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Energy Distributions of Field Emitted Electrons
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(Received 13 March 1964)

The total and normal energy distributions of electrons, emitted from a semiconductor conduction or
valence band, by quantum mechanical tunneling through a surface potential barrier in vacuum, have been
derived. General results, which apply for arbitrary emitter band structures, barrier shapes and distribution
functions in momentum space, are given. Speci6c formulas are worked out for the case of spherical energy
surfaces, an image force barrier and Fermi-Dirac statistics. The emitter band structure only a6ects the
emitted electron energy distribution if the important energy surfaces in momentum space are very small.
Thus, appreciable effects occur only for non- or semidegenerate semiconductors with low effective masses.
The prevailing lack of agreement between theory and experiment and some difFiculties in interpreting results
of retarding potential measurements are discussed.

1. INTRODUCTION

HE application of a sufFiciently intense electric
field normal to the surface of a metal or semi-

conductor leads to the emission of electrons mainly by
quantum mechanical tunneling through the surface
barrier, rather than by thermionic emission over the
top of the barrier. The fields required for measurable
emission currents, at room temperature, are in the
range 10r ro 10s V/crn or, equivalently, tunnel paths
must be no more than several tens of angstroms long.
Two ways of observing the phenomena experimentally
have proved possible. In one, the emitter, in the form
of a fine needle with a tip radius of about 10 4 cm, is
placed inside an evacuated chamber, partly lined with
a conducting film anode. In the other, a bias voltage is
applied across a thin insulating film (10 to 100 A)
sandwiched between two electrodes. It is convenient to
distinguish between the two arrangements by describing
the phenomena as "field emission" in the former case
and "thin film tunneling" in the latter case even though
they are fundamentally the same.

The theory of field emission from metals was first
derived by Fowler and Nordheim in 1928, who showed
that, if the temperature is not too high, most of the
emitted electrons originate from a small energy interval
around the Fermi level of the metal ~ Henderson and his
co-workers, ' using a retarding potential analyzer, were
the first to demonstrate that the electrons do originate
from near the Fermi level but the half-widths of their
measured distributions were too large. The latter was
in part due to their use of a cylindrical arrangement
(emitter in the form of a fine tungsten wire) which
leads to field distortions and poor resolution.

In comparing their measured distributions with
theory, Henderson and Dahlstrom' derived the "normal
energy distribution" which can be generally defined as
the number of electrons emitted whose "x-directed
energy E "is in the interval E, to E,+dE, . Here, the
x direction is normal to the emitting surface and E, is

' J.E. Henderson and R. K. Badgley, Phys. Rev. 38, 590 (1931);
J. K. Henderson and R. K. Dahlstrom, ibid. 45, 764 (1934); 55,
473 (1939).

the difference between the total electron energy E and
the energy E& associated with the tangential electron
momentum p, in vacuum, just outside the metal surface,
i.e. , E,=pre/2m where m is the free-electron mass. In
the calculation by Henderson and Dahlstrom the free-
electron model is assumed for the metal (with a free-
electron mass) so that if p, is conserved, E, is simply
(p., /2') which is their definition of E. Our more
general definition applies for an arbitrary band structure
of the emitter.

Muller' employed a spherical retarding potential
arrangement and in later work' achieved good agree-
ment between the emitted energy distribution from a
tungsten tip and the calculated normal energy dis-
tribution. However, in 1959, Muller and Young4 re-
measured the energy distribution in an improved
retarding potential tube and obtained distributions
about one-third as wide as those predicted by the
normal energy distribution theory. They pointed out
that the previous agreement between theory and
experiment, which arose because of the limited reso-
lution of the older analyzer, was spurious since the
experimental arrangement actually measures the "total
energy distribution. " This is defined as the number of
electrons emitted whose total energy is in the range E
to E+dE. Very good agreement was finally obtained
between the new measurements and the calculated total
energy distribution, ' almost thirty years after the first
experimental attempts were made.

Fischer' has derived total energy distributions for
field emission from the conduction and valence bands
of a semiconductor. His expression for valence-band
emission is, however, incorrect since he based his calcu-
1ations on a previous derivation by the present author7
for the total valence-band emission current which
needs to be modified. (cf. Sec. 4 and the Appendix where

'E. W. Miiller, Z. Physik 102, 734 (1937).
3 E. W. Muller, Z. Physik 120, 261 (1943); K. W. Muller and

K. Bahadnr, Phys. Rev. 102, 624 (1956).
4 R. D. Young and K. W. Muller, Phys. Rev. 113, 115 (1959).
5 R. D. Young, Phys. Rev. 113, 110 (1959).
s R. Fischer, Phys. Stat. Sol. 2, 1088 (1962); 2, 1466 (1962).
r R. Stratton, Phys. Rev. 125, 67 (1962).
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correct expressions for the total emission current are
given. )

In the present paper general expressions for the total
energy distributions are derived for arbitrary band
structures and internal distribution functions, in mo-
mentum space, for the electrons just outside the semi-
conductor surface. The expressions for conduction-band
emission reduce to those given by Fischer as special
cases (either nondegenerate or degenerate electron gas;
constant effective mass different from the free electron
mass).

As a further extension of the theory, the normal
energy distribution for both conduction and valence
band emission has also been derived. This is of interest
in connection with thin film tunneling. So far, the only
retarding potential experiments on thin film tunneling
have involved emission from aluminum. Kanter and
Feibelman measured the normal energy distribution
of electrons emitted from an Al-A1203-Au sandwich
into vacuum. Here the electrons which tunnel through
the oxide layer emerge into the conduction band of the
oxide and then pass through the conduction band of the
outer or gold metal electrode before being emitted or
captured. Thus, although the tunneling calculation
gives the initial energy distribution, the final energy
distribution of the emitted electrons will generally be
broader and displaced to lower energies because they
suffer collisions, involving energy losses, in the oxide
and base metal electrode. Collins and navies' have
made similar measurements on Al-A1203-Al sandwiches
but involving a small cathode and spherical collector.
They interpret their results on the total energy dis-
tribution entirely in terms of the collision phenomena.

In the next section, the principles involved in deter-
mining energy distributions by means of the retarding
potential analyzer are discussed to bring out the
difhculties in obtaining unambiguous results for semi-
conductors. The calculated results and some of the few
experimental measurements for field emission from
semiconductors that have appeared in the literature are
discussed in the final section.

2. RETARDING POTENTIAL MEASUREMENTS

The total energy distribution of 6eld emitted electrons
can be experimentally determined in a retarding-
potential analyzer. 4 Initially, a hypothetical one-
dimensional plane structure will be assumed since this
greatly simplifies the explanation of the principle
involved in the experiment. Figure 1 shows the electron
potential energy diagram for emission from a metal. A
high field is applied to the surface of the cathode by
means of an anode in the form of a grid. The field
emitted electrons which pass through the grid are then
collected by the collector provided the electrori kinetic

'H. Kanter and W. A. Feibelman, J. Appl. Phys. BB, 3580
(&963).

~ R. E. Collins and L. W. Davies, Appl. Phys. Letters 2, 213
(1963).
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Fro. 1. Schematic electron potential energy diagram for the
retarding potential analyzer with a metal emitter.

energy corresponding to motion in the x direction,
normal to the plane of the collector, exceeds

or
E*=x.+t' V. —

E* 0=—x. V. , —

(1a)

(1b)

where t is the Fermi energy of the cathode, x, is the
work function of the collector, V, is bias (in energy
units) between the cathode and the collector. If i, is
the current collected then

P~ (E,')dE, '

and
P~(E,) = di,/dE—,=di, (dV,

Thus, besides determining the normal energy distri-
bution by means of Eq. (3), the retarding potential
measurement also gives the value of any internal
potential drop V;.

If V. is increased beyond Vc„by E„ the forbidden

gives the normal energy distribution. Thus, P&(E,)
can be determined from the gradient of a plot of i,
versus V,.

For a semiconductor with a clean surface, the electron
potential energy diagram is given by Fig. 2 if the
emission current is sufFiciently weak to permit neglect
of the internal potential drop arising from the bulk
resistivity. An internal potential drop V; has been
assumed which depends on the applied field and the
charge in surface states. Electrons emitted from the
conduction band will be collected if their "x-directed"
energy is in excess of

E.=(x.+l +v,)-v. , (4)

where t q is the bulk Fermi energy of the semiconductor,
measured with respect to the bottom of the conduction
band. The current i, collected will saturate to the value

j, of the total conduction band emission current when
the collector bias is

v..=x.+f ~+v;.
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Fxo. 2. Schematic electron potential energy diagram for the
retarding potential analyzer with a semiconductor emitter having
an internal potential drop V; due to Geld penetration.

P~ (E„,')dE„,'

and
Pv(E„,)=dk„/dE„, =di„(dv, . (9)

If the internal potential drop in the bulk of the
semiconductor cannot be neglected the electron po-
tential energy diagram will have the form shown in
Fig. 3. Here it has been assumed that the semiconductor
is in contact with a metal support and the collector
bias is between the Fermi levels of the support and
collector respectively. The metal-semiconductor work
function is x „.The internal potential drop now has
contributions from three causes, held penetration
(region 1), the bulk resistivity (region 2) and the metal-
semiconductor barrier (region 3). In general, the
boundaries of these regions are not well dehned and
the potential drop must be calculated for the semi-
conductor as a whole. However, in practice, estimates
of the individual contributions may well be fairly good,
particularly if one of them predominates.

The previous Eqs. (4) to (9) are also applicable to
the situation depicted in Fig. 3 if fq is replaced by—x „which is the Fermi energy of the semiconductor
in the vicinity of the metal support. Thus again the
energy distribution and internal potential drop can be
determined. This can be done even if the semiconductor
surface is not clean. The presence of, say, an oxide
layer will, of course, affect the tunnel probability and
thereby the computed energy distribution but the

energy gap, electrons emitted from the top of the
valence band can also be collected. Thus if V. is greater
than

V.,=x +f~+ V,+Eg, (6)

all the electrons emitted from the valence band whose
"x-directed" energy, measured downwards from the
top of the valence band, is less than

E„.= v, —(„,+l,+ v,+E,) = v, —v., (7)

will be collected. If i, is the current collected, then

experiment will still yield the internal potential drop
and the actual energy distribution.

As pointed out in the Introduction, the use of a
pointed field emission cathode in the retarding potential
analyzer actually yields the total energy distribution.
Hence, the "x-directed" energy E, in the previous
equations must be replaced by the total energy E and
Figs. 1, 2, and 3 can be considered to give the electron
potential variation along a line from the base of the
held emission cathode to a point on its tip from which
emission takes place. In general, the diagrams will be
different for different locations of the point on this tip,
i.e., both the internal potential V, and the external
field Ii will vary in a way determined by the cathode-
anode geometry. This is one of the major difhculties in
comparing measured field emission current-voltage
characteristics with calculated current density-field
characteristics. For metals (V,=O) solutions of
Poissons' equation for special geometries have been
obtained which give the field distribution at the tip
equipotential surface and good agreement between
theory and experiment was found for the dependence
of total field emitted current on the voltage applied
between cathode and anode. The solutions can still be
applied for semiconducting cathodes if the resistive
potential dropin the vicirrity of the tip region over which
emission takes place is sufficiently small so that this
portion of the cathode can be considered to have an
equipotential surface.

In a well-constructed retarding-potential analyzer,
only a small portion of the tip surface is used for col-
lection. Thus, even if V; and Ii vary along the surface
of the tip, the experimental energy distribution should
correspond to a definite value of F. However, par-
ticularly in the case of semiconductors, if electrons are
simultaneously collected from various regions of the
surface having different values of V, and Ii, a series of
overlapping energy distributions would lead to a very
wide experimentally observed energy distribution. This
might play a role in some of the experiments reported

xc

BASE CATHODE

ANODE COLLECTOR

FIG. 3. Schematic electron potential energy diagram for the
retarding potential analyzer with a semiconductor emitter having
an internal potential drop V; due to 6eld penetration (region 1),
the bulk resistivity (region 2) and the metal-semiconductor barrier
lregion 3l.
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where very wide distributions were ascribed to ex-
tremely large electron temperatures.

where
E,=E E,—, K=47rmq/h'. (16)

3. ELECTRON EMISSION FROM THE
CONDUCTION BAND

L&, E+dE BE
D(E Er)—

Bp~

Xdp.dp, dp„(12)
where the integral is over the shell in momentum space
lying between energies E and E+dE. (q= charge on the
electron, h=planck's constant. ) This can be rewritten
as

2gP.(E)dE=—f(E)
h3

Pr(E) = (2q/h') f(E) D(E E,)dpydp„—(13)

3.1. Total Energy Distribution —Basic Equations

In this subsection general but rather formal equations
will be derived which give the total energy distribution
for arbitrary band structures and for the whole range of
emission (field to thermionic) processes.

It will be assumed that for specular transmission
through a barrier, depending only on the x coordinate,
the transmission probability depends on the electron
state only through the value of the "x-directed" energy
in the barrier region. Thus, D(E E,) is th—e probability
that an electron of energy E incident on the surface
barrier is transmitted, where

E,=p, '/2m= (p„'+p, ')/2m (10)

and p„, p, are the tangential components of the (con-
served) quasielectron momentum components. This
form of the transmission probability has been shown to
apply for arbitrary band structures when the %KB
approximation can be used to match the Bloch waves. "

The velocity of an electron, normal to the barrier,
in the conduction band is

t),= BE/Bp. . (11)

Thus, if f(E) is the electron distribution function in
momentum space, the total energy distribution is given
by

d L~r (E)/f(E) 3(dE=KD(E) (18)

Thus, if Pr(E) has been measured experiinentally, Eq.
(18) can be used to deduce the transmission probability
if the distribution function is known. Alternatively, if
the transmission probability is known, Eq. (15) can be
used to deduce the distribution function f(E) which
could be of considerable interest for situations where

f(E) differs from the thermal equilibrium distribution
due to high internal Beld effects."

It must be emphasized that Eqs. (14) and (15) are
general and apply to field, thermionic-field (T-F) or
thermionic emission from a conductor of arbitrary
band structure. In the Secs. 3.2 and 3.4 explicit results
will be derived for field and T-F emission for a simple
conduction-band structure.

3.2 Total Energy Distribution-
WKB Approximation

Using the WEB approximation" gives

D(E,) =expL —B(E,)7,
where

B(E~)=2L(2m)" /hj [p(x) E jr dg) 1 (20)

In general, D(E ) will decrease very rapidly if E,
decreases. Thus, if E (E,&p) is sufficiently large the
second integral in Eq. (15) can be neglected and Pr(E)
is completely independent of the conduction band struc
tire. The particular requirements for su%ciently large
shadows will be discussed later; they must satisfy

D (E—E„)((D(E}.

Then also the upper limit E (E,&p) in Eq. (14) and the
lower limit 0 in the first integral in Eq. (15) will not
affect the value of P&. If this situation applies, Eq. (15)
leads to

io(x) is the barrier potential energy, measured with
respect to the conduction band edge and the limits x~

and x2 are the classical turning points.
For subsequent developments the Taylor expansion

for B(E,) about an arbitrary energy h is required. This
can be written as

B(E.) =b(h) —(E*—h) (b)+(E*—h)' (h)+ (21)

where

b(h) =B(8), c(8)= —B'(h), a(h) =B"(8)/2. (22)

where the integration in the p„, p, plane extends over
all values corresponding to the energy surface E, i.e.,
p„and p, are inside the "shadow" of the energy surface
E en a plane perpendicular to the x direction. Intro-
ducing polar coordinates p, and p in the p„, p, plane
and writing E (E, &p) for the maximum value of
E,=Prs/2m for a Particular Polar angle io leads to

f(E) 2w Em(Ey),
Pr(E) =K— d&p D(E E,)dE, (14)—

2x p p

1 2

D(E,)dE, dy- —
27l p

D (E,)dE, , (15)
p

's W. A. Harrison, Phys. Rev. 123, 85 (1961}.

Murphy and Good" have derived the expressions for
the coefIj.cients appropriate to the image force barrier.
General expressions, for potential barriers of arbitrary

"M. I. Elinson, Radiotekhn. i Elektron. 4, 140 (1959).
'~ E. L. Murphy and R. H. Good, Jr., Phys. Rev. 102, 1464

(1956).
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so that the quadratic term in Eq. (21) is less than a/c'
in this range. From Eq. (23)

a/c'= 0.0244 (F/10')/8o" (28)

which will always be considerably less than one. Thus,
carrying out the integration,

e
—b(E)—

P&(E)=Kf(E) 1——
c(F) 2or p

e
—o'E&E d(p (29)

0~i I I I I I I l

O. l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

shape, are given in Ref. 13. By inserting numerical
values of the fundamental constants the expressions
for the image force barrier can be written in the form

b =6.838o"(10'/F) n Q /8)

c= 10.258'"(10'/F)f Q,/8) eV ', (23)

a= 2.56t 8'"(F/10') {1—Q;/8)'}j—
'v(P;/8) eV—',

8=$—8, (24)

Fxo. 4. Dependence of the reduced half-width cb, of the total
energy distribution on ckT for m, /m=1. The numbers labeling
each curve refer to the reduced Fermi energy f/kT.

(30)

The specific band structure of the cathode affects only
the integral which can be neglected when

c(E)E„(E,p )»1, (31)

i.e., a specific form of inequality (17). Since c(E) has a
magnitude of about 40 eV ' only very small" shadows
will affect the energy distribution. This is unlikely to
occur for metals with a large positive Fermi energy but
band structure eGects may be important for semi-
conductors and semimetals.

Fischer has derived Pr(E) for the separate cases of
positive and negative Fermi energies by expanding
b(E,) about the Fermi level and conduction band edge
respectively following Ref. 13. He uses a simplified
version of Eq. (15), based on spherical energy surfaces
with an effective mass orb, = r,re so that E (E,po) is then
equal to r,E. His results can be written in the more
convenient forms

p&(E) —(K/cr)e
—

(bl+olLlf(E)eclE('1 e roolE) (32)—

which gives some idea of their order of magnitude.
Here, e and t are tabulated functions'4 whose magnitude
is near one, P is the electron affinity of the cathode,

p, = 1.2 (F/10')"'(to —1)'"(x+1)—'" (25)

a, (E—t-)'&-,', f.)0

P& (E)—(K/co) e bof (E)coo—E (1—e roooE)—

apE'& —', , {&0,

(33)

(34)

(35)

which can also be derived from Eq. (29). Here ct—=c(t)
and co= c(0), etc. The quantity c(E), which is approxi-
mately equal to ct—2a&(E—{),has been replaced by c&.

The term expL —r,c(E)E] is only of importance if
r,crE&1 when 2ar ~E t ~

r,E& (2ar)"'/—cr which is small

Lcf. inequality (28)]. Similarly, the factor c(E) in the
denominator can be replaced by c& and, for a negative
Fermi energy, c(E) can be replaced by cp. Apart from
the last factor in brackets Eq. (32) is the result first
obtained by Young' for the case of metals.

By differentiating Eq. (32) it can be shown that the
energy distribution peaks at an energy E„which satis-
fies the equation

is the depression of the barrier height due to the image
force, a is the dielectric constant, energies are in eV
and F is in V/cm.

Inserting the expression for D(E ) into Eq. (15) for
Pr(E) gives

e
—b 2m.

provided that the quadratic and higher order terms on
Eq. (21) can be neglected, say

(27)

Since the major contribution to the integral over E
comes from E values near E we choose 8 equal to E.
Then the important range of integration is given by

cr(Eo, {)=—crkT 1nL{(1+—Pr)crkT} ' —1)) t )0, (36)

where

Pz, (E) Kf(E) dq, eo&E. s&dE. , (26)—
27/ p

0&E—E,& 1/c,
"R.Stratton, Phys. Chem. Solids 23, 1177 (1962)."R.E. Burgess, H. Kroemer, and J. M, Houston, Phys. Rev.

90, 515 i1953).

P, =r, (e"'"E —1) ' (37)

and f(E) is the Fermi-Dirac distribution function
corresponding to a temperature T. (It should be
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observed that the conditions for which Eq. (32) applies
will require cikT&1.~" This actually is required to
make Pr(E) decrease for large E so that a peak E„
exists. )

From Eq. (37), Pi decreases from a maximum value
of (ciE„) ' as r, increases from zero. Thus Pi is very
much less than one and can be neglected when

~ct{ cikT I—n{(cikT) ' —1)~))1. (38)

Except for the limiting case where c~kT tends to one
this requires that ct{' be large compared to one. When
Pi can be neglected Eq. (36) is an explicit equation for
E„which shows that as cikT increases from zero,
ci(E„f) dec—reases from zero to a minimum value of
—(e+1) ' at cikT= (1+e) ', then increases to zero
when c&kT= 2 and then tends to in6nity logarithmically
as c~kT approaches one.

Besides determining the location of the peak it is
also of interest to calculate the half-width 6 of the
distribution. Thus, if

—C)
I I f t 1 I . . I

0 0.1 0.2 0.5 0.4 0.5 0.6 0.7 0.8 0.9
CkT

Fio. S. Dependence of the reduced half-width ri/kT of the total
energy distribution on ckT for s4/m=1. The numbers labeling
each curve refer to the reduced Fermi energy f/kT,

~r(Ei.2) = sI'r(Eu) (39)
then

6—E2 E] e (40)

An analytic expression for 6 can only be found in
the limit of zero temperatures when

crA ~ lnL2/(ct+e —'&r)]. (41)

For all other values of the parameters E„and 6 must
be determined numerically. The results of these com-
putations will be discussed after the case of negative
Fermi energies has been treated.

The conditions (20) and (33) for which Eq. (32)
applies have been previously considered~ "in connection
with the calculation of the total emission current for an
image force barrier. Since the latter essentially involves
an integration over the normal energy distribution the
limits must be re-examined for the total energy dis-
tribution. For the case where the band structure term
in Eq. (32) can be neglected it can be shown that
approximately the previous limits on the field, derived
in Ref. 13, are recovered. If the band structure term is
important the inequalities (20) and (33) must be
checked by inserting the numerical values for E& and
E2.

Since Eqs. (32) and (34) have identical analytical
forms, Eq. (36) for E~ applies for the case of negative
Fermi energies with c& replaced by cp. However, it is
more convenient to express the result in the form

r,cpkT
ln 1+ |&0 (42)

r cs 1—cpkT f(E~)
which gives an explicit relation for E„ in the classical
limit when f(E„)«1.(The limiting relation has already
been given by Fischer. ) If this applies, E~ increases
monotonically from kT as cpkT increases from zero.

There is no simple analytical expression for 6 which

applies for any values of the parameters when the
Fermi energy is negative.

It can again be shown that the conditions (20) and
(35) for which Eq. (34) is valid lead to roughly the same
restrictions on the value of P which were previously
derived" for the normal energy distribution.

The peak values E„and half-widths 6 have been
derived for a variety of parameters by means of a
numerical analysis of Eqs. (32) and (34). The results
are given in the form of universal curves in Figs. 4 to 8.
The numbers labeling each curve refer to the reduced
Fermi energy (1/AT). For negative Fermi energies only
the results for (t//AT) ~ —~ have been exhibited since
the curves for (1/AT)= —2 are already close to the
limiting curves. Figure 4 gives the variation for d as a
function of temperature T at a constant field (i.e., c is
constant) for r,= 1. The half-width increases with T for
all values of (1/AT). Actually, for a fixed 1, (f/AT)
decreases as T increases but 6 still increases. For a
more complicated dependence of 1 on T additional
numerical work would be required. Figure 5 (for r, = 1)
gives the variation of 6 as a function of the applied
field Ii at constant T since c is essentially inversely
proportional to P. It is of interest that for fields ex-
ceeding the condition ckT=s (i.e., the usual range in
practice) 6 increases with F for large positive Fermi
energies and decreases with Ii for small positive and
negative Fermi energies. Figure 6 shows the eGect of
diferent effective masses on A. This is most noticeable
for negative Fermi energies at large values of ckT.

The dependence of E„/AT on ckT for r,=1 is given
in Fig. 7. Thus, for T constant, E„decreases as Ii in-
creases and for Ii constant, E„increases as T increases.
The variation of E„with respect to t, is similar to that
of 6, it is appreciable for negative Fermi energies and
large values of AT. This behavior is illustrated by the
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IO—

g =-~, 0, 2, 4, lp

02' 6,

)o.r Fio. 6. Depend-
ence of the reduced
half-width cA of the
total energy distri-
bution on the re-
duced effective mass
m./m for various
values of the reduced
Fermi energy g=I'/
kT and ckT.

or is infinite if no solution to Eq. (47) exists. The latter
will arise if E (E,p) is always greater than E. For a
complicated form of the function E (E, q) there could
be additional ranges of integration corresponding to
more than one solution of Eq. (47). These will generally
lead to small contributions to the integral and can be
neglected.

Carrying out the integration over 8& and inserting
the limits gives

Piv(E, ) =LD(E,) in{1+exp(Q' —E)/k T)}

—(1/2m-) in{1+exp((|—E )/kT) }dy
0

E,&0. (49)

If there are ranges of E for which E (E,y) exceeds E,
negative E, values are possible. Then the lower limit
on E& is given by the smallest positive solution of E .
~q7~ say E&„&and the upper limit is given by the second

q.

smallest solution, say E&„2 or infinity. Thus

LD(E,)

&0.I

I

I.O

I

0,4
I

0.8
I

0 0.2
I

0.6'

mcy

2'
1+exp{O

—E„i)/kT}
X ln d y, E,&0 (50)

1+exp{O
—E„,)/k T}

where E„i E,„i+E„etc.——
3.3 Normal Energy Distribution

Assuming the properties of the transmission proba-
bility outlined in Sec. 3.1 and using Eqs. (10) and (11)
gives

dashed curves in Fig. 7 which correspond to the ex- P~(E,) =
treme value r, ~0 and (I/kT)= —ao, 4, and 10,
respectively.

2g
Piv(E,)dE,= D(E,)—

h3 rl p~

Xdp.dp„dp, . (43)

This is similar to Eq. (12) for P&(E) except for the
region of integration which is now the shell in mo-
mentum space for which the "x-directed" energy is in
the range E„E,+dE, The equation c.an be rewritten
as

D(E ) s~

Prv(E.) =L dq f(E,+E.)d(E,/kT), (44)
271 0

L=47rrisqkT/hs =KkT, (45)

where the E& integration is over all values which satisfy

0~&Ei&~Em(E y):Em(Ei+E, q) (46a)
or

E,~&E,+E,=E~&E (E,q)+E„(—46b)

for a given value of E,. Now E (E,q) is non-negative.
Th sfus for E greater than zero, there will be a range of
integration for E& which extends from 0 to E&„where
E&„either satisfies the relation

l2

lo

7

6

0-
0 O. I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CkT

Ei„—E(Er +E„y)—
+E =E =E (E (p)+E

(47)

(4II)

FIG. 7. Dependence of the reduced energy E„/kT, at which the
total energy distribution has a peak value, on @AT. Pull line
curves; m, /m = 1, dashed curves; m, /m -+ 0.The numbers labeling
each curve are values of the reduced Fermi energy I /kT
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Considering again the example of spherical energy
surfaces in the conduction band,

correspond to the ranges specified by Eqs. (54) and

(56), respectively.
A simple expression for the half-width can only be

derived for the case cikT&(1 when, using Eq. (39), E,i
and E,2 are the solutions of

E,„=E,r, (1 r,)—', E =E,(1—r,) '. (51)

Suppose first that r, is less than one. Then only positive
E, values are possible and the following special forms
of Eq. (49) can be deduced.
If

(64)exp{cio'—E,)}/{cio—E )}= 2e,
so that

1&(({-—E.)/AT&(O. —E.)/AT,

P~ —LD(E,)—(E,/AT)r, (1—r,) i.

1«—(g—E.)/kT, (P E.)/AT- ,

P~ =LD(E,) (i E,)/A—T.

A, =E,2—Egg ——2.45cg '. (65)
(52)

Comparing with Eq. (41) we see that (6,/6) is about
(53) 3.5.

If {&{0(cpkT), P~'(E ) is negative for all positive E,.
(54) But Pv (E,) is positive for all negative E, (if r,)1)

according to Eq. (59). Thus the normal energy dis-
(55) tribution will have a cusp at E»=0 with

1«—({—E„)/AT&(—({ E,)/k T—,

P~=LD(E,) exp~
E AT )

(56)

P~'(0+) =

P~(0) =LD(0)[1+ exp(f( k T)],
LD(0)[—f(0)+cokT 1n(1+er~~r)],

kT

(66)

(67)

)i.—E,(1—r,)
—'~—

—exp~
~

. (57)
AT i

P~'(0 —) =LD(0) f(0)
+cokT in(1+erl" ) . (68)

AT (r,—1)

The intermediate range, Eq. (54), only exists if g'/AT)
))r, '. For negative Fermi energies only the last range,
Eq. (56), exists. If r, =1, E„ is infinity and the band
structure term in Eq. (49) vanishes. This result has
been derived by Muller. ' Only the ranges corresponding
to Eqs. (54) and (56) then apply. If r, is greater than
one, E„is also infinite for positive E, values. However,
negative E, values are then also possible with

leading to

E„i —E,(r,—1)———', E„2—+ oo (58)

E,„={ ci'—if c~kT(&1 (62)

AT In{2(1—cikT)—} if 1—cikT&(1, (63)

replacing c„by c~ following Ref. 12. These equations

(i+E (r, 1) 'i—
P~=LD(E,) ln 1+exp~

AT

E,(0. (59)

Next the location of the peak E,„and half-width of
the normal energy distribution will be considered. The
case r, &1 when E„=~ will be dealt with first. Dif-
ferentiating Eq. (49) gives

[c(E.„)AT)
—'= in[1+exp{ (g—E,„)/AT}]/f(E,„). (60)

[This relation is given in Ref. 12 with c(E~,) replaced
by ci.]The condition that E~,)0 requires

(~oAT) '&»[1+expo/AT)]/f(0) (61)

which puts a lower limit on {,say {o(cokT), for a given
value of cokT. Thus, if {){o

A simple result for the half-width exists only for the
limit f/k T))—1 when L.'. !

A.= kT +- ln2. (69)
1 cok T r,cok—T+ (1—cok T)

For the case r, & 1, E„is finite and given by Eq. (51).
The location of the peak is then given by

f(E")—f(E"[1—r ] ')(1—r.) '

c„kT
ln

1+exp{(P—E.„)/AT) }
1+exp{(f—E,„[1—r,] ')/kT}

(70)

This reduces to Eq. (60) if the band structure terms
are neglected which will be possible for su%ciently large
positive Fermi energies. In the opposite extreme of
classical degeneracy,

E~ 1—r, r, (1 r.)'—
ln 1+

kT 1—cpkT
»1. (71)

kTrc

Thus, E„decreases from kT(1 cokT) ' to zero —as r,
increases from zero to one. (There are no simple results
for 6 in this case.)

For the case r,(1, P~(0) =0 which should be con-
trasted with Eq. (66) for r,)1.This discontinuity seems
unphysical. What actually happens is that as r, tends
to one from below, P~'(0) tends to infinity, the peak
location tends to zero and the maximum value P~(E,~)
tends towards P&(0) given by Eq. (66). Thus there is
a continuous change of shape in the peak of the dis-
tribution from a smooth maximum (r,&1) to a cusp
(r,)1).
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)& $1—exp{ r,fc„2a„—(E E—„)jE}j,—(72)

where
exp{ (E—t-)/kT}»1, (73)

c„kT=L1+P„{1—2 (a„/c„)E,}] '
=L1+P.{1—-',E./(0 —E.)f.'}3-' (74)

and c~—=c(E~) etc. LEq. (84) has been deduced using
Eq. (23) for c(E) and a(E) and. the approximate rela-
tion, e(y)t'(y) =1—y', given by Murphy and Good. 's$

The term involving the factor P„in Eq. (74) can actually
always be neglected, so that

c„kT=1, (74a)

since P„& (c„E~) '
t cf. Eq. (37)$ so that P„&&1 requires

(E„/kT)))1 which is consistent with inequality (73).
For an image force barrier, using Eq. (23) for c(E„),
the "almost" explicit relation

3.4. T-F Emission from the Conduction Band

The necessary criteria for 6eld emission, c~kT&1 if
t )0 and cskT&1 if {&0, will not be obeyed if the
applied field is too low or the temperature is too high.
Equations (32) and (34) are then not applicable since
Pr (E) is still increasing at the greatest value of E for
which they are valid. Another region of approximation
then applies which requires that the quadratic term in
the expansion of b(E) be retained since the peak of the
distribution is now well above either the Fermi level
O')0) or the bottom of the conduction band. Thus,
expanding about the peak of the distribution,

E E
Pr ex——p— b, c„—E, — (1——c,kT)c„kT kT

u, (E —E„)'—

The conditions on F and T for which the T-F region
applies are given in Refs. 12 and 13. In addition, it can
be shown that the cubic term in the expansion for b(E),
neglected in Eq. (72), is small. If the cubic term is
written as l(h) (E h)' —then

l(8) =
0.43L—3f+4tI{1—Q~/8)'} ')—eV ' (78)

i)'"(F/10') {1—(0'/())'}

Thus

0.43 4—3t'

(F/10')()'~' mf4

eV '. (78a)

l„(-,' 6)'= 0.06(F/10') '~' (79)

E„,=p„,'/2m= (p„„'+p„,')/2m, (80)

and E„is minus the electron energy with respect to the
top of the valence band as zero."The sign convention
is such that E, and E„are positive. Further, as E,
increases, the barrier height for tunneling increases,
the argument of D, increases and the magnitude of D,
decreases. This is opposite to the behavior of D(E,)
which increases as E, increases. In fact

D„(E„.)—=D(—E,—E..) . (81)

With this definition of D„ the total energy distri-
bution is given by

and is usually considerably less than one.

4. FIELD EMISSION FROM THE VALENCE BAND

4.1. Total Energy Distribution —Basic Equations

It will again be assumed that for specular trans-
mission, through a one-dimensional barrier, the trans-
mission probability is a function of only the "x-directed"
energy in the barrier region and can be written as
D„(E„+E„,)=D„(E„,) where—

E,= tpL1 —(le/t„)'(cek T)-'j, (75)

where only t„ involves E„on the right hand side, can
be derived.

Substituting into Eq. (72) for c„kT from Eq. (74a),
neglecting the band structure term, gives =Ef„(E„) D„(E„,)dE„,

f (E) sr Eem

Pr (E„)= dy„D, (E,+E„„)dE„
271 0

(82)

P (E) (g/c )er/kTe ap(E Jp~&s. — —

a G-aussian distribution with a half-width

d =2 (ln2)'I'a

This can also be written in the form

(76)

(77)

ceh=f '~'ts(ln2)'~'Q/kT)'I' (7'7a)

for an image force barrier, which shows that 6 is
essentially proportional to F/T't'

The normal energy distribution Lcf. Eq. (49)$ for
the T-F emission range is identical with the total energy
distribution given by Eq. (76) if the band structure
terms can be neglected.

—(1/2~) d q „D(E,.)dE„, , (83)
&e+&e~

where E, (E„,q) is the maximum value of E„,and Ev
is the width of the valence band.

From the form of Eq. (82) it is clear that the major

"In Ref. 7' the tunneling probability was erroneously written
as D, (—E,+E„r)=D, ( E„,). Apart from the fact th—at we now
choose to define D„with a positive argument, the signs in front of
E, and E,z must be the same. As a result, some of the equations
in that paper need modification and the Anal result for the emitted
current density from a filled band must be multiplied by
(1—r,)(1+r,) '. The necessary corrections and more general
results for the emitted current density are given in the Appendix.
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tion to the total energy distribution again

E d d of h b dbe neglected and Pz„(E„' en eE is ni epen e
structure.

4.2. Total Energy Distribution-
WKB Apyroxirnation

Using eth %KB approximation

D„(E„,) = expL —B.(E,.)],
where

(2m)'i'
B,(E„,) =2 fq (x)+E,+E..$'i'dh

Here

= b. (@)+(E-—&.)c.(h.)
+(E--h.)"(h.) (86)

Pr(E„)=Ef,(E.)
c„(E„

2n'

X
2' p

—ce( Ce) Eemp,e (89)

b.(h.)=8(8.), c.(h.)=8'(h„),

E (23) for an image force ba, rrier, if Bare given by q.
is rede6ned as

B„=f+Eg

(82) choosing B„equal to E„,Substituting into Eq, , c o
leads to

e
—be(Ee)

~ y. His result is,~ —oo whenfor the case 1,
ncorrect value ohowever, in e

q e correct expression f«
rror since he use e»

D (E„) in our earlier paper
P (E ) has a peag givenT 5

(92)(r„c„,)
—' ln(1+r~)

th which can be determined from

E)=1 h h
ulations for con uction

This follows since q.eE . 91), wit
sE . 34;withe~ —~, '

panalytical form as Eq.
c are replaced by r„c,p. us,

243 o f o 1to0
r dth f r arbitrary values
1.76 to . as r.
r and half-wi or

derived as for t e case o
he results wi no'll tb t d

here since the case f„(E„)=1is pro a y
important in practice.

4.3. Normal Energy Distnbot~on

'.h the result for con uc
'

uction-bandBy analogy wit e r
emission Lcf. Eq. (44)j

I.
P„(E,.) = D.(E..)—

2'
dq„ f (E„, E„,——

, 9

—(1/2ir) dq „1n(1+ exp ((E„i—1;)/kT)}, (95)

ll values which satisfyh E integration is over all va u

0&~E„,~&E„(E„,p„)=—E„„(E„—E.„„q, .
T

kT)}PN E„,) =LD„(E„,) ln(1+exp((E. ,—1.)/

'(E.)/['(E.)1'&-,'.

s m=rm, Ee~ „q re
~ ~

d b dthe treatment for con uc ion-

top of the vale
Ex anding about the Fermi leve an e
valence band respectively gives

Pr(E.)= (It/c i)f.(E.)c """'"'""'
e

where
E, (E„,~)=E„.

In the limit of a completely1 filled band,

(96)

P~(E..) =ED„(E„.) E..—(2')—' E„id'„. (95a)

5. CONCLUSIONS

surfaces approximationIn the spherical energy sur ac pp

Pir (E„)=KD„(E„,)E„,r„( +r„1 r„—' (95b)

=c,p
' and a half-width equalwhich has a peak at 8„„=c,p an

to 2.45 c„p '.

(90) ts resented in Sec. 3 indicateThe numerical resul p
al -widths os of the total energy is ri

itted from a conduction an

of 02 to 05 dfo ll
ut2kTto7kT orc

d (23)$ i th typi
r valence-band emission eg

are in the range 'of about 3 kT to 1 or

(91)a„oE„2&~~, f„&0,
b(0) and b„i=b,g',—), etc..

I h hh ldb 'tFischer has given a result w ic s o

~.i(E.—1-.)'&-,', f.&0,
—be0—&eEe ] e

—~e &eOEePr(E.)= (&Ic.o)f.(E.)c '"' "'"D c—
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range. The experiments to be described have invariably
led to distributions which are much wider than these
predicted results if T is assumed to be the ambient
temperature. This has led to a description of the results
in terms of the hot electron process. "It should, how-
ever, be observed that limited resolution, bad alignment
and emission from too large a tip area (cf. Sec. 2) will
all lead to spuriously wide distributions; problems that
plagued the early work on tungsten.

The assumption of specular as opposed to diffuse
electron transmission (cf. Sec. 3) should apply rea-
sonably well to clean semiconducting emitters where
the tip surface consists of several Qat regions corre-
sponding to low index crystal planes which join
smoothly. However, as pointed out by Harrison, " the
converse might be the case for thin film tunneling since
measurements of thin film sheet resistance indicate that
electron refI.ection at the surface is predominantly
disuse'7 in many cases although predominantly specular
reflection has also been observed. "

Russell"" measured the total energy distribution
field emitted from a Si tip in a spectrometer said to have
a resolution" "lower than Young and Muller's4 by a
factor three" (i.e., from 0.06 to 0.09 eV). However, the
width of the energy distribution from a tungsten tip
was found to be 0.6 eV; about three times the correct
value as measured by Young and Muller. ' This would
indicate that there are sources of experimental errors in
Russel's equipment other than a relatively low
resolution. [Note added irt proof. Recent calculations (to
be published) have shown that for nonspecular bound-
ary conditions, the integrand in Eq. (16) for Pr(E)
contains an additional factor U(E,pt) =Zp(pt')sr(pt', pt)/
p(pt) where p(pt)=linear density of states for fixed
tangential momentum pt, m(pt', pt) is proportional to
the probability that the diffuse boundaries change pt,

'

to p& and the sum is over the "shadow" of the energy
surface E(p). Under reasonable assumptions for
~(pt', pt), no appreciable effect of the densities of state
on U or on the field emission current should occur. ]

Russell" finds that as the field on the tip is increased
till emission occurs, total energy distributions are found
which are similar to those from tungsten except that
the critical collector bias is greater. In fact, up to a
certain applied voltage, all the electrons emitted
originate from the valence band with a constant internal
potential drop V, and the quantity V,„—x,= (f&+So)
+V, =0.4 eV. Thus, the Fermi level at the surface is
about 0.15 eV below the center of the gap, i.e., a p-type
surface. Although the relevant parameters are not
known, the observed width of the distribution is again
far too wide. As the applied field is increased Russel

' A. G. Zdhan and M. I. Elinson, Radiotekhn. i Elektron. 6,
671 (1961).

"A. H. Wilson, The Theory of Metals (Cambridge University
Press, ¹wYork, 1954), p. 248.' M. S. P. Lucas, Appl. Phys. Letters 4, 73 (1964).

"A. M. Russell, Phys. Rev. Letters 9, 417 (1962).
"A. M. Russell and E. Litov, Appl. Phys. Letters 2, 64 (1963).

finds that V,„(or U;) increases by over 3 V. As pointed
out by Russell, the absence of any emission from the
conduction band indicates that this increase in V;
cannot arise from pure field penetration as shown in
Fig. 2. Russell therefore suggests an IR drop as indi-
cated in Fig. 3. For a constant internal resistance this
would imply that the logarithm of the increase in V; is
a linear function of the reciprocal applied voltage,
assuming the usually observed empirical field emission
relation. An attempt to roughly fit Russell's data in
this way proves unsuccessful in that V; increases much
too fast as the applied voltage increases. Possibly part
of the increase in V; does correspond to field penetration.
(In a private communica, tion, however, Russell has
informed the author that more complete measurements,
involving also total emitted current, tend to verify his
original suggestion that the increase in V; can be
accounted for by an IE drop. )

At still higher voltage, the Si tip fractures and
exposes an irregular, but probably very clean, surface
of the semiconductor. The observed energy distribution
then consists of two separate contributions which
Russell ascribes to emission from the conduction and
valence bands respectively since their peaks are sepa-
rated by an energy equal to the band gap of Si. Actually,
it is the two energies corresponding to the onset of
emission from the bottom of the conduction band and
the top of the valence band which should be separated
by the band gap whereas their measured separation is
only about 0.5 eV. (As pointed out by Russell, part of
this discrepancy may be accounted for by the finite
time constant of the phase sensitive detector employed. )
Further, both the distributions are again far too wide
(about 0.4 and 0.9 eV, respectively) and it does not
seem reasonable that this should result only from the
relatively low resolution.

Zdhan" and his co-workers used a cathode consisting
of a thin layer of SiO& on tungsten, activated with
carbon. Although they claim a resolving power of 0.04
eV for their analyzer, their measured half-width for
tungsten is 0.47 eV which again indicates additional
sources of error. Under the conditions of their experi-
ment (layer thickness of about a micron, high internal
resistivity, low image force barrier height =0.8 eV)
the electron gas in the bulk of the semiconductor is
heated by the internal field (1 5.10' V/cm) and a
considerable portion of the emission is over the top of
the barrier so that the process is more properly called
hot electron thermionic emission. In trying to explain
their observations of distribution widths of up to 4 eV
(!) they predict very high electron temperatures which
in energy units even exceed the barrier height. Such
extreme conditions would require a complete refor-
mulation of their analysis which, as usual, is based on a
spherically symmetrical distribution function in mo-

A. G. Zdhan, M. I. Elinson and V. B. Sandomirskiy, Radio-
tekhn. i Elektron. 7, 630 (1962).
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mentum space for the electrons just inside the surface
of the emitter. Zdhan and his co-workers observe that
the widi;h of the energy distributions increases rapidly
with rising field strength which is qualitatively con-
sistent with a rising electron temperature.

Similar heating of the electron gas occurs in the
experiments by Shcherbakov and Sokol'skaya 3 using
a CdS tip. Their control experiment with a tungsten
tip, while giving a distribution whose shape is still
somewhat different from the correct one, does give
haH-width in substantial agreement with theory. They
observed half-widths which increased as a function of
the internal potential drop up to values of about 2.3
eV. An inexplicable aspect of the results is that even
for a negligible internal potential drop, and presumably
little electron heating, half-widths as large as 0.8 eV
were observed. Also, further increases in the half-widths
occurred before the internal fields were high enough
to lead to changes in the conductivity which was
measured simultaneously.

In summary, the experimental evidence on the high
resistivity semiconductors Si02 and CdS strongly
supports the concept of electron heating in the surface
region due to very intense internal electric fields al-
though detailed explanations of the experimental
results are still outstanding. It must be pointed out
that the hot electron distribution function in mo-
mentum space, just within the semiconductor surface,
differs from that in the interior of the cathode if there
are wide space charge regions. '4 The excessively wide
distributions observed by Russel for Si cannot be
ascribed to electron heating —at least not for the valence-
band emission. Much more experimental work needs to
be done on the high conductivity semiconductors to
clarify the effect of electron heating.

The energy distributions for electrons emitted by
thin film tunneling into vacuum have been measured
by Kanter and Feibelman' (normal distribution,
Al-AlpOs-Au structure) and Collins and Davies' (total
distribution, Al-AlsOs-Al structure). In each case the
emitted distributions had half-widths of about a volt.
Collins and Davies gave an approximate analysis of
their results which was based on electron scattering
processes involving energy loss in the conduction bands
of both the insulator and the counter electrode (Al).
For the part of the calculation involving energy loss in
the conduction band of the insulator they assume that
all the electrons tunnel from the Fermi energy, i.e., the
width of the normal energy distribution for tunneling

"I.L. Sokol'skaya and G. P. Shcherbakov, Fiz. Tverd. Tela
3, 167 (1961) (English transl. : Soviet Phys. —Solid State 3, 120
(1961)j."G. P. Shcherbakov and I. L. Sokol'skaya, Fiz. Tverd. Tela
4, 3526 (1962) LEnglish transl. : Soviet Phys. —Solid State 4, 2581
(1963)]."R.Stratton, Phys. Rev. 126, 2002 (1962).

is assumed small. For a more detailed analysis, the
initial normal energy distribution of electrons that have
tunneled into the conduction band would have to be
considered since this distribution can be about 0.6 eV
wide. (Although the calculations in Secs. 3 and 4 are
based on a parabolic energy momentum relation, the
results should still apply to tunneling through wide gap
insulators if the barrier height is not too large and if the
free electron mass in the barrier region is replaced by
an effective mass, appropriate to the insulator. ")

jv
0

dZ„, ln(1+expL(E„,—l „)/)'pT])

X (D„(E„,)—$1+2„„'(B„,)]D„LE„+Z, (L„,)]}
I'~v —

& l
+ln 1+exp~EuT)

&mv (&V)+EV

D„(E.,)dE„, . (A1)

For the model of spherical energy surfaces we find,
following Sec. 3 in Ref. 7

r, (1+r.)--'j,=Ae "' +e"{Hp( n, p, r))—
(c.pkT)'

—y„Hp( —y,n„p, r))), if v (0 (A2)

jv=A e '»
vr/n„t Hp(n„t, —ri)

Sin (7l nest)

'r
A V]

(1—uv&) g

Hp(y„n. t, -ri)

where

sin(m. n„t) g (&—Vv&vl) y

if t)) 0 (A3)

y„=1+r„, n„p t c„p,)pT, r)——=1,/kT, (A4)

Bo is a slowly varying function dered in Ref. 7 and
where the bars on b„t and nt (or c„t) indicate that the
quantity (pp+Zp+1„) =0», in their deftnitions Lcf. Eq.
(23)] must be replaced by e„&+r„f„, usually an un-

important distinction.

APPENDIX: VALENCE BAND FIELD-EMISSION
CURRENT

The drivation given in Ref. 7 needs to be modified

by replacing D„( E+E,)—by D„(Z„+8„,}wherever it
occurs. Thus in Kq. (11) of Ref. 7, the sign in front of

and E„'must be changed and a minus sign placed
in front of the whole expression for the current density

jv) VlZ.
p


