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Using the formalism of the preceding paper, detailed numerical calculations are performed for the line

shapes of paramagnetic resonances of chromium in ruby. Not only half-widths and intensities, but the fine

details of the line shapes are accounted for, over a concentration range of about 0.01% to I'Po. In particular
it is found that (1) the dipolar line departs only slightly from the Lorentzian at the highest attainable concen-

trations, (2) the line is predominantly nondipolar at low concentrations, (3) no inference is possible from mo-

inents as to the magnitude or parametric behavior of intensities and half-widths, (4) neither exchange nor
clustering of impurities affect the line shape at low concentrations, (5) exchange cannot narrow the (-,', -s)
transition. Various explanations for the observed residual width at vanishing concentrations are discussed in
the light of these findings.

I. INTRODUCTION
' 'N this paper we analyze the line shapes of the micro-
~ - wave transitions of Cr'+ in ruby, in terms of the
statistical theory of spin-spin interactions which we
have previously developed. ' Ruby gives considerable
scope to the application of the theory, because, in addi-
tion to Cr-Cr dipole interaction, strong and fairly long-
range exchange interaction is known to be present, ' as
well as interactions with the paramagnetic aluminum
nuclei. Furthermore, the line shapes and intensities
have been extensively studied experimentally, and have
resisted interpretation on the basis of moments. '

Following our previous method, we first solve the
two-body problem in Sec. II. We can then immediately
calculate as many moments as we please, and we
illustrate the procedure in Sec. III. In Sec. IV we calcu-
late the line shapes in detail. In Sec. V we consider more
specifically the eRects of near-neighbor interactions,
both dipolar and exchange. Finally, in Sec. VI, we oKer
some comments on the "residual" width, that is, the
line shape that one obtains in the limit of vanishing
concentrations.

II. THE TWO-BODY PROBLEM

The pair Hamiltonian is

X=gPH (Si+S,)—D(S,,s+5, '—-'Sts —-'Sss)

gsp'- (r S,)(r S,)-
+J,.hSi. Ss+- Si Ss—3

The terms have the same meaning as the corresponding
terms of Eq. (1) in Ref. 1. The g value is g„=1.9840,
g&=1.9867.4' The crystal field parameter D has the
value 5.75 kMc/sec. ' The energy levels of the corre-

sponding single-particle Hamiltonian have been derived
in detail by Davis and Strandberg~ and by Schulz-
DuBois. '

We choose the crystal axis as the quantization axis.
To avoid the necessity of numerical diagonalization at
this early stage, we take 8=H, .

When J, ,h&D, we use a representation in which

Si Ss is diagonal, with wave functions and matrix ele-

ments defined in Eqs. (2) and (3) of Ref. 1. The zeroth-
order pair matrix consists of four diagonal blocks,
corresponding to J= S,+S,=3, 2, 1, 0. The off-diagonal
crystal field terms connect only states differing by
several multiples of J, ,h. We treat both the crystal
field and the dipole interaction in first order. In this
coupled scheme, some of the allowed transitions have
frequencies which in first order coincide with those of
the main ruby line. Specifically, for J=3 and M=3 ~
M=2, AE=gPH —2D;for J=3andM= —2 —+M= —3,
DE= gPH+2D; for 7=2, all transitions have hE= gPIZ.

In Table I, we list these transitions according to the
following notation: Transition probability= g; first-
order dipole perturbation= q g'p'(3 cos'0 —1)/r'.

When J, ,h&D, the representation is defined by
Eqs. (5) and (6) of Ref. 1, in which the crystal term is

diagonal, and in which the pair matrix breaks up into
completely unconnected blocks of even and odd linear
combinations of single-particle states. All allowed
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TABLE I. Pair transitions (coupled scheme). TABIE III. Moments for ruby lines, I=0.1%.

DE =gPH+2D
g q

3/2 9/4

hE =- gPH

1 —9/4
3/2 —3/4
3/2 3/4

1 9/4

DE=gPH —2D

3/2 —9/4 —0.6—0.0571425-0.0285725—0.0051940834-0.001412215

0 509 X108
0

0.648 X10»
0

0.2555 X10»

225.2
0

897
0

1716

(k, —k)

v ' t' )'/

0.433 X10 8

0.299 X10»
0.599 X10'5
0.2016 X10'9
0.2455 X1028

(Mm)1 /m

208
284
880

1150
1699

Table III, we tabulate a, V ', and (s& )'~ up to
m=6, for the (-', ,

——,') and (-,',—,') transitions. We tak. e
xs=0.048988 A ', or r =s2.73 A. The concentration is
taken as 0.1%%uq. For other concentrations rs, the moments
can be obtained to first order in e by multiplying the
tabulated values by (0.001/e)™.The (rom)™are given
in megacycles.

Ke notice that the moment series shows no sign of
convergence, at least, as far as the sixth moment. A con-
struction of the line from its moments is clearly im-
practical in this case. Ke also note the existence of odd
moments for the (ss, s) transition.

It is of some interest to compare our moments with
those obtained by the usual methods. According to
Van Uleck, "the second moment is given by

transitions now have frequencies corresponding to
some single-particle transition. In Table II, we tabu-
late these transitions, according to the notation: Transi-
tion probability=g, first-order dipole perturbation=
q g'P'(3 cos'8 —1)/r', first-order exchange perturba-
tion=t J, ,I,. tA'e notice that 6 pair transitions are
clustered around each of the single-particle transitions.

The complete Hamiltonian matrices, as well as a
tabulation of the dipole perturbations for the first 16
neighbor shells, can be found in Ref. 9.

III. MOMENTS

Moments of any order are immediately accessible
once the q's and g's of the two-body problem are known.
They are given by Eqs. (47), (67), and (64) of Ref. 1.
We recall LEq. (47)] that the moments (~ ) have
leading terms —et/' ', where e is the molar spin con-
centration and, according to Eqs. (6"/) and (64)
Ref. 1,

(4)(ce') =N(g'p'/h')g r, s '(3 COS'8;A —1)'n,

Vm'= (8v/9xpv)m!a (g p xs/Il) p g;q, m/Q g;,
(uP) =n (167rxs/15v) (g'P'/gati') n

This is to be compared with Eq. (68) of Ref. 1.

of
where n=81/32 for the (-', , —sr) transition and 69/32
for the (ss, —,') transition. ' If we replace the lattice sum

(2) by an integral from rs to ~, Eq. (4) becomes

( A 3P
Using the g; and q; of Table II, we obtain for the ratioy 3A—k5' ! . (3)

of the j sums the values 81/32 and 69/32, in exact

TABLE II. Pair transitions (uncoupled scheme).

5E=gPli —2D
g q t

3/2 —9/4 0
3/4 3/2 -3/2
3/2 1/4 2
3/4 -1/2 -5/2
3/4 3/2 —3/2
3/4 3/2 3/2

AE= gPH
g q t

1 —3/4 3
1 3/4 —3
2 —3/2 —3/2
2 3/2 3/2
1 —9/4 0
1 9/4 0

aE= gPH+2D
g q

3/2 9/4 0
3/4 —3/2 3/2
3/2 —1/4 —2
3/4 1/2 5/2
3/4 —3/2 3/2
3/4 —3/2 —3/2

The quantity xo '~'=ra= effective nearest-neighbor dis-
(m&

tance, v is the average volume per lattice site, and
~

&
~

l, k&
denotes a binomial coefficient. The j sum runs over
those pair transitions which have a common transition
frequency if one neglects the dipole perturbation. In
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FIG. 1. Fourier transform (magnitude).

"J.H. Van Vleck, Phys. Rev. 74, 1168 (1948).
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Fio. 2. Fourier transform (angle).
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agreement with the results derived by Manenkov and
Prokhorov.

We have not investigated the coincidence of our
method and Van Vleck's for higher moments.

IV. CALCULATION OF THE LINE SHAPE

The physical line shape is a composite e6ect of the
mutual interaction of the Cr'+ ions through dipole 6elds
and through exchange forces and of their interaction
with ions in the host lattice. From a computational
point of view, we can think of two contributions to the
Cr-Cr interactions —one from near neighbors whose
positions must be taken into account exactly, and one
from distant neighbors whose positions can be approxi-
mated by a continuous distribution. We first discuss
the line shape derived on the basis of Cr-Cr dipole
interaction only, assuming a continuous dipole dis-
tribution with inner cutoff radius rp. Then we amalga-
mate the "inhomogeneous" portion of the line, arising
from interactions with the host lattice. Finally, we take
into account the contribution, both dipolar and ex-
change, from those neighbors which must be handled
by a discrete sum.

From Ref. 1, the line shape I(&u) is the Fourier trans-
form of the relaxation function exp( —NV'), where

V'(p) = lattice sum++ C,V, (p)/t' P g; . (7)

derivatives at the origin in p space, are large; the asym-
metry in ~ space, though heavily weighting the mo-
ments because it occurs in the far wings, will for that
very reason be scarcely observable.

The results of inverting transforms such as shown in
Figs. 1 and 2 are summarized in Figs. 3—7.
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FIG. 3.Continuous distribution —(sr, —~~) transition —peak absorp-
tion (arbitrary units) versus concentration (mole fraction).

The j sum has the same significance as in Eq. (2), and.
the V; can be conveniently calculated from expansions
given in part I, Eqs. (62)—(64). V' will, in general, be
complex, with a symmetric real part and an antisym-
metric imaginary part. For the 6rst step of the computa-
tion, we omit the lattice sum in Eq. (7). In Figs. 1 and
2, we show the magnitude and angle of the complex
transform, calculated for the (ss, —,') transition, a con-
centration ted=0.05%, and rs 6.3 A. The——magnitude
of the transform is almost an exponential of the form
exp( —a

~ p ~ ), with its cusp at the origin rounded into a
Gaussian peak. The nonvanishing angle is directly
connected with the nonvanishing odd moments, that is,
with an asymmetry in the line. We notice, however,
that the angle is very small and consists essentially of
a few rapid wiggles near the origin. ln frequency space,
this implies a small effect, occurring in the wings of
the line. The odd moments, proportional to the odd
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FIG. 4. Continuous distribution —(-,', —~~) transition —half-rvidth
(Mc/sec) versus concentration (mole fraction).
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In the previous paper' we discussed limiting line
shapes, and we pointed out that for small e and small

rp, the shape must be Lorentzian, whereas for large @

and large r p it must be Gaussian. In the Lorentzian limit,

half-width =C~e,

peak intensity =Cs+ Castro'.

In the Gaussian limit,

half-width= C4e'I"rp 'I'

(9)

(10)

peak intensity= C5m'"rp I'. (11)

The constants C& through C5 depend on the crystal
structure and on the transition under consideration, as
indicated in Eqs. (59)—(72) of Ref. 1. In our figures we
indicate these limiting forms, together with the exact
calculated behavior. On Figs. 3 and 4, we show the

I I I I I I I I I I

0 A%2 .004 -006 .006 .OIO

CONCENTRATION

FIG. 5. Continuous distribution —($,—,') transition —peak absorp-
tion (arbitrary units) versus concentration (mole fraction).

dependence of intensity and half-width on concentra-
tion for the (-,', ——,') transition. The exact calculated
values for rp= 2.73 cannot be distinguished, on the scale
of our graph, from the Lorentzian limit. Figures 5 and 6
pertain to the (ss, -,') transition. In Fig. 6 we show results
for one ro only. In Fig. 7, we show the dependence of
the half-width on rp. Although the Gaussian approxi-
mation and the actual behavior are wildly different in
the region of interest, one can begin to see that they
would asymptotically approach one another for very
large rp.

It is clear that in dilute crystals, the dipole inter-
action gives rise to line shapes of which neither the
actual magnitudes nor the parametric dependences can
be related to the second moment in any simple fashion.

The second step in the computation involves interac-
tions between the Cr spins and other species in the host
lattice. Such interactions are, at least to first order,
independent of Cr-Cr interactions. In general, the joint
effect of any number of statistically independent interac-
tions is obtained by convoluting the separate effects.
This well-known statistical theorem" underlies the
terminology of "inhomogeneous" broadening intro-
duced into the present context by Portis. "Interactions
with neighboring aluminum nuclei, for instance, evi-
dently fulfill the independence criterion to an excellent
approximation, for small Cr concentrations. The con-
tribution of such interactions can be isolated experi-
mentally as the residual line shape in the limit of
vanishing Cr concentration. This residual shape is a
Gaussian of half-width 17.8 Mc/sec. We discuss the
origin of the residual line in Sec. VI. For now, we point
out that 18 Mc/sec corresponds to the dipolar width
at about 0.1% concentration, almost independent of
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Fxo. 6. Continuous distribution —(—'„~) transition —half-width
(Mc/sec) versus concentration (mole fraction).

Fin. 7. Continuous distribution —(-,', ——,') transition—
half-width (Mc/sec) versus ro(A).

"W. Feller, An Introduction to Probability Theory and Its
Applications (John Wiley tk Sons, Inc. , New York, 1957), Chap.
11 and Chap. j.2.

"A. M. Portis, Phys. Rev. 91, 1071 (1953).
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the value assumed for rs (see Fig. 4). This means that
Cr self-broadening makes a very small contribution to
the total line in "pink" rubies, and becomes predomi-
nant only in very dark rubies. Consequently, relations

(8) and (9) do not apply to actually observed lines.
Instead, for concentrations of the order of 0.01% one
expects

half-width =constant= 17.8 Mc/sec

intensity ~ e.
(12)

(13)

V lattice eum = P P p 'g {1 expLsptd (r;,q.)]}
c rr'(rl

+P P p,g„{1—expLspce(r;, q„)j}. (14)
u r1&r;&r0

The subscripts c and I refer to the coupled and un-
coupled representations which specify the g's and q's

(Tables I and II) for large and small exchange, re-
spectively. Exchange is assumed large for r&r), neg-
ligible for r&rj. The lattice sum cuts off at ro. The
"clustering factor" p, is defined as the ratio of the
actual probability that site i is occupied to the prob-
ability of occupation if the distribution were random.

Abbreviating the notation by using n as an over-all
index, we obtain the transform of the lattice sum as
follows:

dpe ""'expL —

tsar

p g ('1 e'" ')/p g—;j

=exp( —~Z p-g-/2 g )

These relations are, in fact, experimentally verified. We
notice that, whether the Gaussian broadening is present
or not, the actual widths and intensities will not show
the m'~' dependence of the Gaussian approximation.
The relations are always asymptotically linear.

We also can now see why observed line shapes go
from Gaussian to Lorentzian with increasing concentra-
tion. The dipolar line itself is almost pure Lorentzian
at low concentrations, and begins to tend towards the
Gaussian shape at very high ones. Because of the "in-
homogeneous" Gaussian contribution, however, this
trend is at first reversed. The resulting oscillation
between the two shapes is illustrated in Fig. 8 in terms
of the relationship between the absorption width and
the width of its derivative. The points shown are ex-
perimental ones. (See Appendix A.)

The third step of the computation incorporates the
lattice sum in Eq. (7) for near lying sites. Some, but
not necessarily all, the spins situated at these sites will

be exchange coupled to the reference spin. According
to Eq. (29) of Ref. 1,
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=exp( —~Z p-g-/E g )

XL&( )+(ts/Z g;)P P.g.&( .)]. (1—6)
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Here, 6 represents the delta function. The neglect of
higher powers of rs in the expansion of Eq. (15) in-
troduces only small errors for physically significant
concentrations.

Since the continuous distribution and the lattice sum
appear as products in p space, the joint contribution in
ce space is obtained by convolution. In this sense, (16)
embodies the satellite spectrum, and gives a simple
prescription for joining it to the main line. We notice
that the line shapes of the satellites and of the main
transitions are interdependent. The possibility of clus-
tering can be taken into account at this point by varying
the p . Our numerical calculations all assume that the

p are equal, though not necessarily equal to unity.
We exhibit in Figs. 9—12 the behavior of various line

0.0001
I.OOI

CONCENTRATION

.OI

X dpe
—'" L1+(tt/p g,)p p.g.e'"~] (1~) FIG. 9. Absorption half-width (Mc/sec) versus

concentration (mole fraction) .
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shape parameters, calculated this time for the entire
composite line. Strong exchange has been assumed as
far as 7.15 A, which represents an upper limit to the
exchange radius. The discrete sum has been carried to
the same distance, with a continuous dipole density
then extending to in6nity. The points shown are experi-
mental ones and apply to the (—',,

——,') transition. We
have assigned concentrations, not on the basis of our
study of line shapes, since this would involve a circu-
larity in the argument, but on the basis of chemical
analyses. We note that the points for two of the high-
concentration crystals fall consistently on curves with
large p values.

The four parameters whose concentration dependence
we show in Figs. 9—12 obviously do not exhaust the
line shape, To illustrate the type of agreement we
obtain between calculation and experiment, we present
in Fig. 13 an experimentally derived line shape against
a background of theoretical line shapes bracketing the
appropriate concentration. We stress that, as the con-
centration changes, the curves do not merely change
scale, but undergo complicated changes in shape. This
fact can be accentuated by using the derivative of the
absorption and scaling the curves to identical peak-to-
peak values. We show such a set of curves in Fig. 14.

We now revert to the question of asymmetry in the
(-,',—',) line. In Table IV, we summarize calculations for

I40
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Fro. 12. Peak-peak derivative height (arbitrary units)
versus concentration (mole fraction).

four concentrations to show the nature and extent of
the expected asymmetry. The calculations were made
under the same assumptions as those of Figs. 9—12,
with p= 1. We quote intensities for roughly the follow-

ing multiples of the half-widths: 0, 1, 2, 5. Intensities
are given in arbitrary but consistent units; frequencies
are in rnc. It is obvious at a glance that it would be
hopeless to see the asymmetry in a resonance experi-
ment. Conceivably it might be detectable in a cross-
relaxation experiment.
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V. NEAR-NEIGHBOR EFFECTS

One of the striking features of Figs. 9—12 is the
ineffectuality of the near neighbors at low concentra-
tions. The different p curves, for all the line shape
parameters, merge for concentrations less than 0.05'Po.
The relative unimportance of the near neighbors in
dilute crystals can be understood from three considera-
tions: (1) The contribution of these neighbors to the
absorption goes like e . Intuitively, the number of pairs
in a fixed region is proportional to e', more formally,
Eq. (16) shows that the near-neighbor perturbation
scales by a factor e a line whose area is already propor-
tional to e. (2) While the near neighbors produce the
largest single perturbations, the number of neighbors
increases faster with distance than their individual per-
turbation decreases. (In Ref. 1, we met this phenomenon
as a logarithmic divergence. ) (3) The very largeness of

0 '

.OOOI
I I I

.OOI

CONCENTRATION

.OI
0 -ISO —I20 -80 -40 0 40 80 l20 160

FREQUENCY (MC/S8C)

FIG. 11. Peak-peak derivative width (Mc/sec) versus
concentration (mole fraction).

FIG. 13. Calculated and experimental absorptions (arbitrary
units) versus frequency (Mc/sec), for sample 3.
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their individual perturbations make their effect relevant
principally to the far wings of the line.

As a consequence, for low concentrations, it makes
no difference what one assumes about the near neighbors.
Whether they are clustered or not, exchange coupled or
not, considered as point dipoles or smeared into a con-
tinuous distribution —none of this will significantly
affect the observable central part of the line. We note,
however, that the reverse is true of the moments. These
quantities weight most heavily the far wings of the line,
where the near neighbors produce a relatively large
effect. If we ignore all the atoms outside a radius of,
say 7.15 A, we pick up about 90%%uq of the second
moment; if we ignore all the atoms inside this same
radius, we may pick up 90%, or more, of the line area.

For concentrations higher than about 0.1%, the near
neighbor contribution becomes significant, certainly as
far as intensities are concerned. The effect of the near
neighbors is to take power out of the central portion
of the line and spread it more or less uniformly into the

100
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Fro. 14. Scaled calculated and experimental derivatives (arbitrary
units) versus frequency (Mc/sec) for sample 3.

wings. More formally, the near neighbors can alter con-
siderably the exponential coefficient in Eq. (16), while
affecting only slightly the line shape as a whole, Thus,
the center intensity depends on the near neighbors
exponentially while the compensation in area is spread
over the whole spectrum. An actual decrease in in-
tensity at higher concentrations has been observed
both by us and by Manenkov and Prokhorov. ' Our
theory accounts for this phenomenon very naturally
as an effect of clustering. We see from Figs. 9—12 that
our crystal with v=0.8% shows significant clustering
effects, as does one of the crystals with=0. 3%%u~. In con-
trast, the other crystal with +=0.3%%uq was a high-
quality slow grown annealed crystal, and shows no
significant evidence of clustering. The correlation be-
tween the quality of a crystal and the p values assign-
able to its line shape characteristics is a very interesting
and useful confirmation of our calculations.

The observed decrease in intensity cannot be ac-
counted for, at least for the (s, —rs) transition, by

TABLE IV. Asymmetry in the (-'„sc) transition.

+=0.0003
frequency
f (~)I ( cu)—

n =0.001
frequency

1(~)I (—cd)

e=0.010
frequency

I((u)I (—co)

0
0.8530
0.8530

0
1.9200
1.9200

0
3.735
3.735

21
0.4075
0.4071

28
0.9107
0.9061

125
2.054
1.973

39
0.08742
0.08677

53
0.2752
0.2715

275
0.5960
0.4818

102
0,00515
0.00550

121
0.03338
0.03311

660
0.04729
0.08265

exchange. As we shall now show, exchange can have only
a minuscule effect on the line shape of this transition.

As we have pointed out previously, ' exchange causes
detailed and specific changes in the energy structure.
These changes cannot in this case be adequately ac-
counted for by replacing them with an averaged correla-
tion effect, or by invoking the 10/3 factor" in blanket
fashion. In the present case, the J=2 manifold in the
coupled scheme contributes very nearly as much to the
(-,', —rs) transition as would have been contributed in
the uncoupled scheme. In Table V, we compare the
results derived from considering exchange large or small,
for neighbor shells 8—16. The differences are negligible.
Despite the existence of strong exchange, this line is
in no sense exchange narrowed.

Exchange narrowing does occur for the (-,',—',) transi-
tion. The reason is that the coupled scheme contributes
very little to this transition, compared with the un-
coupled scheme. Nevertheless, for this line too, the
modification of the observed line shape by exchange is
negligible at low concentrations. The parameters for
exchange narrowing are derived by reference to mo-

ments, and the half-width is not related to moments in
dilute systems. Exchange affects the extreme wings of
the line, altering the moments without altering appreci-
ably the shape of the central hump.

TAsLx V. E6ect of exchange on the (-', , ——,') transition.

Concentration
(%)
0.02
0.04
0.1
0.2
0.4
0.9

Absorption peak
J= ~ J=O

24.8 25.4
42.4 43.2
71.9 72.9
91.3 92.0

105 105
119 114

Absorption half-width
(Mc/sec)

J= ~ J=O
19.8 19.8
22.0 22.0
29.5 29.6
44.1 44.4
76.3 76.8

151 153

"P. W. Anderson and P. R. Weiss, Rev. Mod. Phys. 25, 269
(1953).

VI. THE RESIDUAL WIDTH

We now consider the problem of the residual width
of 18 Mc/sec. We shall 6rst consider various explana-



A734 W. J. C. GRANT AN D M. %. P. STRAN DBERG

tions that have been offered for this phenomenon, and
then propose an alternative explanation of our own.

Perhaps the most widely used scapegoat for un-
explained line shape phenomena is the crystal field.
We can rule out the crystal field, however, because the
crystal field does not appear in the transition energy
of the (-,', ——,') transition. Furthermore, Bf/80=0 at
our 0 orientation, so that small angular variations in
the crystal field cannot affect the (—', i2) transition either.
The two transitions do in fact approach, within experi-
mental error, the same limiting linewidth. One could
argue that the crystal field also affects the g value, and
that slight variations in this factor might produce
noticeable effects at fields of a few thousand gauss.
These variations would be field-dependent, however,
and the residual width is the same for transitions at
840, 3300, and 7400 G. We can show how completely
impossible this supposition is by a very simple calcu-
lation. If we believe the crystal field approximation,
the spin Hamiltonian, with H= H„can be written"

K= 2.002 (1—XA)PHS, —X'AS/, (17)

where X is the spin-orbit coupling constant, and A is a
second-order sum over higher orbital states. We
identify g= 2.002 (1—XA) and D=X'h. . A fractional vari-
ation of n in the crystal field will cause A to go into
A(1&n). Consequently, g goesinto [2.002—0.018(1&n))
and 2D goes into 11.5(1&n) kMc/sec. The numbers
are such as to match the experimental ones for +=0.
The energy spread due to Dg will be (0.018X1.4H)n
Mc/sec; that due to A(2D) will be 11.5n kMc/sec. If
II=3300 G, the broadening effect of the crystal field
via the D term will be 160 times as great as via the g
factor. If we ascribe a residual 18 Mc/sec to the g
factor, then the (-,',—,') transition should be broader than
the (~, —~) transition by 3 kMc/sec.

We cannot ascribe the residual width to clustering.
This explanation originates in the fact that clustering
will enhance the second moment, and consequently will
broaden the line. As we have seen at length, this argu-
ment is a eoeseqlitlr. The enhancement of the second
moment is produced by slightly enhancing the far wings
at a slight expense of intensity in the main line. The
line shape of the central hump is changed very little.
At low concentrations, the effect of clustering vanishes
for all practical purposes.

Macroscopic clustering, that is, macroscopic com-
pared to lattice dimensions, may contribute to the
residual width, but cannot be the total cause. Such
inhomogeneities raise the effective concentration and
reduce the effective crystal volume, giving a broader
and less intense line. The line produced, however,
would be (almost) Lorentzian, while what is observed
is practically pure Gaussian. To keep the shape Gauss-
ian, the dipolar contribution must be substantially

"W. Low, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc. , New York, 1960), Suppl. 2.

less than half, or less than 9 Mc/sec. The chromium
"pockets" must then have a concentration less 0.05%.
At any rate, at least 10 Mc/sec must still be accounted
for otherwise.

We consider the possibility of impurities. The pres-
ence of small quantities of other paramagnetic impuri-
ties is a Priori a plausible supposition. In fact. , Thorp
et a/. i5 have found 0.04% iron in flame fusion rubies,
independent of the chromium concentration. This
amount of impurity is of the right order to account for
the residual width. For rubies grown from the vapor
phase, they find a constant iron concentration of
0.004%. It would have been interesting if they had
made measurements of residual width on these two
types of specimens. We do not believe that impurities,
iron or otherwise, are the explanation, however. An
amount of iron, such as observed by Thorp et al. ,
would produce an immense spectrum of its own, which
is not generally observed, although Thorp did observe
it in his particular specimens. Furthermore, substan-
tially the same residual width has been observed not
only by us, but by many other experimenters. It would
be difficult to account for the presence of exactly the
same impurity content in many different rubies, both
natural and synthetic. This difficulty becomes even
more severe if the impurities are not simply iron, but a
large number of different species. The number would
have to be very large for their individual spectra to be
unobservable. Yet their combined effect would always
have to give rise to the same linewidth. Furthermore,
the same residual width is found in rubies whose
chemical content is analytically controlled and verified.
Furthermore, the line shape due to impurities in trace
amounts must be Lorentzian; what is observed is
clearly a Gaussian shape. Furthermore, paramagnetic
impurities would clearly affect the static susceptibility.
The work of Daunt and others" "shows that the sus-
ceptibility can be matched to the chromium four-level
system from room temperature to 0.3 K, over a chro-
mium concentration range from 0.047% to 1.4%. We
note that an impurity content of 0.04% would change
the susceptibility by a factor of 2 in the lowest concen-

. tration studied by Daunt, even if we make the un-
believably unlikely assumption that the partition func-
tion of the impurity is the same as that of chromium.
(Daunt claims an accuracy of 5%.) While it is doubt-
less possible to make rubies with an iron or other im-

purity concentration comparable to the chromium con-

"J.S. Thorp, J. H. Pace, and D. F. Sampson, British J. Appl.
Phys. 12, 705 (1961)."K.Brugger, J.W. Snider, J. G. Daunt, The Fifth International
Conference on Loz Temperature Physics, edited by J. R. Dillinger,
University of Wisconsin Press, Madison, Wisconsin, 1958), p. 547.

' J. G. Daunt and K. Brugger, Z. Physik. Chem. 16, 203 (1958).' H. L. Davis, Z. Physik. Chem. 16, 213 (1958).' J. G. Daunt, Proc. Phys. Soc. (London) 70, 54 (1957).
J. G. Daunt, D. O. Edwards, M. Dreitman, R. C. Pandorf,

and J. W. Snider, Proceedings of the Seventh International Con-
ference on Low Temperature Physics (Toronto University Press,
Toronto 1960), p. 96.

2' J. G. Daunt, Bull. Am. Phys. Soc. 1, 116 (1956).
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centration, there is no reason to believe such crystals
are typical.

We consider spin-lattice interactions. At room tem-
perature these can account for about 1 Mc/sec. s'

Sugihara" has proposed a theory of virtual phonon ex-
change from which he derives a broadening comparable
to dipolar broadening. Ke make two general comments:
(1) Sugihara obtains a perturbation comparable to the
dipolar one on the basis of interaction with another
dipole situated about a lattice dimension away; in
other words, he considers the nearest neighbor in a
dilute crystal. His interaction falls off as 1/r'. But we
have already seen that such an interaction, far from
rapidly becoming negligible with distance, actually di-
verges as more neighbors are taken into account.
Sugihara's theory leads to an infinite self-energy.
Perhaps a renormalization is possible, but it seems
to us that so far we have the first term in a diverging
series. (2) The virtual phonon exchange is possible only
if the two spins have exuctty the same transition energy.
If the line is already broadened, however, the number
of spins that fulfill this requirement will be tremendously
smaller than the actual number of spins. What is really
required is a second-order theory which takes into
account the simultaneous interaction with the phonon
field and the dipolar field. Only if the excess energy
is at the same time absorbed by the dipole field can
two spins of even slightly different transition frequen-
cies interact via a virtual process.

Virtual processes, in general, would require a pair of
Cr ions, and would therefore give rise to a concentration-
dependent process. That such processes make only a
small contribution, if any, emerges from the fact that
we have already interpreted, with considerable pre-
cision, all observed features of the concentration de-
pendence by invoking only known mechanisms.

Hyperfine interaction with the Cr" nucleus (10%
natural abundance) certainly exists. Its observation,
both in ordinary rubies and in crystals enriched with
Cr", was first reported by Manenkov and Prokhorov. "
The hyperfine separation is of the order of the residual
width. At low-chromium concentrations, the multiplets
are resolvable even in unenriched crystals, although
their intensity is exceedingly low. This interaction
clearly does not help us to solve our present problem.

We now consider magnetic dipole interaction with the
aluminum nuclei. Ke show in Appendix 8 that this
interaction accounts for 5.12 Mc/sec. Since Gaussians
add width in rms fashion, subtracting 5.12 from 18 still
leaves 17 Mc/sec to be accounted for.

We finally come to our own suggestion for the origin

'2 A. A. Manenkov and A. M. Prokhorov, Zh. Eksperim. i Teor.
Fiz. BS, 729 (1960) (English transl. : Soviet Phys. —JETP 11, 527
(1960)g."K.Sugihara, J. Phys. Soc. Japan 14, 1231 (1959).

'4 A. A. Manenkov and A. M. Prokhorov, Zh. Eksperim. i Teor.
Fis. 31, 346 (1956) [English transL: Soviet Phys. —JETP 4, 228
(1957)g.

of the residual width. The existence of covalent bonding
in so-called ionic crystals is well known. Low" has
given convincing arguments for the bonding of iron
group ions to neighboring anions in MgO; Tinkham"
has done the same for ZnF2. To explain the residual
width, we suggest that there may be a slight bonding
to the aluminum. This could be either superexchange, "
via the oxygens, or direct overlap. A slight admixture
of aluminum 3s wave function would carry with it a
contact interaction with the Al nucleus, which could

supply the energy perturbation we are looking for.
Ke proceed to calculate, in an admittedly crude ana
"order of magnitude" fashion, the amount of Al 3s wave
function we would need. If we write the wave function
of a Cr 3d electron as

QCr+ e1pA1 I (18)

"W. Low. Ann. N. Y. Acad. Sci. 72, 69 (1958).
"M. Tinkham, Proc. Roy. Soc. (London) A236, 535, 549

(1956)."P.W. Anderson, Phys. Rev. 115, 2 (1959).
'8 H. Lew, Phys. Rev. 76, 1086 (1949)."E.Fermi, Z. Physik 60, 320 (1930)."S.Goudsmit, Phys. Rev. 37, 663 (1931).
31 W. Low, Phys. Rev. 105, 801 (1957)."D.Shaltiel and W. Low. Phys. Rev. 124, 1062 (1961).
"W. Low and D. Shaltiel, Phys. Chem. Solids 6, 315 (1958).
'4 J. Lambe, N. Laurance, E. C. McIrvine, and R. W. Terhune,

Phys. Rev. 122, 1161 (1961).
3' R. W. Terhune, J.I ambe, G. Makhov, and L. G. Cross, Phys.

Rev. Letters 4, 234 (1960)."C. Kikuchi, J. Lambe, G. Makhov, and R. W. Terhune, J.
Appl. Phys. 30, 1061 (1959).

and if 6 is the hyperfine separation for a 3s electron in
Al, then the energy resulting from the contact interac-
tion is of the order or 3e'A. (There are three 3d electrons
in Cr. ) The hyperfine separation has been measured for
atomic aluminum" and is 1450 Mc/sec. Atomic alu-
minum has one 3p electron. If we use the theory of
Fermi" and Goudsmit, "we can obtain the hyperfine
separation for one 3s electron by an analogy argument.
The ratio of the 3s separation to the 3p separation is
given by

A(3s)/A(3p) = (8/3) (I.+1/2) (J) (1+1)=3, (19)

where, of course, we gloss over corrections for eRective
charge and shielding. This line of reasoning leads to
a value e =0.036. This number is not obviously
unreasonable.

Our hypothesis is attractive because it would also
shed light on several other observations. Very narrow
electron paramagnetic resonance lines are observed in

MgO, where the spectra of the iron group have been
exhaustively investigated by Low,""and in the ThO&,
where the spectrum of Gd has been studied by Shaltiel
and Low.""There is no isotope of Th which has a
nuclear moment; Mg" has a small nuclear moment,
but its abundance ratio is only 10%.On the other hand,
the electron-nuclear double resonance experiments of
the Ford group" " leave no doubt that interactions
exist between the Cr electrons and the Al nuclei —not
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merely the nearest-neighbor nucleus, but distant nuclei
as well. A completely satisfactory explanation of their
results has not yet been found. It is possible that an
attempt to interpret these experiments in terms of
contact interaction, via direct overlap and/or super-
exchange, might prove fruitful.

SUMMARY

We have been able to give a detailed account of many
of the observed features of the ruby line shapes. We
have been able to show clearly the effects of Cr-Cr
dipole interaction, exchange, dipole (tensor) interaction
with AP', and the physical disposition of the impurities
in the lattice. We have found that careful analysis is
needed to interpret the data consistently. A number of
general concepts that have passed into the general lore
of the subject actually are applicable only asymptotic-
ally to special cases, which do not include ruby.
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APPENDIX A: EXPERIMENTAL DATA

Room-temperature measurements of ruby linewidths
and intensities as a function of concentration have been
published by Manenkov and Prokhorov. ' We have made
measurements covering the same concentration range,
for two reasons: (1) Our theory is sensitive not merely
to widths but to the details of the line shape. Hence
we found it desirable to subject the measured lines to
very detailed analysis. (2) The definition of half-width
in Ref. 3 seems somewhat uncertain. The definition
explicitly given there is the distance from the peak to
the half-power point; yet the data quoted are consistent

with data previously given by the same authors'~ if
their half-widths are interpreted as peak-to-peak deriva-
tive widths. This latter interpretation also makes their
data quite consistent with our own.

We used six rubies, all grown by the Game fusion
process. Two of these, No. 1 and Xo. 4 were slow grown
annealed crystals. All the crystals were free of macro-
scopic inhomogeneities. Small specimens weighing about
15 mg were cut, for study with an I-band cavity
spectrometer. Our determination of widths is accurate
to within 2%, of relative intensities, to about 10%.

The experimental derivative traces were digitalized
and were integrated by means of a computer program.
The program allowed automatic corrections for various
experimental conditions. It also generated a Gaussian
and a I orentzian to match the peak value and half-
width of the experimental absorption. Thus our judg-
ment regarding the shape of the line —Gaussian, I orentz-
ian, or intermediate —is not based on the measurement
of four points, but of about a hundred. An example of
the curves obtained by this procedure is given in I'ig. 15.
The program integrated the absorption a second time to
give the area. We investigated the effect of noise and
base-line drift on the results. Half-widths proved quite
insensitive, line shapes somewhat sensitive, and areas
extremely sensitive. Thus a 2% uncertainty in half-
width might typically be associated with a 25% un-
certainty in area. For this reason, we feel that concen-
tration measurements based exclusively on absorption
areas are not very reliable.

The Cr concentration of the crystals was measured
by a variety of methods, principally chemical analysis
leading to either a spectrographic or colorimetric de-
termination. These determinations appear to be re-
producible within about 20%. The concentration is, of
course, also proportional to the area of the reso-
nance line.

In Table VI, we summarize the data. Widths are
given in megacycles. Intensities are in arbitrary units,
scaled so that the corresponding intensity for the
(—'„—sr) transition of sample No. 4 is 100. Areas are
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TABLE VI. Experimental data.

Sample number
Concentration (%)

Deriv. p-p height
Deriv. p-p width

~ Absorption peak
Absorption width

-Area

1

0.031

96
36.7
34
21
0.036

2
0.035

116
38.7

22.9
0.05

3
0.20

134
57.3
88
40.1
0.19

0.32

100
81.2

100
58.0
0.30

5
0.32

70
100
81
71
0.28

6
0.79

28
184
69

130
0.56

Deriv. p-p height
Deriv. p-p width

~ Absorption peak
Absorption width
Area

(-'„-,') width/(-, ', ——,') width
(-'„2) area/(~~, ——,') area

54
37.6
18
23.4
0.026
1.11
0.72

62
39.8
21
25.6
0.031
1.12
0.63

40
85.3
34
57.4
0.12
1.43
0.63

44
91.3
45
65.8
0.18
1.13
0.60

23
122.5
31
89.5
0.17
1.28
0.62

8
283

25
203

0.32
1.56
0.57

scaled so that the area of the same transition is 0.3.
By "width" we mean the half-power half-width.

The ratio of the area for the (-'„-,') transition to that
of the (-'„——', ) transition should be the same as the
ratio of the transition probabilities, namely 0.75. In
view of the uncertainty in the determination of the
areas, the deviations from this number are in them-
selves not significant. The systematic trend to lower
ratios with increasing concentration might be inter-
preted as an effect of exchange, which, as we have
shown, affects the (s,—',) transition much more than the
(-', ,

——,') transition. However, an underestimate of the
area becomes more likely with increasing width. This
factor would give rise to the same trend, since the
excess width of the ($,-,') transition becomes much more
marked at higher concentrations.

This excess width of the (s, rs) transition is not
accounted for by our calculation. The mechanisms in-
cluded in our calculation predict a narrower, not a
broader, line for this transition. We notice that (1) the
excess broadening tends to increase with increasing con-
centration, (2) the annealed crystal No. 4 shows mark-
edly less excess broadening than its conventionally grown
neighbors of similar concentration. Both facts can consis-
tently be explained by ascribing the excess width to
random variations of the crystal field parameter D, due
to internal crystalline strains. Such strains tend to in-
crease with increasing impurity content and are de-
creased by an annealing process. Since r)f/r)8=0 at our
0' orientation, small variations in the direction of the
crystal 6eld will have no effect; what we appear to be
seeing are variations in magnitude.

APPENDIX B' DIPOLE INTERACTION WITH
ALUMINUM NUCLEI

The contribution of the Cr-Al interaction to the Cr
resonance line shape can be calculated in exactly the
same fashion as the contribution of the Cr-Cr inter-
action. A full-scale calculation is unnecessary in this
case, however, since the Al concentration is virtually

100% guaranteeing an almost pure Gaussian line. A
second moment calculation will suKce.

In this Appendix, we treat, more generally, the inter-
action of two different paramagnetic species. Two
species are considered different if, in a given magnetic
field, none of the transitions of one species overlaps
any of the transitions of the other. Our discussion has
two parts. First we discuss the particular version of the
moment formulation that is applicable in this case;
secondly, we calculate the relevant lattice sum for ruby.

(1) Van Vleck's" moment method applies directly
only to a set of simple Zeeman levels. If there is a zero-
field splitting, the theory must be modified, as shown
by Abragam and Kambe, " Kambe and Usui, " and
Ishiguro, Kambe, and Usui. "Projection operators are
then used to single out that portion of the transition
operator S, which connects the particular states under
consideration.

One can readily see, however, that the original Van
Vleck formulation, unembellished by projection opera-
tors, will in all cases give the correct result if the
broadening is due to another magnetic species. The
dipolar broadening is in general due to two effects. One
is the spread of the local magnetic field due to the
other dipoles; the other is the simultaneous flipping of
two spins, with exchange of energy. The different
species cannot contribute to the Qipping process, be-
cause the transition energies are, by definition, not
comparable. But it can contribute to the variations of
the magnetic field. It is clearly only the fhpping term
that is affected by projection operators.

We can put this idea more formally. Consider the
Hamiltonian

H=Hp+H',

where II 0 contains all forms of energy, except that of the
dipolar interaction with some other species. This last

"A. Abragam and K. Kambe, Phys. Rev. 92, 894 (1953)."K.Kambe and T. Usui, Progr. Theoret. Phys. (Kyoto) 8, 302
(1952).

4P E. Ishiguro, K. Kambe, and T, Usui, Physica 17„310(1951).
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interaction is contained in II'.
2

H'= Qs Cr35„5,2., (82)

Since
(ES„,S,) =iES„

Tr(S„)'=Tr(S,)',

(87)

(88)

the result of the second term is just E', or specifically

Q C;aC;i, s,iS,g. .
kk'

(89)

Ke note that the eGect of projecting S has cancelled
out. From this point on, we are coincident with Van
Vleck's treatment of the unsplit Zeeman multiplet. The
trace over the operator (89) vanishes unless k= 0', and
we obtain

Tr P C; 5s2, =s2-' 53(S+ 1)P C,32, (810)

where S refers to the spin of the "other" species.
(2) We now evaluate the sum in (810), using crystal

parameters appropriate for ruby. Since the crystal sym-
metry greatly simplifies the explicit calculation, we
refer angles to the crystal axis.

(3 cos'8 3—].)2

= (4/5)+ (8/7)P2(cos8, 2)+ (72/35)P6(cos8, 3) (811)
= (4/5)+ (322r/21)p I'2~u(8') 2orI) I'2„(8„,q „)

+ (322r/35)p T4„*(8Ir,q Ir) I'.„(83,(p3) . (812)

C 3
——(gg'P'/hr, s') (3 cos'8;3—1), (83)

where the jth atom is the one we are considering and
the atoms indexed on k are those of the other species.
Using the notation S for the projected Sx; operator,

(co') = —Tr (H 5~)'/Tr (Se)'. (84)
Now

(H,S.)'= [(H6,S,)+ (H',S,)]2 (85)
= (H6,5.)2+ (H', 5 )'+ [(H6,S,), (H', 5,)$~. (86)

The trace of the cross term in (86) vanishes because
Trs, ~

——0. The first term in (86) simply yields (co62) by
definition. The term of interest is the second one. Since
S, commutes with S,k, we have essentially a constant
time S».

)& [16.42—19.60 cos28H+18. 70 cos481r

—10.32 sin38Ir cos81r cos3 &plyj. (814)

For 0~=0, this result reduces to 1.552&104'.
To complete the calculation, we used the following

constants:

gcr = 1 9840, g~i= 1.4563/1836,"
8f/BH = 2.80 Mc/sec/G

for 0' orientation. We then obtain for the nuclear width

rms width=4. 36 Mc/sec= 1.57 G. (815)

For a Gaussian line, half-width=1. 177)&rms width;
here

half-width=5. 12 Mc/sec= 1.85 G. (816)

We note that Eq. (814) predicts an angular depend-
ence of the rms width, both in 0 and in y. Because of
the small contribution of the nuclear dipole interaction
to the total linewidth, it would be hopeless to observe
this dependence. The Cr-Cr rms width is, of course,
given by the same crystal sum. The angular dependence
is not given correctly by (814) in this case, however.
Because of the zero-field terms of the Hamiltonian,
which cannot now be ignored, a change in angle in-
volves a change or a "mixing" of the energy levels.
Such a change requires a different projection of S and
a different truncation of the Hamiltonian. Even sc,
the appearance of p in the formula at least raises the
question whether a dependence on this angle could not
actually exist.

Here, i labels sets of equivalent atoms, that is, three
atoms that go into each other under a 120' rotation
about the s axis, and po, is the angle of the projection
of r,; with the x axis. We define the x axis such that
the next-nearest neighbor in the positive s direction
has r =0.

The lattice constants"" used were u(z )=4.7664
A, c=13.0146 A, nearest-neighbor distance=2. 73 A
=0.210'. The sum was carried out over 342 atoms, or
over a sphere of radius 4.5 times the nearest-neighbor
distance. This guarantees an accuracy of at least 1%.

The result of the summation is (in cgs units):

P C 22= gc 2ggi2P'/jP&& 1046

The threefold symmetry about the s axis leads to non-
vanishing contributions only for nz equal to an integral
multiple of 3. Hence

P C 22 —12gc 2gA 2P4/fz2 P y ..-6

X f (1/5)+ (10/21)P26(cos8 )Psp(cos8rr)

+ (18/35)P46 (cos8;)P66 (cos8rr)+ (1/4900) P43 (cos8~)

&F42(cos8rr) cos(3226;—3yIr)). (813)

APPENDIX C: ALUMINUM NUCLEAR MAGNETIC
RESONANCE LINE SHAPE

Our main object in this Appendix is to clarify the
question of analogy arguments in the context of line

shapes, and to indicate the relative effect of self-

4' G. Shinoda and Y. Amano, X-Rays {Japan) 6, 7 {1950).
4' R. W. G. VVycko8, Crystal Structures (Interscience Publishers,

Inc. , New York, 1957), Vol. 2, Chap. 5, pp. 4, 13b.
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¹ F. Ramsay, Nuclear 3Iomemts (John Wiley lt Sons, Inc.,
New York, 1953), Chap. 4,
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broadening and Cr broadening on the aluminum nu-
clear magnetic resonance width.

The Al-Al broadening cannot be derived from the
Cr-Cr broadening. For Al, the concentration is almost
1, and the self-broadened line will be close to Gaussian;
for Cr, the small concentration produces a Lorentz line.
The two line shapes have completely different proper-
ties, as we have taken pains to stress. Thus, there is no
easy theoretical bridge between observed line shapes of
the Cr resonance and observed line shapes of the
Al resonance.

On the other hand, a straightforward second moment
calculation will describe the Al-Al width to a reasonable
approximation. The result will differ from the second
moment of the Cr-Cr interaction, because of the differ-
ent g factors and spins, and because of numerical
coefFicients arising from projecting the transition out
of a different manifold. For Cr, the ratio of the pro-
jected moment to the simple Zeeman multiplet moment
is 0.9. We shall not worry about errors of the order of
10%%uq here, and calculate without projection operators.
Using the crystal sum (33), we obtain for the full rms
line width of the self-broadened nuclear resonance
1.85 kc/sec.

The broadening effect of Cr on Al, again, has no
analogy to the broadening effect of Al on Cr. Para-
doxical as this statement sounds, it is nonetheless true,
because of the incommensurability of the line shapes
derived from these interactions. The effect of Cr on Al
is analogous to the effect of Cr on Cr, in the sense that

both give rise to Lorentz shapes, differing principally by
scale factors. The difference is not only in the g factors,
of course. We again have the problem of projecting
transitions from different manifolds, and the problem
that one case is heterogeneous broadening while the
other is self-broadening. We shall again ignore the first
difFiculty, and approximate the second by the well-
known -', factor. From our calculation of Cr-Cr broaden-
ing, discussed in Sec. IV, if we take rs ——2.73 A (the
nearest-neighbor distance), we obtain in the limit of
vanishing concentrations,

peak-peak derivative width=2. 1X10' n Mc/sec. (C1)

After making the appropriate corrections, this number
becomes, for the Cr-Al effect,

peak-peak derivative width=0. 9X10' n kc/sec. (C2)

The Al nuclear resonance has been measured by
Pound" and by Strandberg": Pound observes a p-p
width of 4 kc/sec; Strandberg observes a p-p width of
8.7 kc/sec. Pound's number is insignificantly larger
than the 3.7 kc/sec we calculate on a pure Al-Al basis.
Strandberg's could be interpreted in terms of a 0.085%%u~

Cr concentration.

44 R. V. Pound, Phys. Rev. 79, 685 (1950).
4'M. W. P. Strandberg, Tenth Quarterly Progress Report,

Signal Corps Contract DA36-039-sc-74895, Research Laboratory
of Electronics, MIT, Cambridge, Massachusetts, 15 February
1960 (unpublished).


