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The theory of a degenerate system of interacting bosons is developed using the x-ensemble formulation of
quantum statistics, previously introduced by Lee and Yang. Particular attention is devoted to the self-
energy structure of the graphs of the theory, and it is shown that the complete analysis of this structure
involves an intimate mixing of the eRects of particle statistics and particle interactions. Therefore, the eRect
of statistics, which causes Hose-Einstein condensation, becomes mixed with the dynamics in a real system.
A prescription is given for the grand potential in which all self-energy eRects are included in the line factors of
master graphs. An expression for the pair-distribution function of a degenerate Bose system is also derived.

1. INTRODUCTION perature T&0. Moreover, in the present paper, atten-
tion is devoted to helium II only insofar as it is a
degenerate Bose system. The methods of quantum sta-
tistics are applied to such a system with the hope that
the generality of this approach will enable us to investi-
gate the properties of helium II for all temperatures
including the transition temperature Tq. Thus, it is pre-
cisely in the analysis of the transition temperature
region that previous theories have been inadequate.
Moreover, even the most recent attempts' have still
not been able to reproduce the experimentally-deter-
mined helium II excitation curve in the so-called roton
region. These and other questions can be clarified by a
correct microscopic theory of helium II.

One of the most important features of the macroscopic
theories of helium II is the two-Quid model, first intro-
duced by Tisza. ' The microscopic interpretation of this
model for an ideal system at rest is that the "superQuid"
is composed of those bosons which occupy the zero-
rnomentum state (macroscopically), whereas the
"normal Quid" is composed of all of the remaining
bosons in nonzero momentum states. Thus, the two
Quids represent a separation of two phases in momentum
space in equilibrium with each other. This moeseetlm
space ordering is to be contrasted with the separation of
phases in position space which occurs for most systems.
The mechanism by which it is achieved is believed to
be a Bose-Einstein condensation.

~ 'HE purpose of the present series of papers is to
develop a microscopic theory of liquid helium

four below the X point (helium II).It is true that theories
of liquid helium exist in the literature. The objective of
the present work is not to replace these theories, but
rather to supplement the understanding which theyhave
already provided. For example, there is the extensive
work of London, Landau, and others towards the de-
velopment of a macroscopic or thermodynamic under-
standing of liquid helium. ' To a large extent, the role of
a microscopic theory is merely to provide a rigorous
basis for the models of the macroscopic theories. Thus,
there is the work of Feynman' on the development of a
microscopic theory of liquid helium II with the aid of
variational calculations of the energy. In particular, the
calculations of Feynman and Cohen' has produced a
qualitative understanding of the elementary excitations
in liquid helium II as erst postulated by Landau. 4

%e shall only be concerned with the equilibrium prop-
erties of liquid helium II, and we shall not deal with the
associated gaseous phase which exists when the tem-
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Although the theoretical phenomenon of Bose-Ein-
stein condensation is well known for a gas of free bosons,
it is only recently that Lee and Yang' have explicitly
demonstrated that Bose-Einstein condensation can
occur for interacting bosons. The results which they
have obtained for their model system, a dilute gas of
hard-sphere bosons, provide one important check on the
validity of any theory. Indeed, one can find many ex-
amples in the literature of papers where their zero-
temperature expressions are duplicated by different
methods.

The pseudopotential method used by Lee and Yang
to study the gas of hard-sphere bosons has no simple
generalization to the case of helium II.' However,
another approach developed by Lee and Yang for this
problem does lend itself to such a generalization. This is
their x-ensemble formulation of quantum statistics, and
it is this approach which we shall pursue in the present
work. The important new feature of the x-ensemble
formulation is that it introduces into the grand partition
function from the very beginning the possibility of the
macroscopic occupation of a single quantum state. The
quantity x is the density of zero-momentum particles
for a Bose system at rest.

The use of the x-ensemble formulation of quantum
statistics by no means requires that the average value
(x))0. Thus, when (x)= 0, the x-ensemble formulation
reduces to the usual grand canonical ensemble of
quantum statistics. In Sec. 2, the x-ensemble formula-
tion is reviewed, along with the basic equations of
quantum statistics, in order to specify with care the
notation and underlying concepts of our work.

In Sec. 3 we make our first departure from the direc-
tions indicated by Lee and Yang by deriving the linked-
pair expansion of the grand potential. In this expansion,
the grand potential is directly expressed in terms of the
pair functions defined by Eqs. (18)—(20). The pair
function is a quantity closely related to the binary colli-
sion kernel introduced by Lee and Yang in an earlier
paper. "The difference between the present work and
that of Lee and Yang is therefore not in the use of a
two-particle function, but rather in our emphasis that
the theory must be exhibited as an expansion in terms
of this function. In the work of Lee and Yang' the effects
of statistics and interactions are treated separately.
More specifically, the grand potential is ghibited in
terms of cluster functions U~ of Boltzmann statistics
(this exhibits the effects of statistics or exchange), and
then the U~ are separately expressed in terms of two-
body functions (this exhibits the effect of interactions).
The necessity of treating these two effects together is
discussed below.

7 T. D. Lee and C. N. Yang, Phys. Rev. 112, 1419 (1958).
See Kerson Huang, Phys. Rev. 115, 765 (1959); 119, 1129

(1960).
'T. D. Lee and C. N. Vang, Phys. Rev. 117, 897 (1960).

Hereafter referred to as LY V.
' T. D. I.ee and C. N. Yang, Phys. Rev. 113, 1165 (1959).

The linked. -pair expansion of the grand potential is
not yet a major alteration of the expressions derived by
Lee and Yang. Therefore, we are able to return to the
"Lee-Yang direction" in Sec. 4 by adapting their analy-
sis of the momentum distribution to our notation. This
analysis emphasizes the importance of the momentum
distribution (to an understanding of momentum space
ordering) by expressing the grand potential in terms of
three functions Xi,i(p), 1Vp, p(p), and iVp, p(p). The first
of these functions differs from the momentum distribu-
tion (e(p)) in only a minor way Lsee Eq. (31)$.The re-
sulting formulation of the theory is called the dual graph
expansion of the grand potential, and associated with
this expansion is a set of integral equations for the
functions V„,„(y).

The major contribution which is made in this paper
starts from the observation that the analysis of the
functions X„,„(y) is only one part of a larger problem
which is the analysis of all self-energy structures in the
graphs of the theory. Thus, the function $„„(p)repre-
sents that part of a self-energy structure which arises,
due to statistics. But there is also an equally important
contribution to the self-energy structure which is due to
the interactions, and this contribution cannot be omitted
from the analysis. In fact, it is demonstrated in Sec. 6
that these two effects are entirely interrelated in the
functions g„„(/s,ti,k) which represent the sum over all

possible self-energy structures. These latter functions
are the line factors in the master graph formulation of
quantum statistics, where the master graphs are the
appropriate generalization of the dual graphs (to the
case when the effects of the interactions are explicitly
considered). It is the mixing of the effects of statistics
and interactions, carefully avoided by Lee and Yang,
which results in the transition from a dual graph
formulation to a master graph formulation of the
theory. Thus, although Bose-Einstein condensation is
due to the Bose statistics, the effect of the statistics is
mixed with that due to the interactions in a real system.

It is to be emphasized that the final justification of
the particular analysis made in this paper can only come
i'rom an a posteriori examination of the consequences,
and this examination wiH be left to be discussed in the
subsequent papers of this series. However, it can be said
here that there are serious low-temperature divergences
in the theory which have necessitated a regrouping of
the terms in the original linked-pair expansions of
quantum statistics. In the following paper, we identify
the source of these divergences and transform the entire
theory, by means of the A transformation, to a form in
which the divergences no longer give any difficulty. V(e
shall leave to this second paper the definition of the A

transformation, and only remark here that our physical
interpretation of the A transformation is that it trans-
forms the theory from an expansion in terms of free-
particle quantities to one in terms of quasiparticle
quantities. Thus, the quasiparticles are the elementary
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excitations which are possible in the degenerate Bose
system, and the divergent terms mentioned above re-
appear in the expressions for the quasiparticle inter-
actions and their energy-momentum relations. Here
again, we must qualify these remarks by saying that this
physical interpretation can only be demonstrated by an
a posteriori study of the consequences of the theory in an
application to a real or model system. Nevertheless, we
have given this interpretation now in order to justify the
nomenclature "self-energy structures" as used above,
for it is precisely these structures which are the source
of the divergent terms in the denerate Bose system.
Moreover, their treatment by the A transformation is
certainly a mathematical necessity, and we believe that
this treatment can only be successfully achieved in the
master graph formulation of quantum statistics.

The discussion of the preceding three paragraphs has
been entirely concerned with the nonzero momentum
particles of the degenerate Bose system, i.e., with the
"normal fluid. "There is also a corresponding self-energy
analysis which must be performed for the zero-momen-
tum "superfluid, " and this analysis is carried through
in Sec. 5. To be sure, there can be no self-energy problem
with the zero-momentum particles due to their statistics,
for the very purpose of the x-ensemble formulation of
quantum statistics is to eliminate zero-momentum ex-
change terms (see Sec. 2). Nevertheless, there is an im-

portant eRect due to zero-inomentum particle interac-
tions, and the analysis of the associated zero-momentum
self-energy structures results in the zero-momentum
factors of Sec. 5.

As a final matter for this paper, an expression for the
pair-distribution function in a degenerate Bose system
is derived in Sec. 8. This derivation has been included,
not only because it is an interesting application of the
methods developed here, but also because the pair-
distribution function has been experimentally deter-
termined by scattering experiments. "

2. x-ENSEMBLE FORMULATION OF
QUANTUM STATISTICS

In the theory of the grand canonical ensemble of
quantum statistics, one is able to calculate average
values and their fluctuations of the energy E, the total
particle number E, and other thermodynamic quantities
for any given system. Moreover, one may also calculate
the momentum distribution (ns), the pair-distribution
function Ps(r, r'), and any of the higher order correlation
functions in any representation whatsoever. All of these
quantities are available from a calculation of the grand
partition function,

e"r= p exp(pg1V) Trial[exp( —pH ~ )),
and its various moments. In Eq. (1), g is the thermo-

&' D. G. Hurst and D, G, Henshaw, Phys. Rev, 100, 994 (1955).

dynamic potential, P = (sT) ', and Q is the volume of the
system. The symbol TrN indicates that the trace of
exp[—PH&~&j is to be taken over a complete set of
S-particle state vectors. %e shall assume that the
2V-particle Hamiltonian JI&N& includes only two-particle
interactions and, therefore, that interatomic electron
exchanges" are completely unimportant for the low-
temperature problems of interest in our work. The
quantity f is called the grand potential, and it is assumed
to be an intensive quantity, i.e., we assume that the
limit as Q~~ of f(P,g, Q) exists.

'

We shall consider
only Bose systems in this paper.

It is characteristic of physics that to only know how
to do something in principle is to not know how to do
it in practice. Thus, in an application of Eq. (1) to the
calculation of the grand potential for a degenerate Bose
gas, Lee and Yang' have shown that ordinary methods
of analysis fail completely. The reason for this failure is
readily attributed by them to the macroscopic occupa-
tion of the zero-momentum state (in a system at rest).
That is to say, if L is the number of bosons in the zero-
momentum state in any given term of the trace of
Eq. (1), then each of the L!exchange terms correspond-
ing to this given term gives an identical contribution.
One then finds when (L) (X))))1, that the normal
Ursell expansion of the grand potential does rot give an
intensive quantity, as originally assumed. In fact, the
grand potential appears to have horrible divergences in
the limit 0~~, even for a low-density system.

I.ee and Yang have given the solution to the above

difhculty by their x-ensemble formulation of the grand
canonical ensemble, ' in which the grand partition func-
tion is given by

exp(Qf. ) = e—" P exp(PgiV)
N~Q

g P (xQ) (L!) '
Trodi r, [exp( —PHt~i) j, (2)

instead of by Eq. (1). In this equation, Tr&, r, means
that the trace is to be taken only over those E-particle
state vectors in which L particles have zero momentum
In their proof of Eq. (2) Lee and Yang have shown
that if

Bf./rix=0 at x= (x)—=Q
—'(L))0

then f,(P,g,Q) = f(P,g, Q) in the limit (I ~~. If Eq. (3)
is not satisfied, then f,=f at (x)=0, and Eq. (2)
reduces to Eq. (1) for all practical purposes. We see
from (3) that the quantity x is the density of zero-
momentum particles.

It is easy to show how the x-ensemble formulation (2)
is obtained, The motivating step is to eliminate the

's See M, Girardeau, J. Math. Phys. 4„1096 (1963).
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troublesome factor (I.!) from the Tr~ r, . One next
observes that when the average number (L) of zero-
momentum bosons is (N), then the dominant terms
in the grand potential must be those with L (L). One
can, of course, only verify this statement by showing in
an a posteriori calculation that the fluctuation ((dL)')
in the number of zero-momentum particles is (L)
Lsee Sec. 8 or prove directly from Eq. (2)7. One next
multiplies the Tr~ L, in the grand partition function by
the Poisson distribution of I. about its average value
(x)Q (which is essentially unity for important L values).
One finally replaces (x)Q by xQ, thereby treating x as a
variable whose average value can be obtained by the
maximum condition (3).

It is now useful to introduce the interaction repre-
sentation into Eq. (2) by defining the operator

W&i(P)—= exp(PHD& ') exp( —PH' &),

which is unity for free particles. The grand partition
function (2) can then be written in the form

expression

k,k, k~) kik2 k»&
(8)

I
= (xQ) i(L &)

—iW(s& , (6)
k,k2 kg) k,k, k»&.

where

tk, k2. k»
Wis&~

&k, 'k, '. k«')
—=2 &'(kik2' ' ' kN

~
WN(P)

~
ki ' ' ' kN ) «(7)

pl

in which P p denotes the sum over all permutations of
the primed indices.

In order to caclulate the various distribution functions
in position space, one requires not only the diagonal
matrix elements (6) but also oR-diagonal matrix ele-
ments. Thus, for the pair-distribution function, one
must be able to calculate the (symmetrized) off-diagonal
elements (kik2~ p2~ ki'k2') of the density matrix

p=e "fes'~exp( —PH&~&). (8)
e"&'= e—" P (N!)—' exp(PgN)

N=O

N kk, k»i
X P exp( PP—cu;)W,&s&, (5)

kI ~ ~ ~ k~ kik2 k»i

where the subscript x has now been dropped from the
grand potential, and where &u~,

——5'k'/2M. The matrix
elements of W»t(P) are given by the symmetrized

The momenta of these "reduced" density matrices"
are fixed, or given, momenta which are not summed
over, and we shall call them ex/t. rma/ momenta. We
let I., be the number of external unprimed momenta
which are zero, and let I.,' be the number of external
primed momenta which are zero. Then the off-diagonal
generalization of (6) can easily be written down by
referring to the argument given below Eq. (3).

(k, kg k»
=(xQ)'+'+'L(J+L. ').7 'L(L.+L)(L.+L—1) (L+1)7 'W'",

I (9)
&, k, 'k, ' k»

' k, 'k, '
k&i ')

where L, L„and L, are determined in any application of (9) to the calculation of reduced density matrix elements
For example, the matrix elements (k,k2

1 p2~ ki'k2') are given by

00 k, k2k, k»
(kik2~p ~2k ik 2)=e "e "* Q L(N —2)!7 ' exp(PgiV) Q exp( —P P co;)W 's'

N=2 k3 ~ ~ «kg ki'k2'k3 . k»

where there are N(N —1) ways of choosing the positions
of ki and k, in the matrix elements of W» (P), all of
which are equivalent. One then chooses the identity
permutation in (7) so that ki' and k2' also occur in the
first two columns and observes that the remaining
bottom row momenta are internal momenta which are
equal to the corresponding top row momenta. We shall
return. to Eq. (10) in Sec. 8.

Ke complete this section by writing down expressions
for some of the thermodynamic functions when the
grand potential is expressed in terms of the independent
variables P, g, and x.

"See C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).

Pressure

Particle density

~=!3-'(~/»)(Qf)

N=(N)/Q= p i(af/ag)-
Energy per particle

%)/(N)=g '(~f/»)--
Entropy

5= (8/BT)(P 'Qf)

(12)

(13)

(14)

One must be very careful to observe that in Eqs. (3),
(13), and (14) the thermodynamic potential g is treated
as an iedepemdeet variable. It will be seen, however, that
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%)/9') =g n'—(8f/8p)+p(8g/8p),

5= (8/8T)(P &IIf) nII(8—g/8T),

where we have introduced the parameter

~=—- x/n, ,

(13')

(14')

which is the fraction of bosons in the zero-momentum
state.

3. LINKED-PAIR EXPANSIGN GP GRAND PGTENI'IAJ.

In a previous paper" we have written down an explicit
expression for the grand potential for the case (x)=0 in
terms of the elementary two-body interactions of the
system. The generalization of this result to a degenerate

our method of analysis is such that an expression for
the thermodynamic potential in terms of p and x is
explicitly substituted into the formalism. This is equiva-
lent to a transition from the variables P, g, and x to the
independent variables P and x. In this case we must
write Eqs. (3), (13),and (14) as

8f/8&=(8f/8g)(8g/88=nP(8g/8&), «r (&0, (3')

Bose system, with (x)&0, is

Qf(x,P,g, II) =Qfp(P, g, II) x—II+xQee'

+ P fall dilferent Qth order
linked-pair (0,0) graphs], (16)

where the free-particle grand potential for the nonzero-
momentum particles is given by

We shall henceforth adopt the convention of LY V that
whenever a momentum k does not take the value zero
it will be represented by p. This convention is quite con-
venient, and it also emphasizes the special treatment of
the zero-momentum particles.

Before proceeding with the proof of Eq. (16), it is
necessary to define linked-pair (0,0) graphs. In this con-
nection, it is also useful to define linked-pair (ti, v)

graphs, where p, and v may take on any integer values
(including zero). We shall be interested in (0,0), (1,1),
(0,2), (2,0), (1,2), (2, 1), and (2,2) graphs.

It is first necessary to define the pair function which is
the vertex function of the theory.

"" kiks

ksk4 „
's-k, ks-

—=8(ti —ts)
ksk4 „

kk
8(ts—tp)+8(ts —t,) 8(ti tp) if

k,k, „
lf ty=t2)

8
E(ti&tp): jexp(t, IIp&'&) exp) —(ti —tp)II&'&) exp( —tpIIp&'&)) .

8to

'i-k k—
8(tl tp)

k,k4, ,
where 8(y) is a step function defined to be 1 when y) 0 and 0 when y(0, and where

'i-k k—
—= (k,k,

i R(t, ,t,) i
k,k4)+ (k,k,

i
I&!(t„tp) i k4ks),

ksk4 „

(18)

(20)

An explicit expression for the pair function has been
given by the author in terms of the reaction matrices for
an arbitrary two-body interaction. '4 A pair function is
represented graphically by a cluster vertex us shown in
Fig. 1. It is important to observe that the lines eman-
ating from a cluster vertex are directed, and that they
may be either wiggly or solid. Only the wiggly lines can
represent a zero-momentum state. An "upper" tem-
perature variable of a pair function is either P for a solid
or a missing line, or the temperature variable at the
head-end vertex for a wiggly line. Missing lines always
represent the zero-momentum state.

Linked-Pair (p,v) Graphs

A Qth order, linked pair (p,v) graph i--s a collection of
Q cluster vertices which are entirely interconnected by

'4 F. Mohling, Phys. Rpv, 122, 1043 (1961).

m, solid lines and ns„wiggly lines. In addition to these
internal lines, there are also p outgoing external solid
lines and v incoming external solid lines. The rules for
connecting the Q cluster vertices by the (m, +m„)
internal lines and the procedures for determining the
corresponding expression are as follows:

(i) It must not be possible to complete a loop in a
linked-pair (ti, v) graph by following the arrows on wiggly
lines. Two wiggly lines may not connect the same two
vertices; such a forbidden structure is called a wiggly-
line double bond.

(ii) Associate with each missing (zero-momentum)
outgoing line a factor of (xi')'~'eev, and with each miss-
ing incoming line a factor of (xII)'~'. For each pair of
missing incoming (or outgoing) lines which occurs at
the same vertex a factor of ~ must be included in the
corresponding expression for the graph.
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(iii) External lines are associated with pregiven mo-
menta p, such that external lines carrying different
momenta are regarded as being distinguishable. When
an external momentum is zero, then there is no corre-
sponding external line.

(iv) Two linked-pair (p, p) graphs are different if their
topological structures, including internal line types, line
directions, and external lines, are diBerent.

(v) Associate with ea,ch internal line a, different
integer i(i=1, 2, , nz +no, ) and a corresponding
momentum p; or k; according to whether the line is solid
or wiggly.

(vi) Associate with the entire graph a product of

Q pair functions corresponding to the Q cluster vertices
and explicitly determined by the temperature variables
t; of the cluster vertices and the momentum variable
assignments of (iii) and (v). Conservation of momentum
at each of the cluster vertices may then require that
some of the wiggly-line momenta become zero identi-
cally. Graphical structures in which this can occur must
be included in any sum over all different (p, 2) graphs
(see Sec. 5).

(vii) Assign a factor 5 ' to the entire graph, where

S—:symmetry number.

The symmetry number is defined to be the total number

of permutations of the m, integers associated with the
solid internal lines that leave the graph topologically
unchanged (including the positions of these numbers
relative to the m, solid internal lines, but not necessarily
with respect to the wiggly line labels).

(viii) Assign a factor v(p) to each solid internal line,
where

(21)

(ix) Finally, sum over all of the (m, +m ) internal
momentum coordinates and integrate each of the Q tem-
perature variables from 0 to P.

In Fig. 2 we given some examples of linked-pair (0,0)
graphs together with their corresponding symmetry
numbers. We observe here that in the limit x —&0,
Eq. (16) readily reduces to the corresponding (x)=0
expression of Ref. 14. Referring to the discussion of
Sec. 1, we also observe that the solid internal lines of
linked-pair (p, ,2) graphs arise directly from the particle
statistics (i.e., from exchange terms), whereas the wiggly
lines are due to the particle interactions.

The proof of Eq. (16) begins with the well-known
Ursell method, in which cluster functions U~, ,(~) are
defined in terms of the W~, „&s' of Eq. (9) as follows:

(8) = U (s) U (s) U (s)

g (~) =U (~) U (s) U (s) U (s) U (a)

(22)

(2) (33) (3) (22) (223)

These equations are such that the iVth equation connects 5'~, (8) with all of the U», ( ' U~, (~) U~, ( '. One
then defines cluster integrals b&( ) in terms of the U&,,( ) by the equation

k, k, kg k, k, kir kir+, k23—=0—
'L(ll2 —~)!j i P exp(Pg&) exp( P P co)U (s) (23)

k, k, kM ~M+I' ' ~N ki'k2'. kM'kg~i. k23

where the (ki k~) and (ki' k3r') are external mo-
menta as defined below Eq. (8). One can then show that
the grand potential is given by

f(x,P,g,Q)= Q by&'& x, ,
—

iV =-=- I

where only the b~' ) with no external niomenta are
required in this case. The proof of Eq. (24) is made by
substituting Eqs. (22) into Eq. (5) and then combining

the identical terms which occur after the sum over all
momentum states is performed.

It is important to realize in the derivation of Eq. (24)
that the (L!) ' of Eq. (6) serves only to eliminate the
zero-momentum exchange terms in Eq. (7) (see also
Appendix 8 of I.Y V). This fact is of prime importance
in the subsequent derivation of Eq. (16) from Eq. (24).
In fact, we may immediately conclude that Eq. (16) is
correct by making the following simple observation, in
connection with the derivation of the linked-pair ex-



DEGENERATE BOSE S YSTE M. l. OIJANTU M STATi STi CAL THEORY A83/

Ptl
P, k~
k P„-t,

to calculate the grand potential are different precisely
because of the treatment of the zero-momentum ex-
changes as discussed in this paragraph. %e also note

pq

k, 0
k3 P~

%a $A
I

l'ro. 2. Some examples of linked-pair (0,0) graphs. Below
each graph is included its symmetry number S.

tjtg

0 0
l

FIG. 1. Three. examples of cluster vertices. The upper tempera-
ture variables of the corresponding pair functions are determined
by the nature of the outgoing lines and the temperature variables
at the head ends of the wiggly lines (if any). The explicit expression
for a cluster vertex is given by Eels. (18)—(20).

pansion in Ref. 14 for the case (x)=0. In particular, the
different ways of connecting the solid lines of linked-pair
graphs represent the various possible (connected) ex-
change terms as they arise from Eq. (7). Since such ex-

changes or permutations among the zero momenta are
to be omitted, we do not obtain solid lines for the zero
momenta, i.e., the only zero-momentum connections
are those due to wiggly lines. Having made this observa-
tion, it is then a simple matter to verify that. Eq. (16)
is correct by proceeding in analogy with the proof given
for the (x)=0 case in Ref. 14. It is noted here that the
prescriptions which arise f'rom using either Eqs. (1)or (2)

that the term xQe« in Eq. (16) is the zero-momentum
counterpart of the free-particle grand potential Qfs.

Momentum Distribution

In a similar manner, we may discuss any of the dis-
tribution functions for a degenerate Bose system. Thus,
the difference between Eqs. (9) and (6) lies only in the
treatment of the external momenta which are zero. The
extra numerical factors of Eq. (9) serve to eliminate
any distinction between "external" zero momenta and
the "internal" zero momenta, or missing lines of (0,0)
graphs. This is accomplished by eliminating the ex-
change terms involving these external momenta which
arise either in Eq. (7) or in the selection of top row posi-
tions, such as in Eqs. (10) or (22). We consider here the
special case of the momentum distribution, and in
Sec. 8 we shall discuss the pair-distribution function.

From the preceding paragraph it should be clear that
the different cases of zero and nonzero external momenta
are best discussed separately. The starting point in both
cases is the dehnition of the momentum distribution as a
reduced density matrix element, which is, in turn, given

by an equation similar to Eq. (10). Then

(~(k))=&k lp Ik )

ktks .ky"*2[('—)']' ( ') 2 (— 2 *)
N=-1 k2 ~ ~ kg k,k, . kg

where the off-diagonal reduced density matrix elements

(k, I p, I
kt') vanish because of momentum conservation.

The lV~, & & are again written in terms of the UN, & )

by the Ursell equations (22).
It is at this point that the distinction between zero-

and nonzero-momentum cases must be made. Thus, one

pc
&~(pt))=f) 2 &~"

%=1 py

(26)

One then shows, in analogy with the derivation of Kq.

can show by means of a simple combinatorial analysis,
similar to that used in the derivation of Eq. (24), that
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(16) from Eq. (24), that

(~(p) )=~(p)+~(p) [1+~(p)j

where v(p) is given by Eq. (21), and where one can use &i,i(p)
—=exp[6(g —oi,)j[1+(ri(p))$

the identity
~(p)=exp'(g —~s)[1+~(p)3 (2g) = i (p) {1+v(p) P [all different Qth-order

linked-pair (1,1) graphs$s), (31)in the derivation of (27).
For the average number of zero-momentum particles,

one finds that the only difference between the calcula-
tion of (m(0)) and the calculation of the grand partition
function by Eq. (24), is the extra factor of (xQ) which
occurs in Eq. (9). Then, owing to the normalization
factor in Eq. (25) one immediately obtains

where the second line of this equation follows from (27).
Now, the program in this section is to analyze self-
energy graphs, where a self-energy graph is any graph
with (one or) two external lines. The reason why self-
energy graphs are important is because, as is clear from
Eq. (31), they are intimately associated with the deter-
mination of the momentum distribution, and this is the
problem of interest as stated at the beginning of this
section. We might also add that the analysis of the
momentum distribution can be viewed as a study of the
momentum space ordering in a degenerate many-body
system. London" has given a beautiful discussion of the
importance of momentum space ordering to the under-
standing of the physics of degenerate many-body
systems.

When (x)= 0, and there is no macroscopic occupation
of a single quantum state, then the analysis of self-
energy graphs is completely equivalent to the analysis
of /V, , ,(p), Eq. (31). When (x)WO, however, (0,2) and
(2,0) graphs must also be considered in the analysis of
self-energy graphs, because they also have only two
external lines. Thus, we ate led to consider the quantities
Xo,s(p) and iVs, o(p), defined by

(~(0))=(x)n,

where we may replace x by (x) because of the theorem
associated with Eq. (3). Of course, this last result can
also be derived by merely using Eq. (2) to compute
(I.) and then using Eq. (3).

Equations (27) and (29) may be combined to give an
expression for the density of the Bose system in the
limit of infinite volume.

(30)e=(x)+(2m-)-' d'p(e(p)).

This expression is equivalent to Eq. (12) for the particle
density or, assuming that the density is a given param-
eter of the system, it is equivalent to Eqs. (3) or (3')
for the determination of (x).

step in this direction by their analysis of the momentum
distribution. In this section we shall give the results
of their analysis as adapted to the interaction
representation.

X P [all diA'erent Qth-order The starting point in this analysis is to introduce a
linked-pair (1,1) graphs j, , (27) function iVi i(p), defined by

4. DUAL GRAPHS

It has been emphasized by Lee and Yang in their
analysis of the degenerate Bose system' that @sit stands,
the expression (16) for the grand potential is completely
useless for any calculation of the thermodynamic prop-
erties of a real degenerate Bose gas. The reason for
this is associated with the fact that the difference

[(N(p)) —v(p)$ as given by Eq. (27) becomes extremely
large as the temperature T —+ 0. Moreover, the function
v(p) has an unphysical singularity at ops= g, where, for
a gas of hard spheres, for example, g&0 at very low
temperatures. Thus, the solid line weighting factors in
integrals are completely unphysical and therefore, so
must the associated thermodynamic predictions be un-
physical, when in (16) only a few (0,0) graphs are
considered.

The solution to the above dilemma is to regroup the
terms in the linked-pair expansion (16) so as to exhibit
more physical weighting factors. The hope is that the
thermodynamic properties of the Bose system can then
be correctly calculated by considering only a "few
terms. "Lee and Yang' have taken the 6rst important

&o,s(p) —= (P) (—P)

[all different Qth-order linked-pair
(0,2) graphs]s= iVe, s(—p), (32)

&s,o(p) —=~(p)~( —P)

X g [all different Qth-order linked-pair
Q=l (2,0) graphs], = /Vs, s(p) . (33)

In this section we analyze the self-energy graphs only
with respect to their solid lines. Then, in Secs. 5—7, we
analyze the remaining wiggly-line self-energy graphs,
Ke next define proper and improper graphs as follows.

De6nitions

A linked-pair (p,v) graph is called improper if by
cutting any ore of its solid internal lines open the entire

"F. London, SNperjluids (John Wiley 8z Sons, Inc. , New
York, 1950), Vol. I, pp. 1—9 (see also Ref. 1).
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graph can be separated into two disconnected graphs.
Otherwise, the (p, ,v) graph is called proper

With these definitions ie mind, we next define three
functions Et,t(p), Ep, s(p) and Es,p(p).

E~,t(p)—= g fall different Qth-order proper
Q=l linked-pair (1,1) graphs7v,

Ep, s(y) —= P fall different Qth-order proper
@=i linked-pair (0,2) graphs7v

=Ep, s(—p), (34)

Es,p(p) —= P Lail different Qth-order proper
Q=l linked-pair (2,0) graphs7,

=Es,p(
—y) .

Dual (p,v) Graphs

A Qth order, dual (p-,v) graph is a collection of Q
cluster vertices which are entirely interconnected by ns,
solid lines and ns„wiggly lines. In addition to these
internal lines there are also p outgoing external solid
lines and v incoming external solid lines. Each interval
solid line carries two arrows, one for each end, whereas
the external lines each carry only one arrow. Thus, there

'6S. Y. Beliaev, Zh. EksPerim. i Teor. Fiz. 34, 417 (1958)
LEnglish transl. : Soviet Phys. —JETP ?, 289 (1958)g.

In these definitions the monienta associated with the
external lines are both y in the case of the (1,1) graphs,
and p and —p in the case of the (0,2) and (2,0) graphs.

We next write down a set of algebraic equations which
relate the 1V„,„(p) and the E„„(p).These are

&, (P) = (P)L1+E, (P)&, (P)+Eo, (P)& .o(P)7
=v(P) L1+E~,i(p) &i,i(p)+Es, p(p) &p, s(p) 7, (33)

&p,s(p) = v(P) Ã ~, l(p) &p.s(p)+E p.s(p) &~,t(—P)7
= (—p)LE. , (—y)&o, (y)+Eo, (y)&, (y)7,

(36)

&s,p(p) =v( —P) [Et,t(—P)A' s, p(p)+Es, p(p) &t, i(p) 7
v(p)LEl, l(p) ls, p(p)+Es, p(p)+1, 1(—p)7 (37)

These equations are easy to prove diagrammatically,
and their diagrammatic representation is given in Fig. 9
of LY V. It is interesting to note that Beliaev" has ob-
tained a similar set of equations in his treatment of the
ground state of a degenerate Bose gas using the method
of Green's functions. Equations (35)—(37) only complete
the treatment of self-energy graphs as far as improper
graphs are concerned. Thus, the internal structure of the
functions E„,„(p) may include many "improper parts"
in the sense that cutting any two solid lines may separate
a proper graph into two parts. In order to deal effectively
with this internal structure we next introduce dual

(p,v) graphs.

are three different kinds of internal solid lines depending
on whether the two arrows are parallel to each other,
point towards each other or point away from each other.
The rules for connecting the Q cluster vertices by the
(m, +m„) internal lines and the procedures for deter-
mining the corresponding expression are as follows:

(i)—(iv) Same as rules (i)—(iv) for linked-pair (p,v)

graphs (Sec. 3), except for the word replacement
(linked-pair) —+ (dual).

(v) Assign to each arroz of the m, solid internal lines
a different integer i (i = 1, 2, , 2m, ) and a correspond-
ing momentum p;. Assign to each internal wiggly line
an integer i (i=2 m+1, , 2m, .+m„) and a corre-
sponding momentum k;.

(vi) Same as rule (vi) for linked-pair (p, v) graphs
(Sec. 3).

(vii) Assign a factor 5 ' to the entire graph, where

5=—symmetry number.

The symmetry number is defined to be the total number
of permutations of the 2m, integers associated with the
arrows of the internal solid lines which leave the graph
topologicaiiy unchanged (including the positions of
these integers with respect to the arrows, but not neces-
sarily with respect to the wiggly line labels).

(viii) Assign a factor to each internal solid line with
arrows i and j of

b(p, ,p, )cVt, t(p;) when the arrows are pointing

parallel to each other,

b(p;, —p, )cVp, s(y;) when the arrows are pointing

towards each other,

b(p', —p&)Ss, p(p ) when the arrows are pointing

away from each other.

Here, the 6(, ) symbols are Kronecker b's.

(ix) Finally, sum over all of the (2m, +m„) internal
momentum coordinates and integrate each of the Q
temperature variables from 0 to P.

In Fig. 3 we give some examples of dual (p, v) graphs
together with their corresponding symmetry numbers.
It is to be emphasized that in (0,2) and (2,0) graphs, the
external p and —y lines are distinguishable. Before we
can express the E„„(y) of (34) in terms of dual (p„v)
graphs, we must first define reducible and irreducible
dual graphs.

De6nitions

A dual (p,v) graph is called reducible if by cutting any
two of its internal solid lines open the entire graph can
be separated. into two (or more) disconnected dual
graphs at least one of which is a (1,1), (0,2), or (2,0)
graph. A dual (p,v) graph which is not reducible is
called irreducible.

The E„„(p)of Eqs. (34) can now be expressed in terms
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of irreducible (tt, v) graphs as follows:

E„„(p)= P Lail different Qth-order
irreducible dual (tt, v) graphs], , (38)

integral Eqs. (35)—(37) satisfies the identities

hm [iVi i
—'(y)]=0,~0

lim [iV, , ,—'(p)iV0, 2(y)e ~g]= —1.
P-+P

(40)

E~,o(y) =expl &( v+ -v —2a)]Eo,2(p)

X2 0(p) = exp+(&v +co-,—2g)]1V0,2(p) .
(39)

Ke finally discuss an important theorem which is
proved in Appendix H of LY V. This theorem states
that if, as 0 ~~, the solution to Eq. (3) is x= (x) for
(x) real and positive, then at x= (x) the solution to the

where (tt,v).= (1,1), (0,2), or (2,0). As with all results of
this kind, a formal mathematical proof is dificult to
give. The best procedure is to replace the solid line
factors of rule (viii) for each dual (tt, v) graph of (38) by
Eqs. (31)—(33), and then to study the resulting expanded
forms. The proof is also discussed in Appendix E of
LY V. We note that with Eq. (38), the relations (35)—
(3'I) have become integral equations. One can also show
using the Hermitian property of the Hamiltonian H(~&

(see LY V) that

The first of these identities shows that the momentum
distribution (tt(y)), Eq. (31), exhibits a singularity at
p=0 when (x)&0. This consequence is consistent with
the interpretation of the x-ensemble formulation (2), as
discussed below Eq. (3), in which (x)WO corresponds to
a macroscopic occupation of the zero-momentum state.

Grand Potential

It was indicated at the outset of this section that one
of the objectives in the analysis of the self-energy prob-
lem is to be able to simplify the calculation of thermo-
dynamic quantities from the grand potential. Thus, we
should like to express the grand potential (16) in terms
of irreducible dual (0,0) graphs. In Appendix G of LY V,
Lee and Yang have shown how this objective may be
achieved. A few minor modifications of their proof
yields the result

&f(x,P,g, D) =Q in{expP(tdv —g)LiVi, i(y)1Vi, i(—y) —cVO 2(y)tV2, ,(p)]"'}

+p Lail different Qth-order irreducible dual (0,0) graphs] —p [v '(p)LVi, ,(p) —1]—xQ+xQee'. (41)
Q=l P

As will be seen in the next three sections, Eq. (41) is
only the first step towards obtaining a useful expression
for the grand potential.

S. ZERO-MOMENTUM FACTORS

In rule (vi), Sec. 3, for either linked-pair or dual (p, ,v)

graphs, we have observed that conservation of mo-
mentum may require that some of the wiggly-line mo-
menta in these graphs become identically zero. It is easy
to see whenever this occurs, that the (tt, v) graph can be
separated into two parts by cutting the wiggly line.
Moreover, it is important to realize that such graphical
structures cannot be omitted from the formalism, and
we shall show in our subsequent papers that the correct
analysis of these structures has important consequences
even for "lowest order" calculations. We begin this
analysis by defining irregular, regular, and zero-regular
graphs.

where

'~ ki0

-ktp4- tt

'te-k y

k,, o „

"-ki 0-
dsG.„,(s)

k,y4 „.

' e-k,p,
—

G;.(t;),
kg 0,

(42)

is includ. ed for each missing line. A regular dual (tt, v)

graph is a zero-regular dual (tt, v) graph, which is not
irregular. Regular graphs will be considered further in
the next section. The zero-momentum factors introduced
in these definitions are specified more carefully by first
writing down pair functions, Eq. (18), for which there
are missing lines. Thus, in zero-regular graphs, we must
make the replacements

An irreducible dual (tt, v) graph is called irregular if,
by cutting any owe of its wiggly internal lines open, the
entire graph can be separated into two disconnected
graphs. An irreducible dual (tt, v) graph is sero regular if
(1) it is not irregular with respect to zero-momentum
lines and if (2) a zero-momentum factor G,„,(t) or G; (t)

It now remains to define E, „(t) and E;„(t).
Consider any given cluster vertex at which there is a

missing line. It is clear that E;„(t) or E,„,(t) must be
the sum over all possible graphical structures which can
attach at that point with a zero-momentum wiggly line.
These quantities can therefore be defined by simple
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(a)

FIG. 3. Some examples of dual
(p, v) graphs: (a) (0,0) graphs,
(b) (1,1) graphs, (c) (0,2) graphs,
and (d) (2,0) graphs. Below each
graph is included its symmetry
number S. Each of the graphs
shown is irreducible.

functional differentiations as over, it can be verified by the iteration of the zero-
momentum factors in (42) that,

X{Q fall different Qth-order zero-regular
Q=& dual (0,0) graphs]) w, (44)

in which the functional differentiation includes the
elimination of one temperature integration of the type
introduced in (42); and

P fall different Qth-order irreducible dual (p, v) graphs]

= P [all different Qth-order zero-regular
dual (p, v) graphs] (46)

«r (p,v)A(0, 0). Therefore, we may immediately sub-
stitute Eq, (46) into Eq. (38) to obtain

E„„(p)= P [all different Qth-order

(p, ) graphs], , (47)oo zero-regular dual
&(( P fall different Qth-order zero-regular

Q=l dual (0,0) graphs])rr, (45) where (p,v)=(1,1), (0,2), or (2,()).

in which no temperature integration is eliminated. Note
that the definitions (44) and (45) include the division by
both of the factors (xQ)' 'ee' and (xQ)' ' of rule (ii) in
Sec. 3. The subscripts 1V in (44) and (45) indicate that
the line factors A'„,„are to be held constant in the
functional differentiation.

Equations (42)—(45) provide a completely consistent
set of coupled integral equations for the calculation of
the zero-momentum factors E„„,(t) and E;„(t).More-

Grand Potential

Equation (46) is not valid for (0,0) graphs and there-
fore we must consider these graphs specially before we
can write the grand potential (41) in terms of zero-
regular graphs. In Fig. 4 we given an example of an
irregular dual (0,0) graph, where we note here that a
(0,0) graph cannot be irregular with respect to a nonzero
momentum line, There are nine islands in the irregular
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dual (0,0) graph of Fig. 4, where anisland is defined to
be a not irregular part of an irreducible dual (0,0) graph.
We next let

sir= [number of islands in an irreducible

dual (0,0) graph j, (48)
and observe that

[all diiferent Qth-order zero-regular
dual (0,0) graphs]=P nrSi 'I.r(P), (49)

1

where the sum Qr is over all irregular dual (0,0) graphs
Sr 'Lr(P), each with symmetry number Sr and con-
taining e~ islands. The proof of this result is very similar
to that of theorem 4 in Appendix B of Ref. 17, and we
shall not repeat it here.

We now see that for (0,0) graphs, the expression (46)
becomes

Fro. 4. An irregu-
lar dual (0,0) graph
with nine islands
(ni=9), where each
island is a not irregu-
lar part of the graph.
For convenience, the
temperature variables
at the ends of the
eight zero-momen-
tum (wiggly) lines
have been omitted.

where (nr —1) is the number of (identically) zero-
momentum (wiggly) lines in Sz 'Lr(P). One may now
write the second term on the right-hand side of (50) in
terms of the functions E;„(t) and E,„,(t) defined by
Eqs. (44) and (45). One finds that

E (re 1)Sr 'Lr (p) = (x&eeg) dtE.„(t)E;.(t), (51)

P [all different Qth-order irreducible dual (0,0) graphs]
Q=1

= P fall different Qth-order zero-regular
dual (0,0) graphs7 P—(er 1)S—r 'Lr(P), (50)

I

a result which can be easily verified after observing that
each of the zero-momentum lines in Fig. 4 can occur
between the E,„,(t) and E; (/) on the right-hand side
of (51).

Equations (50) and (51) can. now be substituted into
Eq. (41) for the grand potential to give

flf(~ P,g, ~l) =Z»(exp'(~. —g) D~'i. i(p) ~'i. i(—1i)—il'o, ~(p) il'2, o(p) 1"'j

+ P fall different Qth-order zero-regular dual (0,0) graphs] —P [&
—'(p)ill»(p) —1 j

—ail
Q=l 1

+(xfleeg) G;„(p)— dhG. „,(t)E;„(t) . (52)

With this result we have taken the second step in the
analysis of self-energy graphs as discussed at the be-
ginning of Sec. 4. We observe here that the analysis of
this section could just as well have been presented before
the analysis of Sec. 4 without affecting the final results

(47) and (52).

6. MASTER GRAPHS

At the beginning of Sec. 4 we have introduced the
concept of self-energy graphs merely from a graphical
structure point of view. We have also indicated that the
analysis of these graphical structures is intimately asso-
ciated with the momentum space ordering of the de-
generate Bose system. The final justification of these
assertions can only be made in an a posteriori examina-
tion of the consequences of our analysis for a real or
model degenerate Bose system.

We shall show in the second paper of this series that
the final step in the analysis of the self-energy structures
is the A transformation. The interpretation of the A

transformation will be that it transforms the theory
from a description in terms of free bosons into one in
terms of the quantum-mechanical normal modes or
quasiparticles. In this quasiparticle description, the
basic energy-momentum relation for the quasiparticles
will no longer be ~a=ih' p(2M, but rather some new
relation e~, which results from the A transformation. It
is this consequence of the analysis which finally justifies
the use of the term "self-energy graphs" because it is
these graphs which result in a transformed energy-
momentum relation.

A prerequisite to the application of the A transforma-
tion is an analysis of the irregular (1,1), (0,2), and (2,0)
graphs defined at the beginning of Sec. 5. This analysis
is culminated by the introduction of master graphs and
the derivation of an expression for the grand potential
in terms of master graphs (Sec. 7).We begin the analysis
of graphs which are irregular with respect to nonzero-

"F.Mohling, Phys. Rev. 1.22, 1062 (1961).
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momentum wiggly lines by the introduction of I.graphs.
Corresponding to each zero-regular dual (tl, v) graph,

we define a sero regu-lar (tl, v) L graPh with exactly the
same structure and expression, but subject to the condi-
tion that we do not integrate over the temperature
variables at the vertices to which the iecomimg external
lines (if any) attach. Thus, we define

as well as k= P. In the particular case where both of the
external lines are solid, then k=P only and Eq. (47)
can be written in terms of the L„,„(tp,tl, k) functions as
follows:

E, ,(P) = dt, L, ,(P, t, ,p),

L„„(tp,tl, k) —= p t alldifferent Qth-order
zero-regular (tl, v) L graphs]2, (53)

E0,2(P) dt2dtlI0, 2(t2ptlyP) yt

(54)

where (tl, v) = (1,1), (0,2), or (2,0). The definition is such
that the external lines of (tl, v) L graphs may be either
wiggly or solid, and this generalization to the case of
external wiggly lines is important in the following de-
velopment. %e shall adopt the convention that the
temperature variable (in the position) t2 is always to be
associated with the momentum k, so that in the case of
(0,2) and (2,0) L graph, the temperature variable t, is
to be associated with the momentum —k. It should be
clear that L„,„(tp,tl, k) =L„„(tl,t2, —k) when (tip) = (0,2)
or (2,0) )see also Eqs. (32) and (33)]. We note that
there are (0,2) L graphs in which both incoming lines
attach at the same vertex, and with these I. graphs we
must include a 8-function factor 6(t2 —tl). Also, the
(tl, v) L graphs with external wiggly lines can have k= 0

E 2, o(P) =L2,0(P,P,P)

We next introduce functions E„,„(t2,tl, k) by the
definition

E„„(tp,tl, k) —= p Lail different Qth-order
regular (tl, v) L graphS]2, (55)

where a regular (tl, v) L graph is a zero-regular (tl, v)
L graph which is not irregular (see beginning of Sec. 5).
The identity E„,„(tp,tl, k)=E„„(tl,t2, —k), When (tl, v)
= (0,2) or (2,0), holds for this restricted class of I.graphs
as well as for the functions (53). In analogy with Eqs.
(35)—(37) we next write down a set of simple integral
equations which relate the functions of (53) and (55).

Ll, ,(tp, tl, k) = dsLG, , ,(tp, s,k)E, ,(s,t„k)+L2 0(tp, s,k)E0,2(s,t„k)J

ds(E1,1(tp,s,k)G1,1(s,t, ,k)+E2,0(tp, s,k)L0,2(s,t, ,k)], (56)

I, ,(t„t„k)= ds(L0, 2(t„s,k)E, , ,(s,t„—k)+G, , ,(s,t„k)E0,2(s,tl, k)]—E0,21'&(tp, t„k)

dsLE11(s&4,k)L0,2(s, tl,k)+E0,2(4,s,k)G1 1(s,tl, —k)]—E0,2"'(4,tlyk) I (57)

I.p, o(to, tl, k) = dsLL2, 0(tp, s,k)E1,1(t„s, —k)+Gl, ,(t2,s,k)E2, 0(s,t„k)]—8(tp, t,)E, 0~»(t„t„k)

dsLIC, ,,(t,s,k)L, ,(s,t,k)+E,,(t,,s,k)G, ,(t„s, —k)]—8(t,t,)E, ,1'~(t„t„k),

where

Gl, l(t2 tl k) =5(t2 tl)+Ll, l(t2 tl k) ~ (59)

The quantities Ep, 2"'(t2,tl, k) and E2,p (to, tl, k) are those parts of Ep, 2(tp, tl, k) and Ep, p(t2, tl, k) in which both
external wiggly lines attach at the same vertex, and 8(to, tl) is a Kronecker 8 function. Of course, Ep, 2"'(tp, tl, k)
includes a 8(t2—tl) factor Lsee discussion below Eq. (53)]and this term is to be subtracted only when both incoming
external wiggly lines attach at their tail ends to the same vertex /see rule (i) for linked-pair (tl, v) graphs in Sec. 3].
The graphical representation of Eqs. (56)—(58) is given in Figs. 5—7. Note that the concept of external wiggly lines,
as introduced with Eq. (53), is essential to the derivation of these integral equations.
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Fzo. 5. The graphical
representation of the
integral equation (56).

(CK r3))

Fn. 6. The graphical
representation of the in-
tegral equation (57).The
function Eo, ~~'& (t2, tj,k)
includes a 5(t~—t~) fac-
tor, and it is de6ned
below Eq. (59).
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FK'. 7. The graphical
representation of the in-
tegral equation (58).The
function E~ 0&') (t2, t~,k) is
defined below Eq. (59).

C3

tI)
K2 e 5 (t2 t~) Ka, e

We next write down the equations which one obtains instead of (57)—(59) when (x)=0. These are

I.(t„t„k)= dsG(t2, s,k)E, ,(s,t„k), (60)

G(t2, t„k)—= 8(t2 —t,)+I.(4,tl, k), (6j)
where we have now introduced two new functions L(t2, tl, k) and G(t2, tl, k). We also define a function P(t2, tl, k)
as follows:

P(t2it»k) =El 1(t2)tlok)+ dsld$2E2 0(t2oslok)G($2oslo k)EO 2(tl)$2ok) . (62)

With the aid of the three functions defined by (60)—(62), one can write down a partial solution to the integral
equations (56)—(58) .

P

I, ,(t2, tl, k) = dsG1, i(t2, s,k)P(s, t»k)

dsP(t2&s, k)Gi, i(s, ti,k), (63)

L0,2(4,tl, k) =
~ 0

ds2dslE0 2(s2,sl, k)G1, 1(s2,t2, k)G(s, ,tl, —k) —E0,2 (t2, tl, k)

d$2dslEO, ($2 s»2k)oG($2)t2 k)G1o, 1($1 tl ok)oE0,2 (t2otlok) ) (64)

L2, 0(t2, ti,k) = d$2d$1G1, 1(4)$2ok)G(tlo$1) k)E2,0($2)$»k) ~(t2)tl)E2, 0 (t2ytlyk)

d$2dslCo'(t2o$2, k)61,1(t1,$1) k)A. 2,0($2)slok) 6(t2, tl)A2, 0 (t2otlok) . (65)
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ting

P

Fxo. 8. The diagrammatic representation of Eq. (66). When k cannot be zero then we mal~e the replacement k —+ y.
The graphical symbol for 81&(22,2&,k), is defined in this figure.

Equations (63)—(65) can be proved diagrammatically by iterating Eqs. (56)—(58) and then regrouping the terms.
These last equations are important for the successful application of the A transformation in the following paper,
but they are not essential to the present development. The functions Eo 2i'i(4, 4,k) and E2,0 "&(4,fr,k) are defined

below Eq. (59).
Equations (56)—(59) only complete the treatment of self-energy graphs, as far as irregular graphs are concerned.

Thus, the internal structure of the functions E„,„(4,fr,k) may include many "irregular (il, l ) parts" in the sense that
cutting any two wiggly lines o~ a wiggly line and a solid line may separate a regular graph into two parts. An

irregular (ll, p) part is then defined to be any such resulting part for which (p+1)=2. In order to deal effectively
with this internal structure, we must introduce functions g„,„(4,fr,k) which include the sum over all irregular

(p,r) parts. These functions will then become the "line factors" of master (p,v) graphs. Thus, we define (with
k —& p when k cannot be zero)

gl, l(fs~flqk)=G11(fsqflik), ++11(4,p, )G11(p&fl&p)+, %20(4,p) , dsLO 2(4,s,p)

Gl, l(4if 11k)+ dsG1, 1(32iSip)K1,1 (fl) )p+ 2L, (f0)p2) )+p, 0(f21)p) ) (66)

P

g0, 2(4)fl)k)=L0, 2(4)fl,k)+Jio, 2(fs, p)G1, 1(tl,fl, p)+Pl, l (4,p) dSL0, 2(Sift)p)

P

=- I , (320)f21,k)+Gl, l(p, 4,p)%0, 2(f1| p)+ dsL0 2(4,$,p)K1, 1 (fr) p) t

b 2, 0(4i f1)k) L2, 0(4 ilik) +|Kl,1 (4)p)L2, 0(p) /1)p) +K2, 0(4)p) rISG1, l (f 1 ) )i p)

= L2 (4,f 0k)+lL 0(4,2p, p)OLl, i "" (4, —p)+ dSG1, 1(4,$,p)X2, 0(4, —p),



D F G E N E R A T E B 0 S E S Y S T E M . I . Q U A N T U M S T A T I S T I C A L T H F. 0 R Y A847

eto, sits ~ 2, ~ & )

Q
I

I

Jg

Flo. 9. The diagrammatic representation of Eq. (67). When k cannot be zero, then we make the replacement h ~ p.
The graphical symbol for g0, 2(t2, ti, it) is deaned in this figure.

where the functions X„,„(t,p) are defined by the equations

+l, l (t P)=+1,1(P) dSG1, 1(t S )P+ iY, 0(2)PL2(0PtP) ,~ (2t(P)) LexpP(~v gal 1(P) Ij (69)

Xl, l (t P) = V1i, 1(P)G1,1(P t,P)+/2, (P)0dsL0, 2(t s,P), «&1 1""'(tP) = (N(P)) (7o)

0, 2(» P) =F0,2(P)G1,1(P t P)++1,1( P) dsL0, 2(t, s,p), «&02(t, P) = e, xpP(~v-g)&02—(P), , (7&)

P

~2,0(t P)=i~2, 0(P) dsG1, 1(t s P)+@l, l( P)I2, 0(t,Ptp) ~ expP(oi, —g)-&'2, 0(P) ~

0

(72)

The second parts of each of Eqs. (69)—(72) can be verified

by combining Eqs. (54), (59), (31), and (35)—(37), The
diagrammatic representation of Eqs. (66)—(68) is given
in Figs. 8—10, and the graphical symbols for each of the

g„,.(t2, tl, k) are also defined in the figures. The diagram-
matic representation of Eqs. (69)—(72) is given in
Figs. 11 and 12, and, again, the graphical symbols for
each of the BZ„,„(t,p) are defined in the figures. It is
instructive to demonstrate the equivalence of the two
forms of each of Eqs. (66)—(68) by substituting Eqs.
(69)—(72). It is then fairly easy to demonstrate that the
g„„(ts,tl, k) represent the sums over all possible irregular
(ti,v) parts as defined below Eq. (65).With this observa-
tion we can now introduce master (tt, v) graphs.

Master (p,v) Graphs

A Qth-order, master (tt, v) graph is a collection of

Q cluster vertices (Fig. 1) which are entirely intercon-

nected by ns solid lines. In addition to these internal
lines, there are also p outgoing external solid lines and
v incoming external solid lines. There are no wiggly lines
in master (tt, v) graphs. Each internal line carries two
arrows, one for each end, whereas the external lines each
carry only one arrow. Thus, there are three different
kinds of internal lines depending on whether the two
arrows are parallel to each other, point towards each
other, or point away from each other. Master (tt, v)

graphs are irreducible (see Sec. 4). The rules for con-
necting the Q cluster vertices by the m internal lines and
the procedures for determining the corresponding ex-
pression are as follows:

(i) Associate with each missing (zero-momentum)
outgoing line a factor of (xQ)' 'e«G, „„(t)and with each
missing incoming line a factor of (xQ)'t2G;„(t) Lsee Eqs.
(42)j. For each pair of missing incoming (or outgoing)
lines which occurs at the same vertex a factor of 2 must
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'Sa, p (ta st& ~i& &

)"
(ou

t2

t2
(out)

2,0

Fro. 10. The diagrammatic representation of Eq. (68). When k cannot be zero then we make the replacement k ~ p.
The graphical symbol for g2, 0(t&,g~, k) is defined in this figure.

be included in the corresponding expression for the
graph.

(ii) External lines are associated with pregiven mo-
menta p, such that external lines carrying different
momenta are regarded as being distinguishable. When
an external momentum is zero, then there is no corre-
sponding external line.

(iii) Two master (p,v) graphs are different if their
topological structures, including arrow directions and
external line assignments, are different.

(iv) Associate with each arrow of the m internal lines
a different integer i (t'= 1, 2, , 2m) and a correspond-
ing momentum k;.

(v) Assign a factor 5 ' to the entire graph, where

5=—symmetry number.

The symmetry number is de6ned to be the total number
of permutations of the 2m integers associated with the
arrows of the internal lines, which leave the graph topo-
logically unchanged (including the positions of these
integers with respect to the arrows).

(vi) Assign a different temperature variable to each of
the Q cluster vertices and to the head end of each
(internal) arrow which points away from a cluster
vertex. Associate with the entire graph a product of

Q pair functions (18) corresponding to the Q cluster
vertices and the momentum variable assignments of
rules (ii) and (iv).

(vii) Assign a factor to each internal line with arrows
i and j of 5(k;,k,)gt, r(f,s,k,) when the arrows are point-
ing parallel to each other, 8(k;, k;) &ass(—f,s,k;) w, hen the

o, a

JAN&
&

FIG. 11. The diagrammatic repre-
sentation of Eqs. (69) and (70). The
graphical symbols for K&, &&'"'&(t,p) and
!R~,r&'~&(f, y) are defined in this figure.

,0
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&o,s(t, P) =

FIG. 12. The diagrammatic repre-
sentation of Eqs. (71) and (72). The
graphical symbols for X0, 2(&,y) and
K2, 0(t, p) are defined in this figure.

ns, o (t,P) =-

O.

(4)

I,) C
Fn. 13. Some examples of master (0,0) graphs. Below each

graph is included its symmetry number S. For convenience, the
temperature variables of the cluster vertices (circled) and of the
line factors g„,„have been omitted.

arrows are pointing towards each other, and 5(k;, —k, )
Xgs p(t, s,k,) when the arrows are pointing away from
each other, where the temperature variables 3 and s are
determined by the assignments of rule (vi) (see also
Figs. 8—10).Here, the 8(, ) symbols are Kronecker 5's.

(viii) When two internal lines connecting the same
two vertices are associated with the product gt, i(ts, tt, ki)
Xgi, t(ts, ts, ks), then the wiggly-line double-bond term
8(ts—ti) 8(ts —ts) must be subtracted Lsee rule (i) for
linked-pair (ti,v) graphs in Sec. 3).

(ix) Finally, sum over the 2m internal momentum
coordinates and integrate from 0 to P over each of the
temperature variables as assigned in rule (vi) and to the
outgoing zero-momentum factors of rule (i).

In Fig. 13 we give some examples of master (0,0) graphs
together with their associated symmetry numbers. In
order to distinguish master (ti, v) graphs from the pre-
ceding graphs of Secs. 3 and 4, a circle is placed around
each cluster vertex. The circle also makes it easier to
distinguish internal-line temperature variables from the

cluster vertices Lsee rule (vi) j. When (ti, v) A(0,0), it is
more convenient to consider master (ti, v) L graphs
instead of the master (ti,v) graphs just defined.

Master (Is,v) L Graphs

A master (ti, v) L graph, where (ti,v) W(0,0), is defined
to be a master (ti,v) graph with wiggly external lines and
in which (1) each integration over a temperature vari-
able at a vertex to which an incoming external line (if
any) attaches is not performed; and (2) the pair-func-
tion "upper temperature variable" (see Fig. 1) corre-
sponding to an outgoing external line is a variable t(P.

We can now write the functions E„,„(ts,tt, k) of Eq.
(55) in terms of master. (ti,v) L graphs as follows:

E„,„(ts,tt,k) = Q Lail different Qth-order
master (ti,v) L graphs)~, (73)

where (ti,v) = (1,1), (0,2), or (2,0). Equation (73) can be
proved by substituting the b„,„(ts,tt, k) functions of
Eqs. (66)—(68) into the master (p, ,v) L graphs and show-
ing that the expanded form gives Eq. (55). There are
no real symmetry number complications in this proof.
It is only the cyclic symmetry of (0,0) graphs which
produces the difEiculties of the next section, where the
grand potential is expressed in terms of master (ti, v)

graphs.

7. MASTER GRAPH EXPANSION OF
THE GRAND POTENTIAL

The master graph formulation of quantum statistics,
outlined at the end of the preceding section, completes
the analysis in this paper of self-energy graphs as dis-
cussed at the beginning of Secs. 4 and 6. Thus, in Kq.
(73), all of the "self-energy structure" is contained in
the line factors g„,„(ts,tt, k) of Eqs. (66)—(68). Unfortu-
nately, the simplicity with which Eq. (73) can be derived
does not carry over into the corresponding derivation of
a master-graph expansion of the grand potential. It is the
purpose of this section to carry through the latter
derivation and we begin by examining the third term
in the grand potential (52). With the aid of Eq. (35)
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this term can be written as

Z LP '(P)&1,1(p)—13

Q p 1.1(p)E1,1(P)+2A 2, 0(p)E0,2(p)E0,2(p)+ 21' 0,2(p)E2, 0(p)g

E1,1(p)S1,1 T1,1(p)+ 2 Q X2,0(p)S0,2 T0,2(p)+ 2 2 &0,2(p)S2, 0 T2,0(p)j & (74)
y (&, &) (o, a) (2,o)

where in the second line we have substituted Eq. (47) (t1+1)=2, to the number of ways in which this (t2,v)
in the form graph can be obtained by breaking any line of the corre-

(75) sponding (0,0) graph, one can show that
(ttt, v)

In Eq. (75) the sum is over all different zero-regular
dual (t1,1) graphs S„„'T„,„(p), where S„,„ is the syrn-
metry number of any given graph.

The sum over p in the second line of Eq. (74) is
equivalent to converting each zero-regular dual (t2,v)

graph, multiplied by X„,„(p), into a (0,0) graph. In fact,
by studying the relation between the symmetry number
S„„ofa given zero-regular dual (t1,v) graph, where

2 E" (P)A 1,1(p) 1] 2 1l 0,0S0,0 T0,0 ~ (76)
(o,o)

In Eq. (76), the sum on the right-hand side is over all
zero-regular dual (0,0) graphs S0 0 'T, 0 with 1V0 0 lines
and symmetry number S0,0. The proof of (76) is made
by carefully applying lemma 1 in Appendix G of LY V
to the second line of (74). Equation (76) can then be
substituted into Eq. (52) for the grand potential to give

half(x, P,g, ~l) =Z»(expP(~0 —g)l Ã, 1(p)A'l, l( p) +0,2(p)+2, 0(p)j )

P
—Q (A 0.0 1)S0,0 'To, o xQ+(xQe00) G;„(p)— dtG, „q(t)E;„(t) . (77)

(o,o) 0

E (A 0, 0
—1)S0,0 'To, o

(o,o)Dehtions

In order to proceed it is now necessary to define open following identity:
and closed (t2,2) graphs.

An ope22 (t2,2) graph is a zero-regular dual (t2, v) graph
which can be separated into two parts, one of which is
a zero-regular (t2,1) L graph with t1+v=2, by cutting
one solid line and one wiggly line. A closed (t1,v) graph is
a zero-regular dual (t2, 1 ) graph which is 22ot open, and in
which the following replacements are made for the solid
line factors of rule (viii) in Sec. 4.

+0 ~(p) ~ ~8~'(t2pt»p) Gb'(t2~t»p) j ~

where, with t2+1 =2,

G„,„(t„t„k)=S„,„S(t,—t,)+L„,„(t„t„k). (78)

With the aid of these definitions, one can prove the

= Q (&0,0
—1)S0,0 'To, o'", (79)

(o,o) c

where the sum of the right-hand side of (79) is over all
closed (0,0) graphs. This identity can be proved by
generalizing the proof given for the corresponding (x)=0
case in Appendix A of Ref. 17. We shall not give the
generalization here as it does not involve any new
difficulties.

Before substituting Eq. (79) into the grand potential
(77) we consider the first term on the right-hand side
of (79) and carry through, in reverse, the steps leading
from Eqs. (74) to (76), as applied to closed graphs. This
gives the result

1l 0,0S0,0 T0,0 2 2 dt2dtl 2 (1+8@,p)Lgp, 0(t»t2)p) G~, II(t»t2)p)JEpu(t2)t1)p) q,
(o,o) c o (p, v)

ttz+v =2

where the sum over (t1,v) is here over the three possibilities for which t2+1 = 2, and the E„,„(t2,t1,k) are now given by

E„,„(t2,t1,k) = p [all different Qth-order closed (t2,v) L graphsj2,
Q=-I



D E G E N E R A T E 8 0 S E S Y S T E M . I . Q II A N T U Wl S T A T I S T I C A L T H E 0 R Y A851

instead of by Eq. (55). Upon substituting Eqs. (79) and (80) into Eq. (77) we obtain for the grand potential

IIf(x,&,g, II) =Z»{exp&(~p —g)P'& i(p)&i, i(—p) —&p, p(p)&&, p(p)] )

+ Q Sp, p
—'Tp, pl i —xQ+(xQee&) G;„(P)— dtG.„,(t)E; (t)

(0,0) g

dtpdti P (1+8„,.)[g, , „(ti,tp, k) —G, ,„(ti,4,k)]E„,,(tp, ti, k) . (82)
k 0 (p,v)

p, +V =2
)

In Eq. (82) it should be clear, from the quantities being summed over, that the sum Qip pie is a sum over all different
closed (0,0) graphs, whereas the sum P &„,.&, with ti+) = 2, is a sum over only three different terms. This somewhat
confusing situation will be alleviated by our subsequent treatment of the former term. In fact, we now observe
that all of the terms in (82) except the sum over closed (0,0) graphs can be expressed in terms of master (ti,v)

graphs, using the results of Sec. 6. In particular, Eq. (81) is an unnecessary expression, its usefulness only being
for the derivation of Eq. (80), and we may immediately replace it by Eq. (73). We finally observe that there is no
k=0 contribution to the last term in Eq. (82) according to Eqs. (66)—(68), and this justifies the replacement of

p by k in Eq. (80) before it is substituted into (77).
The most diflicult step in the analysis of this section is the derivation of an expression for the sum over all

closed (0,0) graphs in Eq. (82) in terms of master (ti, v) graphs. In order to facilitate this analysis, it is necessary to
de6ne several new quantities, the first of which is

QF(x,P,g, Q)
—= P fall different Qth-order master (0,0) graphs].

Q=l
(83)

The problem is to determine an expression for the difference between this quantity and the sum over all closed

(0,0) graphs. This difference can be expressed in terms of the following quantities which are generalizations of the

L„,„(tp,ti, k) and G„,„(tp,ti,k), defined by Eqs. (56)-(59) and (78).

Li, i'&(tp, ti, k) —= ds[Gi, i ( tp)ks)) E, i(is)tki))+ Lpp(tp)s)k)Ep, p(s)ti)k)] )

Lp, p&'&(tp, t„k)—= ds[Lp, p 'i(tp)s)k)Ei, i(s)ti) k)+Gi, i 'i(s)4)k)Ep, p(s)ti)k)] —Ep, p (4,ti,k),

Lp p&'&(4, ti, k) —= ds[Lp, p&'(tp)s)k)Ei, i(ti)s) —k)+Gi, i&'(tp)s)k)Ep, p(s)ti)k)] —5(tp)ti)Ep, p"'(tp)tl)k) ) (86)

„G„"(t tp,))k)= &(tp t,)&„,„+L—„,„'—(4)ti)k), (87)

where P) r~ (t&,ti) and the functions Ep, &&»(t&,ti,k) and Ep, pl i(tp ti k) are defined below Eq. (59). The integral
equations (84)-(86) serve to define the functions L„,.&'&(t&, t&,k) for a general temperature parameter r. It should
be emphasized that these definitions do not entail any modifications of the imtereat line factors g„.(t&, t&,k ')

, of the
E„,„(t„t„k)and the L„,„& &(t„t„k).

We now state the result which one obtains for the difference between the sum over all closed (0,0) graphs and
QF of Eq. (83).

[ Q Sp, p Tpp —QF(x,Pg, Q)]= —
p P

(o,o) g k p

dt, dti P (1+5„p)G)„(t„t,,k)E„,„(tp)t„k)
(I V)

I)I+V =2

+pE d4
k 0

dt, ( P G„„' (t„t„k)E„,„(tp,ti,k)+G, ,, ' (t, ,t„k)Ei,i(ti)tp)k)) . (88)
(u V)

P, +V =2

Equation (88) can be derived by first proving a generalization of Eq. (54) in Ref. 17 to the case (x)AO. The proof
for the (x)WO generalization is very similar to that given in Appendix II of Ref. 17 for the (x)=0 case and we shall
not repeat it here. The second step in the derivation of Eq. (88) is made by applying the following theorem: If
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its Fourier transform is directly related to the scattering
cross-section measurement when a weakly interacting
particle is scattered from the system. Thus, it is a
directly measurable quantity. Its microscopic definition
for (1V&)&)1 is

~.( ,")=——[( ( ) ("))—( ( )&~(,")], (94)

where N(r) is the number of particles at the position r
and b(r, r') is a Kronecker 8 of the positions r and r'.

The definition (94) is not directly useful for a calcula-
tion applied to a degenerate system, characterized by
momentum space ordering. However, the pair-distribu-
tion function can also be calculated by computing the
Fourier transform of the oB-diagonal reduced density
matrix elements (klk2lp, lk, 'k2'), Eq. (10). Thus, we

may write

I'2(r r') =(2211) ' Q 0"2' ""'"'

=D.(r r')—,
x (k,k, I p,

I
k, 'k2') (94a)

where we have used the conservation of momentum of
the density matrix elements to simplify the exponential
factor and to demonstrate that it is a function of the
difference (r—r') only.

As with the momentum distribution, discussed at the
end of Sec. 3, we must consider the various cases k;=0
and k, =p, in Eq. (94a) separately.

An Ursell expansion applied to Eq. (10) yields the
following results:

(00l p2I oo) = &(L' —L)&= (&x&II)'

&pio I p2 I
pi'o& = &pio I p2l opi') = &x»(~(pl)»(pi, pl'),

(oo I p2 I
pl', P2'& = (x)II&0,2(pi') exp'[~(pi')+~( —pi')]~(pi', —p2'),

(p p. l "Ioo)=( &II~"(p )~(p., -p.),

pi 0
&pl0I p2I pi'»'&=(x&I»(p )LI+~(p ')]Ll+~(p2')]&1,2

Pi'P2'&

P~P2
(p,p, l p, l p, '0) =

& &II.(p,).(p,)[1+.(p, ')]r, ,
yg'0

(95)

(pip2 I p2 I
pl'p2') = (~(pl) &(»(p2)) rt'(pl pi') &(p2,p2')+ ~(pi, p2') ~(p2, pl')]

+~"'.0(p )A'0, (p ') «p&L (p ')+ (—pi')]~(pi, —p2) ~(pl', —p'')

where

(Pi P2
+~(pi)~(P2) L1+'(Pi')]L1+~(P2')3'2, 21

1P1 P2

jt'pi 0
P, 2I

=—(xi') '~2 p Lail different Qth-order linked-pair (1,2) graphs],
&Pi'P2' O=i

(P1P2)
E1,2I I—= (xII) '" Q [all different Qth-order linked-pair (2,1) graphs],

(pi 0I Q=l
(96)

Pl P2 )P, 2 I—= p fall different Qth-order linked. -pair'(2, 2) graphs],
pl p2 ) Q=l

and the linked-pair (p,v) graphs are defined in Sec. 3. In Eqs. (96) we must set x=(x) at the end of any calculation,
as in Eq. (29). We observe that we can use the first of Eqs. (95) and Eq. (29) to verify that the fluctuation in the
average number of zero-momentum bosons in a system with (x) )0 is ((AL)2) = (x)Q Lsee below Eq. (3)].

When Eqs. (95) are substituted into Eq. (94a), one obtains for the pair-distribution function D(r)

D(r) 1+/pl, l(r)+~1,1( r)+P0, 2(r)+~0, 2( r)++1,2(r)++1,2( r)]
++2,2(r)+~1,1(r)~1,1( r)+~0,2(r)F0, 2( r) (9~)

where $ is defined by Eq. (15), setting x= (x). The various functions on the right-hand side of Eq. (97) are defined
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as follows:
F, ,(r)= (r—1Q) 'Q e* '(e(y)),

Fo,,(r) —= (r1Q)
—' p e'1".Vo, ,(p) exp&((u, +co,—2g),

P10 )
F1.2(r) =(&~) ' 2 [&'""'+~'""']~(P1)L1+~(P1')j[1+~(P2')jF1,2

PIPl P2 P1 P& i

fy1 P2 'l
F~,~(r)=—(11&) ' p ~"&' 1'""~(P1)~(P2)[1+1(P1')j[1+v(P2'))F2,QI

PlP2Pl P2
'

kp, 'p, 'i

In deriving Eq. (97), one must make use of the second
of Eqs. (39) and the relation

(Plo I P2I P1'P1') = &P1'P2'I P21 P1o&,

which also follows from the Hermitian property of the
Hamiltonian B&~). Ke observe that the functions of
Eqs. (96) each contain an 0 ' dependence, which, to-
gether with the conservation of momentum, makes the
corresponding functions in (98) well defined in the
limit Q —+~.

In order to bring the expression (97) to a form which

is suitable for calculation, one must express F1,2(r) and

F2,2(r) in terms of master (p, v) J. graphs. Of course, the
remaining terms of (97) can all be readily expressed in
terms of master (p,v) I. graphs by using Eqs. (31), (35),
(36), (54), and (73). We observe, in analogy with Eq.
(35), that when F1,2(r) or F, 2(r) is expressed in terms

of the dual (p, 1 ) graphs of Sec. 4, each of the outgoing
lines can be either X1,,(y) or 1V2,0(y), whereas each of
the incoming lines can be 1V1,1(p) or cVO ~(y). Therefore,
F1 ~(r) will be expressed in terms of all dual (g, 1 ) graphs
for which (p+1)=3 and F22(r) will be expressed. in
terms of all dual (p,v) graphs for which (p+v) =4. A
similar situation occurs when each of the dual (p, v)

graphs is expressed in terms of the master (p, v) L graphs
of Sec, 6. There are no essential difhculties in this
analysis, but since it is lengthy we shall not give it in
this paper.

Ke conclude our discussion of the pair-distribution
function by observing that for an isotropic system at
rest, the various F„„(r)must be independent of direc-
tion. In this case, Eq. (97) can be simplified to the form

D(") 1+2([F11(r)+F0 2(r)+F1 2(")j
+F2,2(r)+[F1,1(r)]'+[F0,s(r) j'. (100)


