in the Bose many-body problem, '
one cannot use perturbation theory to determine the pair
function. Now, although the two-body Schrodinger
equation for a realistic helium interatomic potential
cannot be solved exactly, one can nevertheless write
down the form which Eq. (2) takes for a general potential
by using techniques from scattering theory. The result7

- ls
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where each of the f; functions can be expressed. entirely
in terms of two-particle reaction matrices, which are
we11 defined, even for an infinite repulsive core inter-
action. The free-particle energies co; are given by
M(k) =Asks/2M in the limit of an infinite system, and
the function f: is to be included only when one wishes
to use the mathematical idealization of an infinite repul-

sive core. For a finite or penetrable repulsive core, f0=0—
The usefulness of Eq. (6) is that it explicitly exhibits the

' F. Mohling, Phys. Rev. 122, 1043 (1961).See also F. Mohling,
~bid. 124, 583 (196I).

8 I". London, Superguids (John Wiley 8z Sons, Inc. , New Yorl~,
1954), Vol. II. On pp. 30-35, the importance of the hard core to a
microscopic understanding of liquid helium II is demonstrated.
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form of the temperature dependence of the pair function
for an arbitrary two-particle interaction.

%'e next consider the line factors of master graphs.
These are given as the solutions of integral equations,
derived in MI. %e shall 6rst concentrate our attention
on the kernels and inhomogeneous parts of these integral
equations. As we have previously shown, the line factors
arise from both dynamical and statistical effects. The
effect of statistics, or exchange, is primarily determined
by the function v(p),

~(I) = expP(g —~.)[1—expP(g —~&)] ',
where g is the thermodynamic potential per particle in
the system and p = (AT) '. In this paper we continue to
use the convention of MI that k ~ y when k cannot be
zero, i.e., pAO. The function v(p) occurs as an inhomo-
geneous term and as a factor in the kernels of the
integral equations [MI, (35)—(37)]for the N„,„(p).The
functions N„,(p) then give the direct e8ect of statistics
on the master-graph line iactors g„„(t2,tl, k), Eqs. (66)—
(72) in MI.

The dynamical part of the line factors is primarily
due to the functions E„,,(tp, tl, k) of Eq. (73) in MI.
These functions given by

E„,,(t„t„k)
=Q [all different master (tl, r ) I. graphs]2, (8)

where (tl, v) = (1,1), (0,2), or (2,0), play a central role in
the analysis of this paper. Closely related to the
E„,„(tp,tl, k) is the function [MI, Eq. (62)]

P(4)tl&k) =El, l(4, tlPfk)+ dslds2E2, 0(t2)$1)k)

L2,0(t„t„k)= d$2d$1G1, 1(t21S21k)G(tl)Sly k)

where

XE2, 0($2) Sl,k) —&(t2ptl)E2, 0 "(tp, tl, k) ) (14)

G, ,(t,,t„k)= &(4—4)+I.l, l(t, ,t, ,k), (15)

and the functions Ep, 2"'(tp, tl, k) and E2 0"'(tp, tl, k) are
defined below Eq. (59) in MI.

Having completed a review of the basic quantities in
the theory, we are now in a position to begin the analysis
of this paper. Our first step will be to write down a
special class of terms which occurs in the function
P(tp, tl, k) of Eq. (9), and we shall define the sum of these
terms to be Pp(tp, tl,k). The general form of Pp(t, ,t, ,k)
is then

[1+a(k)]P,(t,,t„k)
= P (k)+B(k)S(t2—t,)+C(k)]e(t,—t,)

+c(k) exp[(t2 —tl)D(k)]8(tl —t2)
—c'(k) exp[—tlD(k)]+ exp[—pD(k)]

X[&'(k)+&"(k) expt, D(k)]8(P—t,), (16)

where each of the quantities A, 8, C, etc. , may have a
dependence on P, although this has not been explicitly
indicated in (16).The factor [1+8(k)]or& the left-hand
side of Eq. (16) is introduced for convenience [see below
Eq. (19)].One can demonstrate the existence of each
of the terms in Eq. (16) by a simple lowest order calcula-
tion of each of the functions E„„(tp,tl, k) which con-
tribute to Eq. (9). Thus, one has only to use the one-
vertex master (tl, l) I. graphs of Fig. 1, in connection
with Eq. (8), to obtain the expressions

where

P k 0
XG($2 $1 k)E0,2(tl $2 k) (9) El, l(t2 tl k)0= (xQe ') dSG,„2(s) G'.(t.)

0 k 0 „
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(10)
=(xQe«)

t2 — p—

k 01„

I l, l(t2)tl)k) dsG, ,(t2, s,k)P(s, t, ,k), (12)

The functions E„„(tp,tl, k) and P(tp, tl, k) are kernels
in the integral equations [MI, (63)—(65)] for the
I.„,,(tp, tl, k), and the I.„,„(t2,tl, k) then give the direct
effect of dynamics on the line factors g„,„(tp,tl, k). We
shall require these integral equations in the present
paper, and so we repeat them here.

Ep, 2(tp, tl, k) p
——-', (xQe'«) d$2dsy

s1s2 -0 0
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k

ds (17c)
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(ta t/k)
(II
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tures, regardless of the sign of 6, no power series expan-
sion of this temperature exponential is valid. Therefore,
the existence of terms of the form (16) immediately
implies that the iterative solution to Eq. (12) is not
valid at very low temperatures. This analysis, therefore,
has already demonstrated the necessity of the careful
study of the self-energy structure of the quantum sta-
tistical theory in MI which led to the integral equations
(12)—(15) and the master-graph formulation.

We shall return to the analysis of this self-energy
structure in Sec. 5 after studying the integral equation
(18) and some of its consequences in the next two sec-
tions. The role in the theory of the part of P(ts, t&,k),
which is not of the form Pp(ts, tr, k), will also be clarified
in Sec. 5 [see Eq. (60) and below).

tao(ta t, k)o

FIG. 1. The lowest order approximations to the functions
IC„,„(t2 tl k)yr where )s+v= 2, are the three one-vertex master (p, v)
L graphs shown.

3. FUNDAMENTAL INTEGRAL EQUATION

The fundamental integral equation in the analysis of
this paper is Eq. (18), with the kernel (16). At the end
of the preceding section, we have demonstrated that at
very low temperatures no iterative expansion of this
integral equation is valid. Therefore, this equation must
be solved, and in fact, we shall now give the exact
solution. We shall Dot go through the derivation of this
solution, but rather, we shall write the solution down
and then indicate how to verify it a posteriori. Thus,
one finds that

I.,(t„t„k)—= dsGp(ts, s,k) Pp(s, t&,k),
(18)

Gp(ts, t„k)= tI(t, —t,)+Lp(ts, tr, k) .

It will be shown in the following section that the solution
to the integral equation (18) involves temperature ex-
ponentials, and that all of the terms of (16) contribute
in some way or other to these temperature exponentials.
Let us suppose that a particular temperature exponential
in the solution to (18) is exp(tsar), where A(k) is well
defined in the limit P ~~ . Then, at very low tempera-

where we have approximated the zero-momentum fac-
tors (Sec. 5 in MI) by G.„&(s)—8(P—s) and G;„(s)—1.
By using the explicit form, (1) and (6) for the pair func-
tion, and setting G(ts, tr, k)=tI(ts —tr) in Eq. (9), one can
demonstrate that Eqs. (1/) lead to terms of the form
(16).The question as to whether or not the terms (17)
constitute a good first approximation to the E„,„(ts,tr, k)
will be dealt with at the end of Sec. 5 and then again in
the third paper of this series. The approximation
G(ts, tr, k)=8(ts —tr) and the zero-momentum factor ap-
proximations will also be considered more carefully as
our analysis progresses.

Consider now the consequence of substituting Eq. (16)
for Pp(ts, tr, k) into the integral Eq. (12). We shall define
the corresponding solution to this integral equation to
be Lp(ts, tr, k). Then

Gp(ts, tr) =(1+&){L~(t. t.)+&+C—+"'(t.)e-'"
/), C —'~ ()t)pe '« ]t)(ts -tr)—

+[g C (&)(t,)e t«+ g —C (&)(t,)e ~»

+B«)(4)t)(p—tr)]0(tr —4)), (19)

where the quantity 8 appears oddly in the over-all multi-
plying factor (1+8) when this factor is also introduced
on the left-hand side of (16).In Eq. (19) and throughout
the rest of the paper, we shall frequently omit the de-
pendence on k from the notation for the various
quantities. Of course, this can only be done when there
is only one momentum variable in an equation.

The proof that the solution (19) is correct can be made
by substituting Eq. (19) into Eq. (18) and then perform-
ing all of the integrations on the right-hand side of (18).
One then matches the coeKcients of similar t~-dependent
exponentials on both sides of (18) for the two cases
t~& t2 and t~(t2. This gives the following five identities:

[C+ (ts) —C+«(ts)]e- '+

=1+[C &»(t,)—C .«)(t,)]e-"- (20)

C+& )(ts)e ea+=C ' '(ts)e es-+8& )(ts) (21)

[/s+(/s~ D) 'C C']C~ '(t—s)—
=- [~-(~-—D) 'c—c']c-' '(t ), (22)

(A —D)-'LC»(t, )—C„«)(t,)]e- '-

=1+~ (A-—D) 'rc-"'(t )—C-"'(t )]e "'-, (23)
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(3+—D)6~+(A+C)D=0,
which has the solutions

(25)

~+=p( +D)~p[(4 —D)' —4C )'" ( )

It should now be clear that the solution (19) for
Gp(t2, ti) is correct because the five quantities C~&»,
C+&~), and 8( ) are completely determined by the five
linearly independent equations (20)—(24). These simple
algebraic equations can be easily solved, and we shall
write down the solution in Sec. 9 for the special case
when the 8's are all zero. For the rest of this paper,
however, it is not necessary to have explicit expressions
for the quantities in the solution (19).It is only suflicient
to know the general form (19)of the solution for Gp(tp, ti).

There is another reason why it is inappropriate to
discuss the solution to Eqs. (20)—(24) here. This reason
is connected with the fact that whereas the A trans-
formation of Sec. 5 leaves the form of Gp(tp, ti) invariant;
at the same time it causes one to focus attention on a
new quantity A(tp, ti) and its relation to Gp(tp, ti) rather
than on Gp, Pp, and the integral Eq. (18). This very
subtle point will be discussed in detail at the end of
Sec. 4 and below Eq. (53), but for the present it is
sufhcient to point out that this subtle point has the
effect of changing the identities (22)—(24). Only the
basic identities (20) and (21) remain invariant under the
A transformation, and the reason for this is because
they do not depend on the particular quantities in

Pp(tp, ti), Eq. (16), except through the functions tI&+ and
6 . It will be seen in Sec. 4 that the identities (20) and.

(21) are essential to our analysis.
We next write down an important integral of Gp(tp, ti).

dtiGp(tp, ti)

= (1+8)f [C+&»(t,)e-«'+ —C &»(t,)e-'"-)S(t,—t,)

y[C+«&(t,)e—«'+ —C «&(t,)e-«'-)e(t, —t,)j. (27)

In the evaluation of this integral we have used the
identities (20) and (21).For the special case when tp ——0,
we define this integral times a factor to be a quantity
f (tp, k). Then

f(tp, k)—= [1+8(k)] ' exp[—t, (&pk+6&P&))

dt,G,(t„t„k)
0

=- exp[ —tp(&p&,+6&p&)]
&& [C+&»(t„k)—C &»(t„k)], (28)

[8'+~+(~+—D) '8"]C+' '(4)
—[8'+tI& (6 —D)—'8")C &~&(tp)

=eP ([1+D(t&+ D—) '8")C+' &(tp)e»+
—[I'D(a —D)- 8")C (t,)e-»-). (24)

One also obtains a single equation for the determination
of 6+ and 6,

where the function 6&'& will be defined in Sec. 7 [see
also Eqs. (33) and (34)].

We conclude this section by discussing two special
cases of the above results. The first of these cases occurs
when one considers the integral equation (11) instead of
(12). In this case we define the special class of terms in

Ei, i(tp, ti, k) [which result in a temperature exponential
solution to the integral equation (11))to be Ep "&(tp,ti, k).
The general form of I&.'p "&(t,,t, ,k) is

Z, &»(t„t„k)= [1PB&»(k))-'
X[A&'&(k)+8&'&(k)b(tp —t,)]e(t,—t,) . (29)

One can easily verify that terms of the form (29) occur
in Ei, i(tp, ti,k) by substituting Eq. (6) into Eq. (17a).

We shall define the solution to the integral equation
(11) which results when Kp&"(tp, ti,k) is used for the
kernel to be Lp&" (tp, ti, k). Then

Lp (tp, ti,k) = dsGp (tp&s, k)1&.'p (s, ti, k) &

Gp& &(tp, ti)k):= b(tp ti)+I p& &(tp, ti,k) .

The solution to Eq. (30) is readily found to be

G,&'&(t„t,) = [1+8&»]
&& [b(tp —ti)+6&'& exp(tp —ti)h "&)8(tp—ti), (31)

and in this case the integral corresponding to Eq. (27) is

dt, Gp&'&(tp, ti)

=[1+8&'&)exp[(4 t )~"']0(4 4). (32)

The other special case occurs only when k=0, and
this case will be discussed in detail in Sec. 7 when the
zero-momentum factors of master graphs are considered.
In this case, there is no integral equation such as (18)
or (30) to motivate our determination of Gp&'&(tp, t,).
Rather, we shall merely define this quantity to be of the
form (31):

Gp"'(tp, ti) —=L1+8'")
&&[6(tp—ti)+6& & exp(tp —ti)A& &)0(tp—ti), (33)

with

dtiG&&"'(tQ, ti)

= [1+8"&)exp[(t —t,)d &")0(t,—t,) . (34)

The definitions of the quantities 6' & and 8& ' will be
made in Sec. 7.

We finally observe that the functions Gp&'&(t„t,) and
Gp&" (tp, ti) of Eqs. (31) and (33) can be considered to be
special cases of the function Gp(tp, ti), Kq. (19).One has
merely to set C~& '=8& '=C &»=0 in Kq. (19) and
to set C+&+&(t,)=e«~. If the appropriate superscript (1)
or (0) js then attached to the quantities 5 and 8, then
one obtains either Gp"'(tp, ti) or Gp' (4,ti).
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4. I'AIR-PUNCTION TRANSFORMATION

In Sec. 3 we have arrived at explicit expressions for
Gp(tp, ti) and Gp("(t2, ti). The question now arises as to
how these two (and also two other) functions are to be
used in the theory. The obvious answer to this question
is to use them as first approximations to the functions
Gi, i(tp, ti) and G(to, ti), and to then start calculating
thermodynamic quantities and distribution functions.

But in the master graphs, the functions G11 and G
usually appear multiplied by pair functions, and these
products are to be integrated over temperature vari-
ables. Thus, we are led to consider such integrals, and
the consequences of this consideration then motivates
the A transformation of the next section.

In anticipation of the next section, we now define a
trctnsforrrted pair fgrictior3 as follows:

'1'3-k k -'
1 2 —=f(to k3)f(to, k4)| (t),ki)V'(to, k2) exp[to(p)3+p)4+211"')]

kok4 „
kok4 „0

~1~2
1 2

~eXPL t1(P)1+ted )]eXP[ t2((d2+s-1 )] dSidS2Go(tisSlskl)GO(tpsS2sk2) (35)

where the function f(t,k) is defined by Eq. (28) and (d;=(d(k, ). Aside from the over-all multiplying factors, the
definition (35) consists of precisely the kind of integrations referred to in the preceding paragraph. By using
Eq. (1), this expression can be rewritten in the following form:

'1'2-k k -'
1 2 = f(tp ko)f (tp, k4)& (ti,ki)i (tp, k2) exp[to((d3+(d4+2h"')] exp[—t,(a»+6"')] exp[—t2(&d2+6"')]

kok4 „
'&-k,k2-

ds, Gp(t„s„k,)
-k3k4- tp sy

dS2Gp(t2, S2,k2)+
'3-kik2-

d$2Go(t2, $2,k2)
kok4- 4o so

dsiGp(ti si,ki) . (36)

We note that if the si integrations are performed last in both of the two terms of Eq. (36); then one will always have
s2(si(p in the second term. Therefore, the B(~)(t2) part of the second term will make no contribution. To account
for this situation we have written the upper s2 integration limit of the second term as p( ). Of course, we could
just as well attach the superscript (—) to the upper si integration limit of the first term, there being no difference
in the final result.

We wish to perform the integrations in Eq. (36). Two of them can be accomplished. immediately by substituting
Eq. (27). One must then substitute Eq. (19) and perform the remaining single integrations, of which there are
many. Fortunately, except for simple 8-function integrations, these remaining integrations can all be accomplished
with the aid of a single identity; namely,

[S,(k,)+a,(k2)]
1-k k-

dsi exp[ —s, (t1~(k,)+A~(k2))]
k,k, „

where

"-k k -'
1 2

(~~) kk, „
'1-kik2-

exp[ to((do+(d4+2t) "')]—exp[ —ti(h~(k, )+A~(k2))] s (37)
kok4 4,

'1-k k -'
1 2

(s,g') kok4 4p

—=exp[to(5, (kl)+ pj(k2))]g;,,(kik2
~
kok4)+ g exp[ti(5;(ki)+ 5, (k2) —5(kp) —5(ko))]

k5k 6

1
&exp[to(&(k5)+ &(ko))]f2(kik2 I koko

~
kok4)+I + t)(t) tp)—

15;(ki)+5,(k2) —5(k5) —5(kp)

)&e p[t,(,(k,)+,(k ))]f,(k k,
i k,k ), (38)

g;,;(k,k2 t k,k4) —=f,(k,k,
~
k,k,)+[a;(k,)+6;(k2)]f,(k,k,

~
k,k,)

1 1
+P f2(k, k2~ k5ko~ k3k4) I' (39)

kske 5(ki)+ 5(k2) —5(k5) —5(kp)) 5;(ki)+5, (k2) —5(ko) —5(kp)

5 (k)=—od(k)+6("—441("(k)= 5(k) —6(')(k) e0 =—0.
pg(k) —=cd(k)+6(') —A~(k) = 5(k) —A~(k), 5(k) —=4d(k)+11('),

(4o)
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The proof of Eq. (37) can be made by simply substituting Eq. (6) into the left-hand side. It should be observed that
there are four possible applications of this identity corresponding to the two pairs of (&) signs. The quantities
pi(k) aii(i tp (iefined in Eqs. (40) have not occurred in any of the preceding expressions, but we have included them
because they will be encountered below. We finally remark that the introduction of the 4's, Eqs. (40), has not been
done to simplify Eq. (38) or (39), but rather to simplify subsequent expressions and their eventual interpretation.

Even with the aid of Eq. (37), it is extremely tedious to derive a final useful expression for the transformed pair
function (36).We shall omit the numerous albegraic manipulations and give only the final result.

tttp-k k -'
1 2

kk4 „=|(tppkp)|(tppk4)l '(tiiki)l '(tp»p) 2»" '(tiiki)
'G —+ 4

« -I I—1 2

+A )'(ti,ki)
(; &) k,k4

tlt2—
1 2

(i,)) --~3~4- ]p

(41)

where, with 4=+ or —,
A, ( &(t,k) —= L1+tt)(k)] expL —tp(k)]C ( '(t,k),

A;(»(t, k) =L1+a(k)] expI t—.(k)]C;(»(tk), ,
(42)

= P j A, «&(t„k,)
(4,() kpk4 tp J=+

s-k, k,-'

(', ') kpk4 ) (', ') kpk4

I
1 2

0(t,—t,)0(t,—t,)—
'i-k k -'

1 2
'

0(t,—t,)0(ti —tt))

(',i) -kpk4- t 4

+A, (»(t„k,)
'-kk-'

1 2

0(tp —tt,)—
(;;) 43k, „

'i-k k -'
1 2

(;,;) kpk4 t,
0(tl tp) 0(t2 ti) if

jA, ((&(t, ,k,)

1 2 j A, «&(t„k,)
(;,)) k,k4 „ t'=+,—

tP -k,k,-' 't-k k -'
1 2

0(ti —tp)

(i,j) -~3~4- t0 (i,j) -~8~4- t0

't-k k -'
1 2

tp-k k -'
1 2

0(ti—tp)—
(;,;) kk, „ (;,) kk, „0(t,—t,) 0(t,—t,,)

if t, = t„(43)

't-k k -'
1 2

tp-k k -'
1 2

+A;(»(t„k,) 0(t,—t,)+ 0(t,—t,) 0(t,—t,)0(t,—t,) if
(',i) -»k4- t, (;,,) k,k4 „

jA, ()'(ti,kp)

&I-k k -'
1 2

0(t, t,)—
(;,;) k,k4 „

if ti t2. (44)——

In Eq. (41), attention has been focused on the variables ti and ki, thereby apparently destroying the symmetry
of the transformed pair function. Thus, from Eq. (35) it is easy to see that the transformed pair function is invariant
under the interchange (ti,ki, kp) (t, ,k, ,k4). However, one can verify that this invariance is still present in Eq. (41)
when Eqs. (43) and (44) are substituted. One should also observe that the untransformed pair functions of the
second term in (37) have all canceled out in the final expression (41).This cancellation has been achieved with the
aid of the identities (20) and (21).

Equation (41) can be greatly simplified in the important case when only the first term of Eq. (38) is retained.
One then obtains the approximate expression

t.i t2—
1 2

kpk4 t„
=t(tp, k;,)l(tp, k4)| '(tt, kt)l '(4,4) 2 ALA,' '(tt, ki)0(tp —tt)+A,' '(ti, ki)0(ti —tp)]

where

tp k,k,
X 0(tp —tp)+

(;() kk4 „
tp k,k, q

(;)) kpk4)&„

'pt k,k,
jA;«&(tp, kp)gtt'(kikplkpk4) expLtp(44(ki)+p;(kp))],

(;,&) kk, k4 „4=+.—
ti t'k, kp

jA, (t„k,)g;,(k,k, Ikpk4) expI tp(p;(ki)+p;(kp))].
(4)) ~kpk4 ttt , i +



t) EGENE RATE BOSE SYSTEM. J I

f")(t,k) =exp[—tpp, (k)],
f "'(t)=1. (49)

It should be noted that either the outgoing or the in-

coming f'(t) factors in Eq. (41) can be replaced by one
of Eqs. (49), the particular choice being determined as
indicated below Eq. (65). Finally, the (&) signs of
Eqs. (38), (39), etc. , must be replaced by either of the
indices (0) or (1) when Gp~ Gpi ) or Gp —) Gp~'). One
must then refer to the last two lines of Eqs. (40) for
the appropriate e quantity.

Motivation for the A Transformation

We now return to the discussion below Kq. (26) and
observe that if one computes the function Pp(tp, ti,k) of
Eq. (16) before the integral (35) is performed, then one
will get some result. However, the integral (35) has the
effect of introducing more terms of the "type" Pp(t2, ti,k)
into the theory. This last assertion can be qualitatively
verif)ed by comparing Eqs. (6) and (38) and observing
that a major diQ'erence is the replacement of fi in (6)
by g, ; in (38). Of course, the temperature exponentials
have also been changed in (38), and this suggests that
the very basis for emphasizing the importance of the
integral Eq. (18) has been destroyed by the integral (35).

The confusion of the preceding paragraph is inten-
tional, for the important point is that as soon as one
performs the integral (35) to obtain Eqs. (41)—(44) and
(38)—(40), one has eliminated the role of the integral
Eq. (18). The important terms in the theory are no
longer those of the form P,(t, ,ti,k), Eq. (16), but rather,
a new set of terms of the form A(tp, ti,k). The question
now is: How can one identify those terms h. (t&, ti,k) in
the theory, which, after the integral (35) is performed,
give the dominant contribution to the theory at very
low temperatures' This difficult problem is solved by
performing the A transformation on the entire theory.

The expression (28) for f (t,k) can also be simplified by
using the second of the definitions (42). This gives the
result

f'(t, k) = [1+8(k)]—'[A~i»(t, k) —A &»(t,k)]. (47)

We next discuss the special cases which occur when
either or both of the Gp functions in Eqs. (35) is replaced
by a 60"& or a Go&" function. According to the last
paragraph of Sec. 3, one can immediately obtain either
of these cases from Eqs. (41)—(47) by setting A~«)
=A &~) =0. The quantity A~&»(t&, k) then becomes
either A ")(tp,k) or A i ', where [see also the second of
Eqs. (42)j

A i"(tp, k) =—[1+8&')(k)$ exp[—tppi(k) g,
A (P) = [1++(P)j (48)

Here, the quantity ei(k) is defined by the third of Eqs.
(40). Similarly, the function f(t, k) becomes either
f")(t,k) or f&P), where

After the A transformation, it is then easy to choose the
function A(t&, ti,k) in such a way that iterative solutions
to integral equations of the type (11) and (12) become
valid. It remains to be said that the difficulty of properly
motivating the A transformation is mostly due to the
fact that one really only understands it by hindsight.

S. A VRAmSzoRMATrOm

&(t,t,k) =f-'(t.)f (t )(PAL(t. —t.)+~+A+i"(t.)"""
~ (tp)e"' $0(tp —ti)

-+[ t)+A+«)(tp)e'&"- —6 A «)(t,)e'&'-

+~o(t )b(P —t )l~)(t —t )), (»)
where

&o(t )—= (1+&)&' '(t ) 'P "'. (52)

We shall see that the function A(tp, ti, k) plays the same
role after the h. transformation as the function Pp(tp, ti, k),
Eq. (16), plays before the A transformation. Moreover,
Eq. (50), which gives the relation between G, and A,

replaces Kq. (18), which gives the relation between Gp

and Pp The relati. on (50) can be solved for Gp(tp, ti)
as follows:

G,(t„t„k)=b(t, —t,)+e" "f(t„k)
&&X(t„t,k)l.- (t, k)e-~ ~ (53)

It is to be emphasized that we are now considering the
:function Gp(tp, ti, k) of Eq. (19) to be a gii)ee function, to
be used in the integral (35) and elsewhere (see below).
The various quantities on the right-hand side of (19) or
(51) are now uekeowe functions to be determined after
the A transformation in any application of the theory
to a particular system. As has been emphasized in Sec. 3,
the identities (20) and (21) must continue to be valid
after the A transformation, for otherwise the derivations
of Sec. 4 breakdown. We therefore assume that the
identities (20) and (21) are always correct for any
system. On the other hand, the identities (22)—(24) and

Eq. (25) for the determination of 5+ and 6 ieitt not be
valid in general. In the following paper, however, we

shall show that one obtains these identities, even after
the A transformation, in the first approximation to the
thermodynamics of a dilute gas of hard-sphere bosons.
Of course, the various quantities A, 8, C, etc. , must be

Section 4 has been devoted to the study of the integral
(35), and the results of that section are very important
for any application of the theory to a real or model Bose
system. None of these detailed results are required in
the formal equations of the present section, however,
for only the insight which they have provided is neces-

sary here. Thus, we shall begin by defining the function

A(tp, ti, k) as follows:

i1(t„t„k)—= e 'p i' )f--'(t„k)
g [Gp(t p, ti, k) —b(tp —ti)]f(ti, k)e"'") (50)

With the aid of Eqs. (19), (40), and (42), this definition
can be rewritten as
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determined in this case by an actual calculation of the
lowest order graphs (Fig. 1) of the theory.

In a previous paper' we have shown that the mo-
mentum space ordering in a very low-temperature Fermi
gas is explicitly exhibited in a quantum statistical theory
by the application of a A transformation. The formalism
developed in that paper can also be readily applied to a
degenerate Bose system above the critical temperature;
i.e., when (x}=0.The equations for the A. transforma-
tion in the (x)=0 (Bose) case form the basis for the
A transformation in the present case when (x)&0.

The basic equation of the A. transformation when
(x)WO is

P

Gl, i(tp ti) —l (t2)e"' dsGi, i (t2,s)| '(s)e "Gp(s,4), (54)

in which a new function Gi, l'(tp, ti, k) is defined. If one
also defines I.l, i'(tp, tl, k) by the equation

Gl, l (t2ptl)k) = ~(t2 tl)+I 1,1 (t2)tip«) y

then Eq. (54) can be rearranged to the form

I 1,1 (t2~tl) f (t2)e Ll, l(t21tl)l (4)e

(ss)

dsG, ,'(t, ,s)A(s, t,), (s6)

where

P

&& dsG, ,'(t, ,s)tP'(s, ti) t
—'(t,)e—'l' (57)

P

tP'(tp, ti) —= l '(t2)e '2' dsGp(tp, s)P(s, tl)l (ti)e"'. (58)

Finally, one substitutes Eq. (57) into Eq. (56), thereby
arriving at an important consequence of the definition
(54).

where Eqs. (15) and (53) have been used. One next
substitutes Eq. (54) into Eq. (12) to obtain

Li, i(tp, ti) = l (t2)e"'

Equations (50)—(60) give the essence of the A trans-
formation. The many further steps required are only
those which are necessary to demonstrate that the A.

transformation is a completely consistent transforma-
tion from a set of unprimed quantities to a set of primed
quantities. One must also show explicitly how all of the
primed quantities are to be calculated in order that the
theory can be applied to any particular Bose system.
For example, one can see from the above equations,
that Eq. (58) gives the prescription for calculating
(P'(tp, ti), and that the other primed quantities are deter-
mined as soon as (P'(tp, ti) is determined. In fact, upon
comparing Eqs. (8) and (9) with Eqs. (35) and (58), one
may immediately conclude that the prescription (58) is
equivalent to the calculation of (P'(tp, t,) by everywhere
replacing the pair functions (1) in the theory by the
transformed pair function (35). We shall clarify this
statement in detail, after first introducing transformed
master (ti,v) graphs.

Transformed Master (12,v) Graphs

A transformed master (ti, v) graPA or a trattsformed
master (p, ,v) L graph is calculated by using the same rules
and diagram as in the calculation of the corresponding
untransformed master (ti,v) graph or master (ti,v) L
graph [Sec. 6 in MI), except for the following changes:

(a) Pair functions (1) are replaced by transformed
pair functions (35), except for the subtracted wiggly-line
double-bond terms of rule (viii) in Sec. 6 of MI.

(b) The line factors b„„(tp,t, ,k) are replaced by the
line factors «1, „'(tp, tl, k).

(c) The outgoing zero-momentum missing line factors
G,„i(t) are replaced by the factors exp[PA "&) G«i'(t);
and the incoming zero-momentum missing line factors
G;„(t) are replaced by the factors [1+BOP&)G;„'(t).

In order to verify that the second of the above changes
is consistent with Eq. (35), one must show that the
following relations exist between the «l„„(tp,ti,k) and
the q„„'(t„t„k):

Ll, l (t2)tl) dsGi, i'(4, s)P'(s, 4),
gi, l(t2 tl k) = l (4,«)e"'"' dsgl, i (t2 s,k)

(59)
Xl--1(s k)e-'«»Gp(s, t„k), (61)

I"(t„t,)=«P'(l„l, ) —A(t„t,) . (60)
«Jp, 2(t.„t„k)= ds, ds2«i p, 2'(s„s„«)

We now observe that Eq. (59) has precisely the same
form as Eq. (12), with unprimed quantities replaced
by primed quantities. Equation (60), on the other hand,
gives us the possibility of subtracting from «P (tp, tl) all
of those terms which, when iterated, would give large
contributions to Ll 1'(tp, ti) at very low temperatures.
But such terms have precisely the form (51) [after the
A. transformation], and therefore the integral Eq. (59)
can be solved by iteration in any application; i.e., the
function P'(tp, ti) consists only of the "small" terms in
(P'(tp, t,).

~ 0

) i&---. 2 (k} --sly(1)(—k}

&(Gp(s„t„k)G,"'(s„t„—k) ) (62)

bp, p(tp, ti,k) =l (tp, k)e"' 'e" "" '«12, p'(tp, ti,k) . (63)

Equations (61)—(63) assure that the pair functions are
all transformed by the correct Gp(t p, t,) functions. These
equations will be investigated in detail in the following
section and the appearance of the G, '"(tp, tl) function
in Eq. (62) will be clarified in this section.
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In order to verify that the change (c) for the trans-
formed master graphs is consistent with Eq. (35), one
must demonstrate the validity of the following relations:

G'(t„t„—k) = S(—t, t,—)+I'(t„t„—k) . (67)

in which a new function G'(t2, ti, —k) is defined. We also
define a function L'(t2, ti, —k) by the equation

G.„,(t) = exp[i&la&''$ dsG.„,'(s)

Xexp[ —$6&"]Go" (s,t), (64)

Equations analogous to Eqs. (56) and (57) can next be
written down, but we shall omit them here. Rather, we
shall include the important equations, analogous to
Eqs. (58)—(60). Thus, if we define a function

G;„{t)= [1+8&2&] exp[Q, &0' jG;„'(t) . (65) X, ,&'&'(t2, ti, —k)

These two relations will be investigated in detail in
Sec. 7.

In Eqs. (62)—(65) we have seen the appearance of the
transformation functions Go"& and Go (') and their as-
sociated factors. The m ay in which these functions are
to be used in Eq. (35) and the subsequent equations of
Sec. 4 is discussed in connection with Eqs. (48) and (49).
The decision as to zhee they are to be used will now be
discussed. It should be clear that the function G2&"{t2,t, )
of Eq. (33) is only to be used when there is a missing
outgoing zero-momentum line at a cluster vertex. %hen
there is an incoming missing zero-momentum line at a
vertex, then only the corresponding "incoming" {'(t)
factor of Eq. (35) is changed. Thus, the G2&'&(t2, ti) func-
tion is associated with the transformation of the zero-
momentum factors; and the study of this transformation
is made in Sec. 7.

The decision as to when a G2&i&(t2, ti) function is to be
used, or when an "incoming" {(t) factor is to be replaced
by |"'(t), is determined entirely by whether or not the
corresponding line is associated with the function G(t2, ti)
of Eq. (11).Now, it will be noticed from Eqs. (9), (13),
and (14) that the function G(t2, ti) can be associated with
the (—k) lines in master graphs. Similarly, the function
Gi i(t2, ti) can be associated with (+k) lines in master
graphs. Of course, this association is only true provided
that the alternate forms of Eqs. (13) and (14) given in
MI are not used. In order to facilitate our analysis,
then, we adopt the convention that the function G(t2, ti)
will always be associated with —k lines and that the
function Gi, i(t2, ti) will always be associated with +k
lines. (Having arrived at a correct expression, one then
need not worry about what happens when the sum over
all k is performed. )

The convention of the preceding paragraph deter-
mines when a function G2&" (t2, ti) is to be used in the
transformed. pair function (35). It also explains the
appearance of the G2"'(t2, ti) function and its associated
exponential factors in Eqs. (62) and (63).

We must now discuss the A transformation of the
function G(t2, ti, —k). The basic equation is, again, one
similar to (54).

=exp[—t26&"(—k)] dsG2&" (t2,s, —k)

&&Ei,„(s,ti, —k) exp[tih&" (—k) g, (68)

then the function I'(t2, t&, —k) is given by

dsG'(/2, $, —k)E& i""(s,ti, —k), (69)

where

Ei i«&'(t2, ti, —k)
=X, ,&''(t„t„—k) —i1&»(t„t„—k) . (70)

Finally, in analogy with Eqs. (50) and (51), the function
A"'(t2, t&,

—k) is given by

h. &'&(t,t, , —k) = exp[ —(t,—t, )A&'&( —k)j
X [G,'»(t„t„—I )—&(t,—t,,)j, (71)

x&'~(t, ,t„—k) = {8&»(—k)s(t, —t, )
+[1+8&»(—k) )a&''( —k) )0(t,—t,), (72)

where we have used Eq. (31) to obtain (72) from (71).
%e can give an interpretation of the A transformation

for Eqs. (66)—(72) similar to that which we have given
for Eqs. (50)—(60). We first observe that Eq. (69) has
precisely the same form as Eq. (11).Moreover, Eq. (70)
permits the subtraction of all of the large terms in
Xi ]&"'(t2,ti, —k), of the form A&"&(t2,ti, —k)) Eq. (72).
Therefore, with this choice of A&" (t2, ti, —k), the integral
Eq. (69) can be solved by iteration in any application.

We return now to the discussion above Eq. (61), and
define functions X„,,'(t2, ti,k) in analogy with Eq. (8).

X„„'(t2,ti,k)—:p [all different transformed

master (t&,v) I. graphs]k, (73)

where t&+ i = 2. With this definition, the function
6"(t2,ti,k) of Eq. (58) is given in analogy with Eq. (9)
by the expression

(P (t2ptlrk) = Xi, i (t2)tipk)+ dsld$2X2. 0 (t2qslyk)

G(t„t„—k) = exp[tia&" ,(---k)$ dsG'(t2, s, —k)

&&exp[—$6«'( —k) jGO&"(s,t, , —k), (66)

XG'($2,$,, —k) Xp, 2 (t&,$2 k) (74)

where we can also write the functions X„„'(t2,ti,k) of
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(73) as transformation equations as follows: 6. LINE FACTOR TRANSFORMATIONS AND THE
MOMENTUM BISTRIBUTION

P

xl, l'(t2, tl, k) = f'-'

X0,2 (t2)tl)k) E0,2(t2)tl)k)f (t2yk)

X, ,'(t, ,t, ,k) =f-'(t2, k) expL —t20(k) —tA &'&(—k)j

(t, k) expL t„(k)~ d~G, (t, z k), In this section we shall study in detail Eqs. (61)—(63)
0 for the transformation of the line factors g„,.(tp, tl, k) in

order to demonstrate their consistency with the other
XE1,i(1' tl k)| (tl») expl tip(k) j ~ (75) equations of the h. transformation in Sec. 5. As a part of

this study, we shall be concerned with the transforma-
tion of the function X„,„(p), and this, in turn, will lead us
to an expression for the momentum distribution in terms
of transformed, or primed, quantities.

%'e begin by writing down the transformation equa-
tions of the functions L,p 2(tp, tl, k) and L2,0(tp, ti, k), Eqs.
(13) and (14). According to Eqs. (54), (66), (76), and

dslds2G0(t2, 1'2,k) Gp" (t&,2'1, —k) (77), these transformation equations must be of the form

XE2,0(s„s„k). (77) I 0,2 tp, tl, k = d$2(4&I 0, 2 (s2,S&,k) t '($2,k)
It can easily 'be seen that Eqs. (75)—(77) are consistent.
with Eqs. (35), (73), and (74) and with the convention
adopted above Eq. (66). That these three equations are
also consistent with Eqs. (61)—(63) will be shown in the
next section.

Equation (73) defines the function X, , l'(t2, t, ,k), but
not the function X, , l""(t2,tl —k), because the trans-
forming Gp functions in Eqs. (68) and (75) are different.
Actually, with the convention adopted above Eq. (66),
Eq. (73) gives Xi, i&"'(t2,ti, —k) correctly, but in order
to avoid any possibility of confusion we shall give the
definiton of Xl, l""(t2,tl, —k) separately, as follows:

x, 1&"'(tp,tl) —k)
—=P fall different transformed master (1,1)

L, graphs, with the external lines trans-
formed by the functions Gp'"(t2, s, —k)

and g'1&(tl, —k)] 2. (78)

With Eqs. (73), (74), and (78), we have specified
precisely all of the primed functions which have been
introduced by the A transformation; Eqs. (54)—(60) and
(66)—('70). It only remains to clarify the transformation
of the line factors and zero-momentum factors in the
next two sections.

At this point we return to Eqs. (60) and (70) and
observe that these equations have "eliminated" the
terms A and A&') from the functions (P' and X~,~"", re-
spectively. What then has happened to these quantities,
i.e., where have they goner The answer is partly that
they have "reappeared" in the transformed pair func-
tions (35).The rest of the answer will be given in Secs. 6
and 8, where we shall 6nd that the functions A(t2, tl, k)
and the closely related f (t2,k) appear explicitly in the
expressions for the grand potential and the momentum
distribution. In fact, the nature of the A transformation
is such that no terms are eliminated or lost from the
over-all theory. Rather, a rearrangement of terms has
occurred, after which an iterative solution to the basic
integral equations is possible.

x exp) —s20(k) —sike'& (—k)$

XG0(sp, t2, k)Go '&(sl, t, ,
—k), (79)

I 20(t2, tl, k) = f(t2,k) exp[t (2k0)+t,A"'(—k) j

whel e

X1.20'(t„,tl, k), (80)

I.p 2'(t2)ttl)k) = d$2CB1 X0,2 (S2&Sl,k)G& 1'(sp, tp, k)

XG'(s, ,tl, —k) —Ep 2&'&'(t2, tl, k), (81)

I 2, 0 (t2)tlyk) = de d~i Gl, l (t2P2yk)

XG'(tl, sl, —k) X2,0'(s2, sl, k)

—S(t„t,)E,, ,&»'(t„t„k) . (82)

E0,&1&'(t„tl,k)—=
C
the part of X0,2'(t2, tl, k) for which both
incoming external lines attach at the same

vertex, except that the external lines must

attach as free particle lines at both ends(
=E0,2&'&(tp, t„k), (83)

The first thing to notice about these equations is that
the transformation of the I.„„is "opposite" to the
transformation of the E„,„by Eqs. (76) and (77) Lcom-
pare also Eqs. (54) and (58) or (75) for the case (tl, v)
= (1,1)$. On the other hand, the transformation of the
I.„,„and the g„„by Eqs. (62) and (63) is the same, as it
must be Lcompare also Eqs. (54) and (61) for the case
(tl, v) = (1,1)j.The next thing to notice is that the func-
tions E0,2&'&' and E2,0&'&' in Eqs. (81) and (82), respec-
tively, must be defined by the expressions
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Ei, i'(p) = dt, L1,1'(P)t„p) )

Eo,2'(P) =— dt2dt, L, ,'(t„t,,p),

E .'(p) —=L. o'(P, P,P)

In this particular case, it must be understood that the
functions Ep 2('&' and E&,p('&' do rot contribute to the
E„,.'(y), because there are no wiggly-line double-bonds
involved. Then, according to Eqs. (54), (55), (15), (79),

E2 0(')'(tp, ti, k)
—= [the part of Xp, p (tp, tl, k) for which both

outgoing external lines attach at the same

vertex, except that the external lines must

attach as free-particle lines at both ends]
=E2,0"'(tpitl, k) . (84)

The function Ep 2'"'(tp, ti, k) includes a b(t2 —ti) b func-
tion as a factor, and it must be subtracted in (81) only
when the incoming external lines also attach at the same
vertex at their tail end (see Fig. 6 in MI). Similarly, the
function E2 0(')'(tp, t, ,k) must be subtracted in (82) only
when the outgoing external lines attach at the same
vertex at their head end (see Fig. 7 in MI), but in this
case the Kronecker 8, 8(tp, ti), factor in (82) assures this
condition. The reason why these external lines attach
as free-particle lines so that there are mo corresponding
transformation functions at the two corresponding in-
coming (or outgoing) positions in Eq. (35) is that there
are no associated G~ ~ or G functions with Ep 2") and
Ep,p"' [see Eqs. (13) and (14)].Thus, the external lines
cannot be transformed and therefore the equalities of
the second lines of (83) and (84) are explained. )The
functions E„„('& and E„„t')', where (tl, v)=(0,2) or
(2,0), while being equal, are nevertheless calculated
differently because of their illternul structure. $ We also
observe that since the external lines of Ep, 2("' and
Is 2 p'"' are not transformed, Eqs. (79) and (80) are not
quite correct. However, the definitions (83) and (84)
insure that no error is made because of the phrase
"at both ends, " which means that the external lines
attach at both of their ends as free-particle lines. Thus,
one must be careful to use Eqs. (81) and (82) correctly
in any application. %e finally observe that all of this

difhculty with the functions Ep &("' and E2,p")' has its
origin in rule (i) for linked-pair (tl, v) graphs (Sec. 3 in
MI), which states that no wiggly-line double bonds may
occur in any graph.

We next define three functions E„„'(p), for the case
k=y~0,

(80), (28), and (32) the relations between the E„,,'(p)
and the corresponding E„„(p)of Eq. (54) in MI are

Ei, i(p) = [1+&(p)]l(P,p)

p[P (p)]L1+E, '(u)]-1
86

Eo 2(p) [1+~(p)]l 1+~ ( p)]E0 2 (p)

E,o(p) =l(P,P) exp[P(0(p)+~"'( —u))]E2,0'(p).

Equations (86) will be used. in conjunction with the
functions N„,„'(p), which we next define in terms of the
corresponding unprimed N„,„(y).

N, '(P)=[1+&(P)]i(PP) exp[P (P)]N, (P)

N0, 2 (p)=f(P p) exp[P(p(p)+~ ( p))]N0, 2(p), (87)

N2, 0 (p) =—[1+&(p)][1+&'"(—p)]N2, 0(P) ~

These definitions have been made in order that simple
relations will result between the N„,„'(p) and the E„„'(y).

We now substitute Eqs. (86) and (87) into Eqs.
(35)—(37) of MI and obtain the following transformed
equations:

Nl, i (p) =v (p) [1+El,1 (p)N1, 1 (p)+E 0,2 (p)N2, 0 (p)]
=v'(u) L1+Ei,i'(p)Ni, i'(p)

+Ep, o'(—y)No, 2'(—p)], (88)

N0, 2 (p) =v'(y) LE 1 1 (p)N0, 2 (P)
+E0,2'(p)Ni, i'( —p)&(P, —p)], (89)

Np, o'(p) =v'(u) [Ei,i'(p)N2, 0'(p)

+E..'(p)N, '(—p)&(P, —p)], (90)

where we have not given the second forms of Eqs. (89)
and (90), because they only involve the replacement
p —p. The functions v'(p) and R(t,p) introduced into
these equations are defined by

R(t,p) —= [1+8"(p)][1+8(y)]-'1 '(t,p)
Xexp[—tpi(p)], (91)

'(p) —= [1+&(p)3(P,P) exp[P 0(p)] (p)
x (1+v(u) —[1+&(P)]&(P,P)

XexpDtp(p)] (P)} '
= [1+&(p)]f(P,p) expP(g+~"')

x{1—[1+&(p)]t(P,p) expP(g+~"')) ', (92)

where we have used Eqs. (7) and (40) to obtain the
second line of (92).

%e are now in a position to investigate the con-
sistency of Eqs. (61)—(63) with all of the other equations
of the A transformation. In fact, by using the explicit
expressions for the g„,„(tp,ti,k) [(66)—(72) in MI], one
can verify that Eqs. (61)—(63) are consistent if the fol-
lowing expressions for the g„,„'(tp, ti,k) are used.

bl, l (t2 tl k) Gl, l (t2 tl k)+
P

d$2G1, 1'(tpi$2) P)N2, o'(P) d$1L0, 2 (tl)$1)p)+L2, 0 (t2)P)p)N0, 2 (p)G1, 1 (P)tl)p)

+ dSG1, 1 (t2)$)p)Nl, l (p)G1, 1 (P)itl)ip)+L2, 0 (t2)P)p)A 1,1 ( p) d$L0, 2 (tl)$|p)R(Pq p) i (93)
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P

g0, 2 (t2)tl)k) L0,2 (t2)t1)k)+2»1, 1 (p)G1, 1 (P)t2)p) dsL0, 2 (sttl)p)+»0, 2 (p)Gl, l (Pqt2)p)
0

P P

dsG1, 1 (P)$) p)f($)tl) p)R (P) p)+»2, 0 (p) d$2dslL0, 2 (t2)$2)p)L0, 2 ($1)tl)p) ) (94)

p

g2, 0 (t2)tl)k) =L2 0 (t2)tipk)+2»l, l (p) dsG1 i (t2)$)p)L2 0 (P)ti, p)

+»2, 0 (p) d$2dslG1, 1 (t2)$2&p)G1, 1 (t1)$1& p)R (tli p)+»0, 2 (p)L2, 0 (t2)P)p)L2, 0 (Pitl)p) I (95)

where k ~ p when k cannot be zero, and where the
function p(t2, t&,p) in Eq. (94) is given by

P

dsGO(t2, s,p) Go~'~ '(s, ti,p) . (96)4 (t,t,p) =—R(t,p)

The determination of the expression for g, ,', Eq. (93)
is completely straightforward. One has to be very careful
in the determination of go, 2 and g2 p however. The
reason is associated with the convention which we have
adopted above Eq. (66). In order to simplify the treat-
ment of these two quantities we have 6rst made the
replacement (t~,p) (ti, —p) in the Gi, i(t,s, —p) terms
of Eqs. (67) and (68) in MI. This relabeling can be done
because the functions g„,„(t2,t&,k) only occur as internal
lines for which the variables t2, t~, and y are each inte-
grated over their full range of variation. After doing
this, one finds that there is one term in both go, 2 and

g2 0 which involves two Gi, functions. For each of these
terms, one must replace the transformation functions
Go&'& by Go in Eqs. (62) and (63), and this explains the

appearance of the functions p(s, ti) and R '(ti) in the
third terms of Eqs. (94) and (95), There seems to be no
simpler way of treating the functions g0, 2 and g, , With
this qualifying discussion, Eqs. (61)—(63) have been
demonstrated to be consistent with the other equations
of the A transformation. In Figs. 2—4 we show Eqs.
(93)—(95) diagrammatically, using the graphical nota-
tion of MI.

We now return to Eqs. (86) and (87) and write down
the relations between Eo 2'(p) and E, 0'(p) and between
»o, ~'(p) and»&, 0'(p), with the aid of Eqs. (39) in MI.

&2,o'(p) = r&+&(p)]L&+&'"(—p) jf '(P p)

Xexp[P(~ (—p) —2(g+&"'))]&o,2'(p),
(97)

~', o'( )=L&+&( )3L&+&'"(—)3 '(P, )
&«xpLP(~ (—p) —2(g+ ~"'))]»0,~'(p) .

Thus, there are only four independent functions in
Eqs. (88)—(90) instead of six. In fact, if one writes down
the corresponding identities relating Io, 2 (p) and

t2

ii

(fp t/ k )

Fro. 2. The graphical representation of Eq. (93) for QI, I'(t2, t&,k), where k —+ p when k cannot be zero.
A factor R(P, —p) multiplies the last term.
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o,a tta, ~i," 3

FIG. 3. The graphical
representation of Eq.
(94) for go, s'(t„tg, k),
where k —+ p when k
cannot be zero. The
third term must be
multiplied by&(s, t&, —p)
R '(p, —p) and an inte-
gral over s then per-
formed (indicated by
the notation s(S&)).

2sO

E, e'( —y) as well as 1Vo,2'(—p) and E2,o'(p), then one
finds that the two Eqs. (88) are identical. The equiva-
lence of the Eqs. (89) and (90) follows from (97). We
may now make a partial solution to the coupled integral
Eqs. (88) and (89), obtaining the following expressions
for X, i'(p) and No, 2'(p) [simplified because of our
introduction of the minus signs in the last term of the
second of Eqs. (88)j:
+r, r'(P) = v (P) [1—v'( —p)E, ,'(—p)$[D'( —y)$

—', (98)

&,2'(P) =v'(P) v'( p)Eo, 2'(y)&(J3, —p) [D'(—p)j—', (99)

where

D (p)= [1- (y)E, ,.(P)&[1- (-.)E . (-P)S
—v'(p) v'( —y)Ep, 2'(y)E p, g'(p) R(P, —y) . (100)

We can also use Eqs. (87) in conjunction with Eqs. (40)

in MI to determine the limiting forms of X, ,i (p) and
&o,2'(p) when p ~ 0. These are [assumed that the factor
multiplying Er, t(p) in the first of Eqs. (87) does not
vanish when p -+ 0]

lim [1Vi,'(p)] '=0,
p~P

lim (E, ,' '(y)pro, '(p)
p~o

Xexp[ —p(f+ b,"'('P))j[1+8(y) g) = —1, (101)

when (x))0.
In an actual application to the calculation of the

various functions E„,„'(y) and X„,„'(p) for a real or
model degenerate Bose system, Eqs. (101) serve as
useful checks on the solutions obtained. More useful
forms which are completely equivalent to the limits
(101) are obtained by combining Eqs. (98)—(100) with

t2

i2

I

FIG. 4. The graphi- 2&4
(t t(K3 ~

cal representation of
i" q. (9S) f or
gg, o'(t2, tl, k}, w her e
k ~ p when k cannot
be zero. A factor
R '(t1, —p) multiplies
the third term. 4,2

I,O
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(101).This yields the expressions (when (x)&0)

lim ( [v'(y)]- —E, ,'(p)
p~0

= —I:1+I~"&(p)]f '(P,p)

&&exp[—P(A"'+g)]Eo, o'(y)), (102)
lim f [v'(p)] ' —Ei,i'(y)

= —[&+I~(p)] ' exp[I(~'"(p)+ g) 3~o,o'(p) ),
which are equivalent according to the first of Eqs. (97).

As a final matter for this section we write down the
relation between the momentum distribution and
iVi i'(y). Referring to Eq. (31) in MI and to the first
of Kqs. (87) we obtain

(-(.»=[1+~(p)]-~-(~ p)

p[—tI(g+~"')1&, '(P) —1 (1o3)

The first of the identities (101) then shows that the
momentum distribution has a singularity at p =0 when

(x))0. This is consistent with the interpretation of (x)
as the macroscopic density of zero-momentum particles.
Returning to the discussion at the end of Sec. 5, we see
that the function f(P,P) has explicitly appeared in the
momentum distribution, both in Eq. (103) as well as
in the function v'(y), Eq. (92), which is an essential
quantity in the solution (98) for Xi,i'(p). Upon corn-
bining Eqs. (98), (92), and (103),we obtain an alternate
expression for the momentum distribution:

( (P))=L1+ '(P)]L1—'(—P)E, '(—P)]
X [D'(—p)]-' —1. (»4)

7. A. TRANSFORMATION FOR ZERO-
MOMENTUM FACTORS

In this section we shall study in detail Kqs. (64) and
(65) for the transformation of the zero-momentum
factors G,„,(t) and G;„(t). This investigation will then
complete our study of the consistency of the A trans-
formation equations in Sec. 5. We shall begin this study
by observing that the function Ii(x,P,g,Q) of Eq. (83) in
MI is invariant under the A transformation. Thus, we
may immediately write

QIi(x,P,g,Q) =g fall different transformed

master (0,0) graphs], (105)

where transformed master (0,0) graphs have been de-
Gned in Sec. 5. Then we may define transformed func-
tions X;„'(t) and X,„,'(t) in analogy with Eqs. (93) in
MI by the functional differentiations.

X '(t)—= [(1+8&'&)xQ expP(g+tiii'&)] —i

X
BG,„o'(t) 8'

X. o'(t) —=[(1+&&o&)xQ expP(g+ 6&o&)]-'

X
5G;„'(t) 8'

where, in the first of these expressions, the functional
diGerentiation includes the elimination of one tempera-
ture integration. In both of the expressions (106) the
internal line factors cJ„.'(to, ti,k) of the transformed
master (0,0) graphs are to be held constant. Also, one
difference between the definitions (106) and the expres-
sions (93) in MI is the division by the extra missing line
factors (1+8' &) and exp(PA&o&), introduced in change
(c) for transformed. master (p, v) graphs (see Sec. 5).

Our task is now to show that a consistent relation
exists between the transformation Eqs. (64) and (65)
and the definitions (106). In this connection we define
functions E,„i'(t) and E;„'(t), which are different from
the functions of (106) by the equations

G...'(t) —=~(P—t)+E...'(t),
G;„'(t)=1+E;„'(t).

(107)

Then, from Eqs. (93) in MI and (65) and (106), we have

X, '(t) =exp[—(P—t)b, "&]E,„(t).
But from Eqs. (64) and (33) we also have that

E,„,'(t) = exp[ —(p —t) t1 'o&]E,„,(t)

(108)

dsG.„~'(s)A "&(s,t)

where

= X.„,'(t) — dsG, „,'(s) tt &o& (s,t), (109)

X dsG, '"(t,s)E;„(s). (111)

Thus, X;„'(t) differs from E; (t) by a A transformation
at the cluster vertex, where the zero-momentum factor
is attached. But this last equation can be rewritten with
the aid of (110) in the form

[1+8"&j ' exp[—th "&]E;„(t)
p

= X;.'(t)— dsA &o& (t,s)

&&exp[—sA"&]E;„(s)[1+8&"] '.

h. ' '(t2, ti) —=exp[ (t2 ti)~" ][Go (t2,ti) —8(to —t )]
= [8&o&8(to —ti)+ (1+8&o&)6 to&]t&(t2 —t,) . (110)

We see that Eq. (109) has the form of the A transforma-
tion Eqs. (59) and (60) or (69) and (70), and that we are
permitted to subtract large terms of the form J'GoA"&
from X,„o'(t). We shall return to a detailed discussion
of Eq. (109) after first examining the A transformation
of E;„(t).

According to the first of Eqs. (106), Eq. (64), and the
definition of transformed master graphs in Sec. 5, the
relation which must exist between X;„'(t) and E;„(t) is

[1+8"&]X;„'(t)= exp[—th "&]
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FIG. 5. The graphical
expansion of Xpug (/}&
where only the 3 one-
vertex terms have been
shown. The external
wiggly line in each case
is the zero-momentum
line which attaches the
Ggure as a zero-momen-
tum factor to a master
graph. The number
under each graph is
its symmetry number
Lafter the differentiation
(&o6)j

(t) + 'f(, (t),+ $ t(t)s+- ~ ~ ~

+0 ~ ~

The second of Eqs. (107) and Eq. (65) can then be sub- from the other incoming (outgoing) "missing" line in the
stituted into this equation to give the result first and third graphs of Fig. 5 (6), the factor of s in

rule (i) in Sec. 6 of MI is not included in these cases.

) ( ) d A & & ( )G ( ) (112)
Consider . liow tile first term 111 X t (f) Fig 5 Tile

corresponding expression,

Equation (112) is seen to be very similar to Eq. (109),
and both of them involve the same A&'& function (110).

With the above analysis of the zero-momentum fac-
tors, we have completed the demonstration that the
equations of the A transformation in Sec. 5 are com-
pletely consistent. There remains, however, the clarifica-
tion of how the function A "&(ts,ft), Eq. (110), is to be
determined in an actual calculation. The answer is that
one must always exhibit the functions X,«'(t) and
X;„'(f),defined by (106), in the form of Eqs. (109) and
(112), respectively. Then the determination of the func-
tion A&'&(ts, tt), which must (and will) be the same in
both cases is quite straightforward, provided that the
difhculties now to be discussed are clearly understood.

In Figs. 5 and 6 we show the graphical expansion of
the functions X,«'(t) and X;„'(t), respectively. Only the
3 one-vertex terms have been included in each of these
figures, and the graphical notation is that of MI. We
observe that after the differentiation (106), one of the
zero-momentum factors in OIi is removed; the corre-
sponding missing line" is shown in each of the graphs
of Figs. 5 and 6. This wiggly line is the one which
attaches the corresponding graph (as a zero-momentum
factor) to a master graph. Because it is distinguished

X,„,'(f),=—'L(1+Bi i)xQ expP(g+Ai'i))

81a2-0 0- ~

X d~sdsiG. .~'(~s)G. ~'(») G;„'(f), (113)
o

includes two G,„&' functions and one G;„' function.
Clearly, only one of the G.„t' functions can be the one
in the second term of (109).Therefore, the contribution
of this term to A&" (s,f) is determined by setting the
selected G,„t,

' function equal to 8(t)—s). A similar dis-
cussion applies to the first term of X;„'(f),Fig. 6, where
in this case we must (effectively) set one of the G;„'(t)
functions equal to 8(t' —f). The contribution to A&a~(s, f)
will be the same as from (113).

%e notice from the above example that the integral
equations (109)and (112)are much more nonlinear than
Eq. (59), say. Thus, the A transformation Eqs. (50)—(60)
are only concerned with one G~, ~' function along the
"p line" of an 1.graph. Similarly, in Eqs. (109) and (112)
we cm be concerned with only one of the zero-mo-
mentum factors in any given graph of Figs. 5 or 6,
because the A. transformation, Eqs. (64) and (111),are
essentially linear integral transformation equations. But
the question then arises as to which zero-momentum

FIG. 6. The graphical
expansion of X; '(t),
where only the 3 one-
vertex terms have been
shown. The external
wiggly line in each case
is the zero-momentum
line which attaches the
6gure as a zero-momen-
tum factor to a master
graph. The number
under each graph is
its symmetry number
Lafter the differentiation
(106}j.

+ 'J( . (t) + 'f( (4)

(&)

+ e ~ ~
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factor should be exhibited in (109) or (112) when there
are several possibilities. This apparently very compli-
cated situation seems to present no essential difficulties
in the application to a Bose system because there always
seems to be only one choice which results in the form of
the second terms in (109) and (112). LThe "two" choices
in (113)are really the same. ) Therefore, we assume that
Eqs. (109) and (112) "solve" the zero-momentum self-

energy problem and one has only to be careful in their
application.

We next consider the third term in X,„,'(t), Fig. 5.
The corresponding expression,

X..'(t) = l(1+&"')expr —P(g+~"'))

expP(g+6"') occurs frequently in the expressions for
quantities after the A transformation [see Eqs. (92),
(106), and (113)).This is not just a consequence of the
notation which we have introduced, e.g. , in Eqs. (28)
and (35), because this notation has been introduced only
after having studied the model system of a dilute gas
of Bose hard spheres. In fact, the only way in which the
theory can be made to yield meaningful results is if
g= —6&') in the limit T —+0. Perhaps then, this is a
general relation for a degenerate Bose system ((2:))0).
Thus, if we interpret —6&" as the self-energy of a zero-
momentum particle, then the thermodynamic potential
per particle, i..e., the "activity, " in the system will
be given by

g= —6'0' when (x))0. (115)
X d~2&» g g0, 2 (~2 ~1 k)

0 k 0
G;„'(t), (114)

0 g

includes 22o G,„2' functions (explicitly) and only one
G;„' function. How, then, is Eq. (109) to be used in this
case'? The answer is that the line-factor &02'(s2, si,k)
contains G,„t' functions (implicitly) and when an ex-
pression for this line factor is inserted into (114), then
one can identify those terms which are of the form of the
second term in (109). A similar analysis applies to the
third term of X,„&'(t), Fig. 6. Thus, it seems that Eqs.
(109) and (112) can always be applied in actual calcula-
tions. In the, third paper of this series we shall write
down the results of a complete analysis of the terms
shown in Figs. 5 and 6 for the case of a dilute gas of
Bose hard spheres.

%e conclude this section by observing that the factor

LThe minus sign can be understood by referring to
Eqs. (2) and (3).)We have found no further justification
for Eq. (115) other than the mathematical necessity
that it must hold in the limit T~ 0. On the other hand,
it seems to be valid in applications and it can always be
independently verified by a thermodynamic calculation
of g. We shall assume that (115) is co~rect, but shall
not use this assumption until the following paper.

8. A. TRANSFORMATION OF GRAND POTENTIAL

In spite of the detailed investigations of the equations
of the A transformation in the preceding three sections,
it is still a nontrivial matter to transform the grand
potential. With the aid of Eqs. (61)—(65), (75)—(77)
(83), (84), (87), (91), and (111),the expression (91) in
MI for the grand potential can be written as

A'i, i'(P) &i,i'( —P) —&0.2'(P)&2,0'(P)~ '(P, —P)
Qf(x,P,g, Q) = —', P ln +L(1+8&0')xQ expP(g+5&"))

I:1+&(p))L1+&(—p)){(P,p)l(P, —p) exp2P(g+~"')

X G;.'(P)— dtG.„,'(t) X;.'(t) +QS(2:,P,g, Q) —xQ+P dt, L, ,,~&»(t„t„k)
k p

dtltt2{ Q (1+~Iv,v)gv, tv (tlvt2vk) Xp, v (t2vtl&k)+E2, 0 (tlvt2vk)1~0, 2 (t2vtlvk)) v

(p,v)
(116)

where QF is given by Eq. (105). Thus, all of the terms
except I-»&"' are easily transformed by the equations
of the A transformation. This one term requires special
consideration.

According to Eqs. (92) in MI, the difference between
Li 2"(t2, ti,k) and Li, i(t2, ti,k), Eq. (12), is that the upper
integration limit in the integral equations for L&,&&') is
the temperature variable r/P. lt must be emphasized
that this quantity 7- is a parameter in the integral equa-
tions, and not the variable of integration. Thus, it is

only after one has solved (approximately) the integral
equations that one may set r = ti for use in (116).How-
ever, in the discussion below, one may assume that
P) r~ (t2,ti).

Now, because the integral equations for Li,i"(t2,ti,k)
involve the parameter r instead of P, we must replace P
by r in the relevant A. transformation equations. Re-
turning to our original examination of Eq. (16), we
observe that we must set 8'= 8"=0 in the correspond-
ing expression for P0&'~(t2, ti,k), because these terms can-
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not contribute when r(P Si.milarly, in the identity (24),
we must set B'=B"=0, and therefore (24) and (21)
together imply that B' &(tp) is zero. It also turns out
that C'=C, when B'=B"=0.Finally, we must set P ~ r
in identity (21) Lor (24)], and this means that the
function Gp(tp, ti) of Eq. (19) is changed to a function
Gp&'&(tp, ti), where

G, & &(t,,t, ) = (1+B){L8(t,—t,)+a+C+,&»(t,)e
—

& &+

—a C, ,&»(t,)e-"-]e(t,—t,)

+ [a+C+,,«(tp)e-
—a C „«&(t,)e-"-]t&(t,—t,)) . (117)

The implication of this change for the equations of
Sec. 4 is that we must replace the A;«' and A;(~) of

Eqs. (42) by the quantities

A;, ,«&(t,k) —=L1+B(k)]expL —tp(k)]C;, ,«&(t,k),
(118)

A;, , & '(t,k) —=L1/B(k)] expL —4(k)]C;„& &(t,k),

where i=+ or —.Similarly, the quantity {(t,k) of (47)
is replaced by

|,(t,k) = L1+B(k)] 'LA+. r'~'(t~k) —A, ,&~'(t,k)]. (119)

There is no corresponding change in the functions g+(k)
of Eqs. (25) and (26), although we have not proved
that this is also the case after the i& transformation
Lsee discussion below Eq. (53)].

%e can now apply the above discussion to the A
transformation (Sec. 5) of Li,&'(tp,&ti,k). Equations (53)
and (51) become in this case

G, & &(t,,t„k)= S(t,—t,)+e'2 &"&{. (t k)X& &(t„t„k){.;i(t„k)e-&~ &'& (120)

X& &(t„t„k)={. (t,){.,(t,){LBt&(t,—t,)+a+A+, ,&»(t,)e' +—a A „&»(t,)e'i-]t&(t, —t,)
+[6+Ay g«&(tp)e"'+ —g~, &&&(tp)e'i'-]t&(ti —tp)). (121)

Using these function, Gp" and A&'&, we can then write down the corresponding A transformation Eqs. (54)—(60)
for the function Li i&'&(tp, ti,k) of Eqs. (92) in MI. Thus, one finds that

T

I i,i"(tp, ti) ={,(tp)e'" dsGi, i& "(tp,s)LE"'(s,ti)+i& '(s, ti)]{, '(ti)e '" (122)

G, ,,&'&'(tp)t„k) = I&(tp —ti)+L1, l, "'(tpytl, k) )

L, , i&'&'(tp, t„k)= dsG, , i& "&'(tp,s,k)8&"(s,t„k),

&p& &'(t„t„k)= P'&.&'(t„t„k)+a& &(t„t„k)]

=t- -'(t, k)e-'p &"& dsG&&&'(tp, s,k)P(s) ti,k){,(ti,k)e'i'&" &

(123)

= X, ,&'&'(tp, ti,k)+ ds, dsp X,,
p&'& (tp, s„k)G&'& (s,,s„—k) Xp, , ' (t„sp,k),

G& &'(t„t„—k) = t&(t,—t,)+I & &'(t,,t„—k),

L&"(t„t„—k) = dsG&'&'(t„s, —k)Ei, i&'&'(s, ti, —k) .

We notice in the last of these equations that the function I&.'i, i&'& (tp, ti, —k) of Eq. (70) is not changed for the case
P ~ r because the transformation functions Gp"' and A&i& of Eqs. (31) and (72), respectively, are independent of
P (or r) On the other h. and, the functions X„,,&'&'(tp, ti, k) are different from their r ~ P counterparts, defined. by
(73). In the present case, the functions X„,.&'&'(tp, ti,k) which are related to the unprimed functions by equations
similar to (75)—(77), must be defined by the expression

X„,„&'&'(tp, ti,k) —=P Lail different transformed master (1,1) L graphs, with the external lines

transformed by the functions Gp&"'(t;,s) and {& "&(t,)]&. (124)

In this definition (i) and (j) may be either (1) or (2), according to the various cases which can arise for (&i+&)=2.
It is to be emphasized. that the functions X„,„&'&'(tp, ti, k) of (124) diRer from the corresponding functions of Eq. ('73)
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only in the transformation of their two external lines. Corresponding internal lines are all transformed by the same
functions in (73) and (124),

It is now possible to substitute Eq. (122) into Eq. (116).This yields the completely transformed grand potential

Qf(xPgQ) =
2 P ln( [1+(x((—p))][1+v'(p)][1—

& '(y)E&, ('(p)] ') —xQ+ [(1+B(0))xQ exp&)'(g+ 6(0))]

y, G;„'(P)— d&G.„,'(&,)I(.; '(t)—
P

d&,d&,',G.„,'(&,',)S(') (&,„&,)G;„'(&,)

+QF(x,P,g,Q)+P dt, dt, G, ,('»'(t„t„k)[P«»'(t„t„k)+h.«»(~„~,,k)]

o

dt&d4( Q (l-l-&„,,),&, , „'(&&,&2)k) X„,,'(tahiti, k)+Ei 0'"'(ti, tupik)Ep 2 (32ifi)k)), (125)
(p iV)

where we have used Eqs. (97)—(100), (103), (104), and
(112) to obtain the particular form shown. The sum

P(„,„) in the last term is over the three possibilities for
which )i+& = 2. Referring to the discussion of the end of
Sec. 5, we see that A functions appear explicitly in the
grand potential, where it is the grand potential which

determines the thermodynamics of a degenerate Bose
system. Therefore, particular expressions for the A

functions directly a6ect the thermodynamics.

With Eq. (125), we have completed our formal study
of the A transformation and. its effect on the various
functions of quantum statistics. The only thing which

remains to be done is to exhibit the solutions to the
identities (20)—(24), in order to obtain a better feeling
for the functions A(t2, ti,k) and 4"(t2, f&,k). This will be
done in the following section.

9. DETERMINATION OF THE A FUNCTIONS

In this section we discuss the determination of the
A functions. The zero-momentum i1 function, h. (')(t2, t,),
is determined merely by identifying terms of the type
(110) when either of the functions X.„,'(t) or X;„'(t) is

explicitly calculated and then cast into the form of
Eqs. (109) or (112), respectively. Similarly, the —k A

function A(') (t&,ti, —k) is determined merely by
identifying terms of the type (72) when the function

Xi,i ($2,fi, k) of (78) is written in the form (70).
The functions ii&.(t~,ti,k) and A(')(/2, t&,k) are deter-

mined by identifying terms of the type (51) and (121)
in the functions 6"(tm, t, ,k) and (P'"(t2,ti,k), respectively
[see Eqs. (73), (74), (60), (123), and (124)].The various
quantities (A, ( ),A (») and. (A; „(&),A;, (») of Eqs.
(51) and (121), respectively, where i=+ or —,will

then turn out to be the solutions of identities of the

type (20)—(24) .
As was discussed below Eq. (53), only the identities

(20) and (21) can be expected to remain invariant under
the A transformation. The other three identities will, in

general, be diferent after the A. transformation, from the
particular expressions (22)—(24). It is well to observe

A &'(4) =A;,e( '(t ), and A;( ) (t ) =A;,e )'(t ) . (126)

Thus, we obtain the simpler equations

LA+,.' '(i' )—A+,.' '(i')]e"'+
—1+[A ())(~ ) A (&)(~ )]e(2~—

(&)(t2)e +—A (&)(t2)e

(6 D) 'A ())(t )=(dl D)—'A —(»(t)——

6+(a+ D) '[A+, '(t2—) A—~,, ' (t,)]e' '+—

=1+a (a —D)-'[A, ,(»(&,)—A, «)(&,)]e"—

(127)

at this point that the identities of the type (20)—(24)
will actually be integral equations which may or may
not be solvable by an iteration procedure. Actually, the
same is true of the determination of the functions 8"'
and 6(")by Eq. (110),and of the functions B"' and 6"&

by Eq. (72). Nevertheless, there is always an algebraic
part of the solution to the identities of the type (20)—
(24), and it is this part which we shall here be concerned
with. The functional dependence on the (A &&,A &) of
the various coeKcients in these identities must then be
dealt with separately.

In the first approximation to a dilute gas of Bose hard
spheres with (x)&0, it is found that the identities (20)—
(24) are all unchanged. by the h. transformation. As will
be shown in the third paper of this series, one has then
only to correctly identify the various coefficients in
these equations. It is therefore of value to solve these
equations, and we shall now write down the solutions
for the particular approximation 8'=8"=8=0, in
which case one Ands that O'=C also. This approxima-
tion corresponds to the neglect of an excluded volume
effect (due to the finite size of the hard cores Q, is

effectively smaller), and this is a very small effect in a
dilute gas. In this approximation, one can also omit
Eq. (24) and set B(&)(t2)=0 in Eq. (21).

We now insert Eqs. (118)with B=0 into the identities
(20)-(23), where we need only consider the general case
7 (P of Sec. 8, because when B(&)(t2)=0,
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in which we have used Eqs. (40). The solution to Eqs.
(127) is as follows:

A+„«)(&,)=

(()(~ )—

(S,—S )-2(a,—D)(S —D)
(r)gt! (g

——int+ g k2!—)

(~+—~-) '(~+—D)(~-—D)
(r)g1e+(g $26+ g ines ) (128)

(~,—~ .)-'(a,—D)f,(i,),
(~ -—~-) '(i1 --D)f.(&'),

where t, (t2) is the function of Eq. (119).The explicit
expression for this function (when 8=0) is

)('[(g/ —D)g(& &2)&+—(g —D)g(& &2)&—]
[(g~

D)/TED+

(g D)ATE ]—i(A g ) . (129)

We finally discuss the functions 6+and 6 of Eqs. (25)
and (26). Equation (25) for the determination of 6+ and

is also found to be valid, to first approximation, for
a dilute gas of Bose hard spheres with (x))0. The
quantity D is given quite generally by the expression

D(k) = e(k)+ e&(—k) = «(k)+ e(—k) —6(')(—k), (130)

where the e's are defined in Eq. (40). The energies e~(k)
are therefore given by

e~-———',[6"&—3]+-',[(D=-3)'—4CD]'~', (131)

according to (26), where the quantities A and C are
determined by the derivation of Eq. (25) for the Bose
gas of hard spheres. Finally, the quantities (D~ D) —and
(6 —D) in Eqs. (127) and (128) are alternately ex-
pressed by

[A~(k) —D(k)]= —[e~(k)+ e, (—k)]. (132)

The assumption which we have made in connection
with Eq. (115) that —2 ('& is the energy per particle of
the zero-momentum "superAuid" in a degenerate Bose
system has an implication for the quantities e~(k), given
by Eq. (40) or (131). Because one expects that the
elementary excitations in a degenerate Bose system are
of a phonon type e(k) =Ck for low-momentum values,
it must be true that the functions ez(k) —+ 0(k) as
k —+ 0. In fact, it will be found in the following paper
that this is indeed the case for a dilute gas of Bose hard
spheres. What has not yet been clarified is why two
functions e+(k) and e (k) have appeared in the theory.
That such a situation can exist in a degenerate Bose
system has previously been suggested by Lieb. '
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