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Ionized Impurity Scattering in Degenerate Many-Valley Semiconductors*
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A theoretical study is presented of the scattering by ionized impurities of conduction electrons in some
III—V compounds. In particular, we consider a degenerate material whose conduction band possesses an ab-
solute minimum at the center F of the Brillouin zone having a small eRective mass and subsidiary minima
near the points L. As the carrier concentration increases, the screening length decreases abruptly when the
Fermi level reaches the bottom of the subsidiary minima. This eRect is dominant despite the onset of inter-
valley scattering. Thus, the lifetime of the electrons in the central minimum exhibits a sharp increase when
the secondary minima begin to 6ll up. This result accounts for the increase in amplitude of the Shubnikov-de
Haas eRect in GaSb with increasing carrier concentration.

I. INTRODUCTION

HE present study was motivated by experimental
work on the Hall mobility' ' and on the

Shubnikov-de Haas4 effect in Te-doped GaSb. In
degenerate samples at low temperatures as the concen-
tration of electrons in the conduction band is increased
past a critical value e,=1.25)&10" cm ', the Hall
mobility and the amplitude of the Shubnikov-de Haas
oscillations exhibit abrupt increases. In the present
work we shall take the band structure of GaSb to be
that described by Becker et al. ' The features of the
conduction band which are pertinent to our purposes
are schematized in Fig. 1.The absolute minimum occurs
at the center of the Brillouin zone and is characterized
by an isotropic effective mass srts ——0.052nt. (Here, m is
the free-electron mass. ) Subsidiary minima are located
along the (1117directions at the Brillouin zone bound-
aries and lie at an energy E,=0.08 eV above the
absolute minimum. These four minima have ellipsoidal
effective-mass tensors and a density of states effective
mass m&= 17.3@so. To avoid unnecessary complications,
we shall assume an electron in one of these minima to
have a spherical effective mass m1=4 '~'m~=6. 87mo.
Because of this large ratio of effective masses, the
transport properties are primarily those of the lighter
electrons in the central valley.

Scattering of the conduction electrons is, in degen-
erate samples and at low temperatures, dominated by

the ionized impurities. Ionized impurity scattering has
been discussed by several authors. ' It is known that
when the carriers are degenerate, the Coulomb inter-
action ze'/~r of an electron with an impurity of charge ze

embedded in a medium of dielectric constant A: is
modified by the dynamical readjustment of the electron
distribution and becomes approximately (ze'/Itr)
exp( —r/X ).DHere the Debye screening length XD is
given by ) D

' 4sre'g(i——)/n, where g8') is the density of
electron states per unit volume and per unit energy
evaluated at the Fermi level 1 We sha. ll show that,
when the band structure of Fig. 1 is adequately taken
into account in treating this screening, the seemingly
anomalous behavior referred to above is found to be,
in fact, quite normal. As the carrier concentration is
increased through a small range about e, and the subsid-
iary valleys are populated, the screening length
plummets and, despite the onset of intervalley scatter-

Ec

FIG. 1. Conduction band model. The parameter values assumed
for GaSb are: E,=0.08 eV, n, =1.25X10' cm, m0 ——0.052 m,
m1 ——6.87m0 ——0.36 m, (kL,/k, ) =26.9.
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ing, leads to an increase in the lifetime and mobility of
the light electrons. The relevant data for GaSb are
accounted for.

The immediate theoretical task, to which we address
ourselves in this paper, is to treat the scattering by
ionized impurities of the light-mass central-valley
electrons of the model conduction band of Fig. 1. We
forgo a full many-body treatment such as that, for
example, of Langer. ' For simplicity we calculate the
lifetime but not the mobility of these electrons, and
moreover use the Born approximation. We emphasize
that the lifetime we calculate in this paper is not to be
identified with the relaxation time that appears in the
mobility. The latter must take into account the fact
that relaxation of the momentum of the charge carriers
is more effectively accomplished by large-angle scatter-
ing than by small-angle scattering. However, the
collision broadening of the Schubnikov-de Haas oscilla-
tions is a function of the lifetime, as discussed in Sec.
III. The relaxation time and lifetime are comparable in
magnitude and have similar dependence on carrier
concentration. The matrix elements of the scattering
potential are obtained by using the wave number-
dependent dielectric function within the self-consistent
field approximation. This is done in Sec. II. A numerical
application of the results of Sec. II to the case of GaSb
is the object of Sec. III. The erst Born approximation is
valid here under conditions which differ from those
ordinarily encountered in metals. This question will be
the subject of a future publication. The theory to be
developed is rather general. It is applicable as it stands
to several III—V compounds besides GaSb, and addi-
tional or different sets of valleys (e.g. , along L1001
directions) can be included with modest effort. It is
also clear that so marked a change in screening with
carrier density as we find should a8ect properties other
than those we shall discuss here.

II. THEORY

We wish to study the scattering of electrons by a set
of E; impurity centers per unit volume distributed at
random. We shall assume these centers to be ionized
donors of charge se relative to that of the host ions
replaced. In the absence of screening by the conduction
electrons the potential energy of one electron in the
Coulomb field of the donors would be

We shall refer to V(r) as the bare Coulomb interaction
with a donor. In Eq. (1), K is the dielectric constant of
the host crystal, R„ is the position of the vth impurity
ion, and 0 is the volume of the crystal. In subsequent
development we shall need to know the matrix elements
of V(r) for the wave functions which characterize the

' J. S. Langer, Phys. Rev. 120, 714 (1960); 124, 1003 (1961).

where V(q) is the Fourier transform of V(r) defined by

V(q) =— d'r exp( —sq r) V(r) =—
0

47t.re'

The index j is a label for the different valleys; j=0
designates a state in the main minimum, and j= 1,2,3,4
designates states in the different subsidiary minima. If
we regard the energy as a multivalued function of k in
the reduced zone, we remark that the subsidiary minima
all belong to the same sheet of the energy surface. The
results of this paper do not depend on whether the
central minimum does or does not lie on the same sheet
as do the secondary minima. We shall at first take the
matrix elements of exp(iq r) to be

and

with

&jk'I exp(sq'r)
I
jk&= ~~', ~+s

(jk'I exp(sq r) IOk)= 5&,&~sM,

M= drN*; ~+s(r)us~(r) = dru*, (r)us(r) . (6)

Strictly speaking, the matrix elements in Eqs. (4) and
(5) are nonvanishing whenever k' —k —q is either zero
or a finite vector of the reciprocal lattice. The modifica-
tion of our results stemming from the inclusion of
Umklapp processes will be made at the end of this
section. The region of integration in Eq. (6) is the
volume Qo of the primitive cell. We have taken the Bloch
state

I jk) to be normalized to unity over the volume of
the crystal and its periodic part I,& to be normalized in
the primitive cell. As indicated, the n, ~(r) are to be
approximated by the periodic functions at the minima.
Another matrix element which arises is that associated
with transitions between two different subsidiary
minima (j'A j/0). However, we shall see later that we
need not concern ourselves with its value. For the
purpose of references, we shall designate all such matrix
elements by the symbol M'. We remark that for j/0
and q small there are k for which the k' required by
Eq. (4) lie outside the first Brillouin zone, and that
these would in a strict reduced zone scheme be counted
among the U processes. In these transitions, k and k'
belong to the same subsidiary valley but to halves
separated in the reduced zone scheme by a reciprocal
lattice vector. We shall here count such as E processes,
in effect using a repeated zone scheme~ and taking care
not to double count in sums over valley indices.

Calculations of the energy band structure of GaSb

7 J. M. Ziman, E+lectzoms and Phonons (Oxford University Press,
New York, 1960), p. 182.

stationary states of electrons in the conduction band
of our model. They will be written

&j'k'I V(r)
I
jk&=Z V(q)&j'k'I exp(sq r) I jk&, (2)



IONIZED IMPURITY SCATTERING

are nonexistent at the present time. Thus we are not
in a position to obtain a numerical value for either M
or M'. However, band calculations for III—V compounds
exhibiting a band structure similar to that of GaSb are
available. ' From the results of this reference we find
that for all III—V compounds having subsidiary minima
in the $111jdirection

i
M i' is of the order of 0.5. The

corresponding values of
i
M'i' are smaller. A summary

of estimates is given in Table I.
The consequence of the screening provided by the

conduction electrons is that the Fourier component of
the screened potential U, (q) for a process that involves
a change in the crystal momentum in the amount q is
given by the relation

U. (q) =
U (q) 4zse2

P exp( —iq R„) (7)
i~Qq'«(q) =i

1—x' 1+x
p(x) =——',+- —ln

4x 1—x
(10)

and, if t is the Fermi energy measured from the bottom
of the main minimum, ko and k~ are the radii of the

' F. Bassani and M. Yoshimine, Phys. Rev. 130, 20 (1963).
' D. Pines, The Many-Body Problem (W. A. Benjamin, Inc. ,

New Vork, 1961}."J. I.indhard, Kgl. Danske Videnskab, Selskab, Mat. Fys.
Medd. 8, {1954).

where «(q) is the static dielectric function. ' Within the
framework of the random-phase approximation

4ire' fo(&,'~ )—fo(&i~)
«(q) =1-

Qq2 jkj'k

X
i
(j'k'i exp(iq. r) i jk) i'. (8)

The function «(q) can be decomposed into several sums
over pairs of states. The first two sums are over pairs
in which both members come from the same minimum
(i.e., j'= j). Each of these terms yields a contribution
to «(q) which is of the form of the dielectric constant
for a single spherical band obtained by Iindhard. "
There are also sums involving transitions between the
different subsidiary valleys in the conduction band.
Such terms are also of this form, except that they
correspond to a change in a crystal momentum equal
to the distance in k space between two subsidiary
minima. These contributions are negligible as compared
to the previous ones. The remaining sums involve pairs,
one member of which is to be found in the main mini-
mum while the other is in one of the subsidiary minima.
The details of this calculation are relegated to Appendix
A. We find that for intravalley scattering within the
main minimum an accurate approximation is

«(q) = 1+ (4e'/irish'q')

X {mokop (q/2ko)+4mikip(q/2k') }, (9)
where

TABLE I. Matrix elements Af for some III—V compounds. '

g ~.2
Material P'(0) 3f /cV f'

BN —2.87 1.11 1.08 0.507—0.538i 0.546
SiC —2.44 1.11 1.06 —0.531+0.475' 0.508
AlP —2.0 1.19 1..05 —0.313—0.697i 0.584

a V(0) is the space average of the crystal potential in Ry. The c; are the
coefFicients of symmetrized plane waves in conduction band wave functions
after orthogonalization to the core states. The values of M listed were
computed by retaining only the plane wave part of the conduction wave
functions. Since, as indicated by the values of Z cP, core states contribute
only about 10% of the normalization, this is adequate for our purposes.
For details, see Ref. 8.

pieces of the Fermi surface in the central and subsidiary
valleys, respectively. We have

k, = (2m, {-/k')'i',

k, = L2m, (t —E,)/k'J&' if {-)E,
if {(E,.

(11a)

(11b)

It is convenient to define a critical wave vector k, by

E,= (k'k, '/2mo)—, (12)

The critical concentration e, is that for which {= E,.
The crystal momentum transfers q for intravalley
scattering are of the order of k, which will in general be
very small compared to the distance in reciprocal space
s=—

i s;i from the central minimum to the jth subsidiary
minimum. For GaSb, k, =3.3 &(10' cm ' while
s=8.9+10~ cm '. For intervalley scattering from the
central valley to one of the secondary valleys it is
sufEcient to take «(q)=1. In fact, for GaSb, «(s, )
differs from unity by approximately 3)&10 '.

The calculation of the lifetime is straightforward and
is outhned in Appendix B. The lifetime r(k) of an
electron in state

i O, k) at the Fermi surface is given by:

k,o= (4e'/iri~Pi') (moko+ 4mAi). (14)

In Fig. 2 we exhibit a plot of k, as a function of the
carrier concentration ri for the mass ratio (mi/mo)=6.87. This plot is independent of the values of E, and
e,. We note that the rate of increase of k, with m is
infinite at ri= ri, and from Eq. (14) that the larger the

1 8irlV'(seo o mo»o qdq 4

+P 2iMi'm,
r(k) A' k o ko o t q'«(q)]

L(mi/mo) (ko' —k') j'"
X . (13)

Ci s;—kl' —(m /mo) (ko —k:)y
To the extent to which we can neglect k, 0(k, ) as
compared to s the lifetime becomes isotropic. The
integral in Eq. (13) can be evaluated analytically if we
adopt the Thomas-Fermi approximation to «(q), which
consists of replacing p(x) by unity. In this approxima-
tion the Thomas-Fermi screening constant k.= (1/XD)
is given by
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6.0

5.0—

functions" implies

up+h(r) = exp( —ih r)u), (r) . (18)

4.0—

2.0—

1.0

0 1 I I I I I

1.0 2.0 3.0 4.0 5.0 6.0
n/n,

number of secondary minima and the mass ratio, the
larger is the total change in k, .

Making the Fermi- Thomas approximation and
neglecting (kp/s) we have

~k, 4

r(kp) rp(kp) 4 s

FzG. 2. Fermi-Thomas screening vector k, divided by its value
k, , at the critical density n„calculated from Eq. (14) for the mass
ratio (2)2)/2)2p) =6.87.

All appearances of U processes in Eq. (8) are in matrix
elements associated with large crystal momentum
transfers q. Since these make negligible contributions
to the screening, the dielectric function e(q) is, for the
purposes of this paper, quite unaffected by U processes.

We now take up the matrix elements LEq. (2)j of
the bare interaction for initial states k lying in the
central valley. For intr avalley transitions the U
processes may be ignored because the integral in
Eq. (17) is (0.1) or less and V(q)/e(q) decreases with
increasing q. For an intervalley transition to k' near s;
we must include in the sum over q of Eq. (2) both
k' —k=s, and the Umklapp k' —k —2s, =—s, . Since k.
is small compared to s, we have

V(k' —k) = V(k' —k —2s,) = V (s) .

The matrix element of exp (iq r) for the direct transition
is just Eq. (5). In the integral of Eq. (17) for the U
processes we use Eq. (18) and the fact that, since the
Bloch function is real at a minimum, u, ,'(r) =u, ,(r).
We then have

where

k '-
yn ) ')'p

X 1+4 —
~

I
1—~, (»)

k, )

d'ru'), . 2„.(r)ua(r)

d'ru* „(r)up(r) == M*. (19)

d'r exp( —2is,"r)u*& (r)u), (r) =

rpl. kp)

mo&o16m-.V, se' '

a kg (k,s+4kps)
Accordingly, neglecting k, as compared to s, the ma trix
element Eq. (2) for intervalley scattering is

r, (k,) is the lifetime which would obtain if intervalley
scattering to the subsidiary minima were neglected. "

In treating the U processes it is convenient to regard
the central and subsidiary minima as belonging to the
same sheet of the reduced zone energy surface, as is the
result of band calculations, and to suppress valley
indices. We then have

(k'~ exp(iq r) ~k)=5a.+p ),+p d'r
Qp

Xexp(ih. r)uk. *(r)u), (r), (17)

r(k)

82r,V, (se' '
r)rp '"P

qdq —+P 8(ReM)s~,
kp p Cq'e(q)j'

L(r)rr/mp) (kpP —k ')]))'

[~s;—kI' —(~,/~, )(k, —k, )j

(j,k'~ V~0,k)= (~+~*)V(~)=2(ReM) V(s). (20)

Consequently, Eq. (13) and Eq. (15) are to be replaced
by

)k,q'
where h is any reciprocal lattice vector. It is also useful
to note that the periodicity in k space of the Bloch r(kp) rp(kp) &si

' In the same approximation, the mobility is readily found to be

2(»(I+X ') —(I+X) ')

where y=—(k, /2k0)'. See, e.g. , N. F. Mott and H. Jones, The Theory
of the Properties of 3EIetals arid Alloys (Clarendon Press, Oxford,
1936), p. 294. An exact calculation shows that the behavior of the
mobility as a function of carrier concentration is qualitatively the
same as for the lifetime. However, for the parameters appropriate
to GaSb (see Fig. 1) the mobility increases by a factor of 2 in
the range 1&(22/22, ) &3 while the corresponding change in the
lifetime is by a factor of nearly 10.

kp)l' (mr '~'

X 1+4(—I I

—') )—(
" ~, (22)

respectively. Reference to Table I shows that for the
III—V compounds inclusion of U processes increases the
intervalley scattering rate to about twice that due to

"G. H. Wannier, Elements of SoLid State Theory (Cambridge
University Press, New York, 1959), pp, 144—148.
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S processes alone. In striking contrast, the intervalley
scattering rate for elemental group IV semiconductors
becomes exactly zero. This happens by reason of
symmetry since in the diamond lattice the relevant
conduction band states, at I' and L, have opposite
parity under inversion and the impurity scattering
potential used here is spherically symmetric.

III. NUMERICAL RESULTS FOR GaSb

In this section we present the results of numerical
calculations for GaSb. In Fig. 3 we show the scattering
rate divided by its value (1/r, ) at the critical density
as a function of carrier density. Values were obtained
from Eq. (21), taking z=+1, ReM=0. 5, neglecting

(ko/s) as compared to unity, and choosing s=15.9 for
computational convenience since an accurate value is
not known. The contribution of intervalley scattering
to the transition rate increases rapidly with increasing
carrier concentration. However, even at the greatest
concentrations considered (namely, n = 5.66m, ) the
intervalley contribution to the scattering rate is less
than 1'%%u~ of the total. This fact is essential for the
validity of our simple treatment, since otherwise we

should have to take explicit account of virtual transi-
tions within the subsidiary valleys and it is doubtful
that these can be treated adequately by the Born
approximation. As the carrier concentration is increased
from e, to 1.42m„ the lifetime for electrons in the central
valley increases by a factor of about 6. The amplitude
A of the Shubnikov-de Haas oscillations is proportional
to exp( —27r/oo, r), where oo, is the cyclotron frequency
of the electrons in the central valley. This damping of
the oscillations can be interpreted as arising from
broadening of the Landau levels by collisions, and
hence the (1/r) appropriate here is the total rate of
transition out of a state, without regard to momentum
transfer. We have implicitly assumed that it is sufhcient
to calculate this rate in zero magnetic Beld. If ionized

impurities were to provide the sole scattering mech-

anism, then, at a magnetic field of 3&&104 G, 3 would

increase by a factor of 113 as e increases from e, to
1.42m, . However, this factor would be reduced if not
all the Te in solution gives rise to ionized donor centers.
Suppose that the fraction 0, of all Te atoms in solution
which is ionized and the total cross section 0„ for
scattering by a neutral impurity were independent of
concentration. Then the ratio LA (rz)/A (n,)7 of ampli-
tudes at carrier concentrations e and e, would be

A (n) = exp 1—
A (rr, ) oo,r, r (ko)

-'
2or(1 —rr)ho.

+exp (kox —k.rr.)
mcnSSo

I.O—

0.9—

0.8—

0.7—

1
o.s—

O

0.5—

0.4—

0.5—

0.2—

O. I

I I I I I I I I I I I

0 0.5 1.0 l.5 2.0 2.5 3.0 5.5 4.0 4.5 5.0 5.5 6.0
n/n„

FIG. 3. Ionized impurity scattering rate L1/r(ko) j divided
by its value (1/r, ) at the critical density.

APPENDIX A

The dielectric function (8) can be calculated in a
straightforward but tedious way. Let us define

fo(&,'~ )—fo(&;s)
S;; (q)=Q

kk ppkr —p&k

Then,
X~(j'k'~ exp(iq r)~ jk)~'. (A1)

4xe2 4

Kg'
2

exponential is for n&n, always less than unity and
decreases with increasing n. From this we see that
examination of A(e) as a function of rz at constant
magnetic field and temperature can, in principle, yield
information on the neutral impurity scattering and
degree of ionization of elements such as Te and Se in
GaSb. It does not seem possible to pursue this point
theoretically at present.
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The first exponential arises from ionized impurity
scat tering and increases with e, while the second
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and

BZ]k1 ( q
S (q)= ——

pl
&2k,

One can easily show that

k
Soo(q) = —

p
a 2k,i ' (A3)

(A4)

parentheses in Eq. (A2). This yields the approximate
result given in Eq. (9) of the text.

The second case of interest is that in which q~s, for
some j.The term SQ, contains large contributions which
cancel each other while So, (with j A j) gives rise to
contributions of the order of 3)&10 ' to the dielectric
function. Thus, in this region o(q) = 1.

mgkg
S,,'(q) = — p(l q+s;—s; I/2k&),

~2A2
(AS)

with jN j'NO. The quantity So;(q) presents some
difhculty because of the presence in the denominators
of the diGerence of the kinetic energies of two electron
states possessing di6erent eBective masses. We obtain
the following result:

APPjEBDIX 3
The calculation of the lifetime is carried out within

the framework of the Born approximation. We use the
relation

=Z (2-/»l(j, l+qlU. () iO,»I'
r (k)

X~PEi , &,+o E'o, &
]—. (81)

5SQk]

S»(q) =—
~2/2 gi

{E ~'&p(E„& &/k, )+E & &p(~E & &j/k, ))

Here we have used the symbols

q;= /q
—s;J,

E~U&=q, L1—(mo/m, )j-'~{q L1—(t o/mi)g-'
—L'1 —(ttzo/ttz&)g 'Lqto —(2moE, /k') j)'~', (A8)

(A/)
1 8trÃ, mo(se' ' "

qdq

r'(k) k'k 5 a o Lq'e (q)]'

The contribution arising from intervalley scattering is

The matrix elements involved are replaced by the
approximate expressions in Eqs. (4) and (S) of the
text. The sum over j extends over all the valleys
including the central one. One can then separate the

SS]kQ contribution into two sums. The first takes into account
+ {k+&'&p(k+&"/ko) —k &'&p(k &"/ko)}. (A6) of intravalley scattering within the central minimum

x A'q; and the second considers the intervalley scattering
from the central valley to the subsidiary minima. The
intravalley scattering contribution to r '(k) is

ttoo

k &'&=aq,I
%ttt &

—tÃo

1 SxlV, st,' ' mg

r" (lr) 8—
2+ qdq

, , %3)'-
I q"(q)j'

mo ) o tÃo ( 2tto&E,

] q,'+ . (A9) where
& tw J

—t&1oI 1S] m o k —1 j2

(34)q~= ~s;—k~ ~ —(k' —k,o)
If

( q~&&~s, ~, both k~"& and E~&'& become approxi- —SZQ

mately independent of j. Since for ordinary circum-
stances k+&J& and E~&'& are much larger than ko and k, If we now consider that when

~ q) )s, (, e(q) =1, we

we can neglect the third and fourth terms in the obtain the result given in Eq. (13) of the text.


