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In an e-dimensional crystal, an energy band is usually made of several branches which are connected with
each other. Accordingly, the Sloch states of wave vector K which are eigenfunctions of a one-electron
Hamiitonian H = —n+ Y and which belong to a given band tg, define a subspace g(K) oi finite dimensional-
ity. For a large class of potentials, two properties concerning the subspaces $(K) which are associated with a
fixed band 8 have been proved for n-dimensional crystals. (1) The projection operator P(K) on $(K) can
be defined for complex values of K, and its matrix elements (r(2'(K) ~r') are analytic in a strip of the com-
plex K space; this strip is centered on the real K space and is independent of r and r'. (2) The projection
operator E=fd"KE(K) (integration on the Brillouin zone) has matrix elements (r~P

~

r') which decrease
exponentially when the length ) r—r'( goes to infinity.

I. INTRODUCTION

N an insulating crystal, the electrons form a kind of
- - bound state and it is generally recognized that, for
this reason, a local disturbance has only short-range
effects. This phenomenon appears even in the inde-
pendent-particle approximation. It comes from the fact
that, in an ideal crystal, at zero temperature, the lower
bands are completely filled, whereas the upper bands are
empty. If a band is full, each Bloch state is occupied by
an electron but we may say also that each %annier
function of this band is occupied by an electron. Kohn'
has shown, for a linear crystal with a center of sym-
metry, that it is always possible to build properly
localized %annier functions by starting from Koch
waves which are analytic functions of the wave number
E in a strip of the complex K plane containing the real
axis; as a consequence, the corresponding Wannier func-
tions have exponentially decreasing tails. Thus, the
electrons of an insulator can be considered as really
localized; at least, this point of view which is common
among chemists can be established for linear crystals.

Here, we want to derive closely related properties of
the energy bands but our proofs are also valid for
e-dimensional crystals. As a direct generalization of
Kohn's results presents special diKculties, the problem
is not examined here. However, we plan to use our re-
sults later on, to show that in m-dimensional crystals, it
is often possible to build really localized %annier func-
tions, i.e., functions which decrease exponentially at
infinity.

The motion of the electrons in an infinite crystal can
be described in first approximation, by using a one-
electron Hamiltonian of the form H= —i),+V. The
eigenvalues of II form continuous bands and we consider
here a given band S. This band is simple or complex
but, by definition, it does not touch any other band;
it is isolated. The Bloch waves of wave vector K which
belong to S define a subspace S(K).For real values of K,
this subspace can be characterized by the projection
operator P(K) on S(K), which is a periodic function of

' W. Kohn, Phys. Rev. 115, 809 (1959).
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K. General conditions of regularity are assumed for the
potential; they are used to show that P(K) can be
defined for complex values of K= K'+iK" and that its
matrix elements (r~P(K) ~r') are analytic with respect
to K, in a strip of the complex K space; this domain is
defined by an inequality of the form

~

K"
~
&A where A

is a positive constant which depends on the band but
not on r and r . For linear crystals, this result is trivial;
the operator P(K) can be expressed directly in terms of
Bloch waves and Kohn has shown the existence, in
linear crystals, of Koch waves which are analytic in a
strip of the complex E plane. However, our result is
valid also, in e-dimensional crystals, for simple or com-
plex bands. In this case, the Bloch waves may have
branch points for real values of K and therefore, in
general, they are not analytic in a strip defined by an
inequality of the form

~

K"
~
&A.

On the other hand, the operator P of projection on the
space formed by the set of all the subspaces S(K) which
belong to S, is defined as an integral of P(K) on the
Brillouin zone. It is shown that, when

~

r—r'
~

increases,
the modulus of the matrix elements (r~P~r') decreases
faster than exp) —eA ~r—r'~g, where e is any positive
number smaller than one. This result is a direct con-
sequence of the analyticity of the matrix elements

(r( P(K)
~

r') in the strip
~

K"
)
&A. It shows clearly the

localization of the electrons in an insulator.
In Sec. II, we prove the analyticity of the matrix

elements (r~ P(K)
~

r') with respect to K and their con-
tinuity with respect to r and r'. Sections IIA, IIB, and.

IIC contain definitions and. general remarks. Our as-
sumptions concerning the regularity of the potential V
are given in Sec. IID. These requirements are not very
restrictive: They are fulfilled for m=1 by 6 potentials
for v=3 by screened Coulomb potentials. In Sec. IIK,
we prove the uniform convergence of all the series which

appear in the following. Section IIF forms the central

part of the proof. An operator Q(K) proportional to

P(K) is introduced and we prove the analyticity of this

operator in a special representation, for a small domain

of the K space. Finally, in Sec. IIG, we prove the
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analyticity of the matrix elements (rlP(K) lr') in a
larger domain

I
K"

I
(A, by using the results of Secs.

IIE and IIF. In Sec. III, it is shown that the matrix
elements (rlPlr') exist and decrease exponentially at
infinity. Section IlIA contains definitions. A preliminary
theorem is given in Sec. IIIB and the final result is
obtained in Sec. IIIC.

The results which are established here are certainly
very general and, for instance, they should remain valid
for spin-dependent Hamiltonians. But instead of con-
sidering here, all possible cases, it seemed better to
treat more rigorously a restricted problem. For this
reason, special attention has been paid to convergence
problems which are essential for the validity of the
proofs. However, if the reader is interested only by the
general method, he may very well skip Secs. IIE and
IIF which deal with these problems. A few assumptions
have been used in the proofs; they concern mainly the
existence of bands and the completeness' of the Hamil-
tonian H.

II. DEFINITION AND ANALYTICITY PROPERTIES OF
THE PROJECTION OPERATORS P(K) ASSO-

CIATED WITH AN ENERGY BAND S
A. Elementary Definition of P(K) for K Real

In an e-dimensional crystal, an energy band is usually
made of several branches which are connected with each
other. By definition, if two branches touch each other
for a real value of the wave vector K, they are parts of
the same band. The number of Bloch states of wave
vector K which belong to a band S is a characteristic
constant d of the band; for a simple band d= 7, for a
complex band d) 1 (see Fig. 1). One-dimensional crys-
tals have (in general) only simple bands.

The Bloch states of wave vector K can be labeled by
an index l. It is convenient to assume that the energy
E(/, K) associated with the Bloch state

I y(/, K)) is a
nondecreasing function of the index l which is an integer
running from a given value /s to +~. By choosing /s

properly, we can always label the states belonging to
by values of / running from j. to d.

In an infinite crystal, the Dirac type of normalization

Fin. 1.Simple band (a) and complex
band (b) in an I-dimensional crystal.

must be used for the Bloch waves

&&(/, K) I &(/, K))= h„,~.(K—K).
The distribution h, (K—K') is defined by

&.(K—K') =Q 8(K—K'+u),

where the summation is made for all the translations
u of the reciprocal lattice.

However, if we remain inside the subspace $(K) of
wave vector K, we can perform the integrations on a
unit cell only. In the following, this kind of normaliza-
tion is indicated by round brackets. We put

I Ip{/, K)) =5 '"I p(/, K)),
where v is the volume of the unit cell. Thus, the norrnali-
zation condition can be written also

(~(/, K) I
~(/', K'))=~ ' (4)

With these notations, we can de6ne the operator
P(K) for real values of K by

P(K) = Z I v (/, K))&v (/, K) I

In general, this operator is determined by its matrix
elements, for instance, the functions (rl P(K) I

r'),

&rlP(K) I")=&&rI ~ (/K))«(/K) I') (6)

The term &rl q (/, K)) is just a Bloch function. As P(K)
is a projection operator, it satisfies the relations

P(K)P(K') = /. (K—K')P(K),

(rlP(K) lr)d"r=vd.

In the last equation, the domain of integration is a unit
cell of the crystal.

3. Definition of P(K) for Complex Values of K
Let us introduce new states by putting

&rl/, K)=expl /K rj(r—
l q(/, K)).

These states are periodical and normalized

(/, Kl/', K) = 8i i.
They are solutions of equations obtained by transform-
ing the Schrodinger equation

' E. Titchmarsh has shown how to tackle some of these problems
in his book Eigenfunctions ExPcnsions Associated With Second-
Order Differential Equations (Clarendon Press, Oxford, 1958).
However, the theorems which are given there are not very general;
for instance, they @pq yafjd only for boUnded potentials.

By putting
HI q(/, K))=E(/, K) I p(/, K)).

H(K) =e-'x'IIe'"',

we get immediately

H(K) I/, K) =E(/, K) I/, K). (13)



ENERGY BANDS AND PROJECTION OPERATORS IN CRYSTAL A687

Now, the Harniltonian depends on K but the solutions
must always be periodical; therefore for a given value
of K, the spectrum of H(K) is discrete. If K is real,
H(K) is Hermitian because transformation (12) is
unitary in this case. On the contrary, if K is complex,
this property does not remain true because

Ht(K) =H(K*) . (14)

When R is complex, Eq. (13) may still have solutions
but the eigenstates are not orthogonal to each other
anymore. However, by using Eq. (14), it is easy to
show that the eigenstates of H(K) can be ortho-
normalized as follows:

which is a generalization of Eq. (10). Thus, the states
~ p(/, K)) can be defined, for complex values of K, by
Eq. (9). We have in this case

to a variable s. The analyticity of an operator acting in
such a space is defined for some kind of representation
only. For instance, the projection operator P(K) for
free electrons has matrix elements in the ordinary space

(rtE(K) ~r')=exp(iK (r—r')7, (19)

which are obviously analytic with respect to K. How-
ever, the representation of J'(K) in the reciprocal space
is singular (the matrix elements contain b functions).
In the following, the analyticity of P(K) will be proved
in this restricted sense. Our aim is really to derive the
analyticity of the matrix elements (r~ P(K)

~

r').
On the other hand, the fact that all the functions

which we consider are analytical functions of several
variables does not bring additional difficulties: Hartog's
theorem' indicates that a function which is analytic
with respect to each variable separately can be expanded
in convergent Taylor series with respect to all variables
and conversely.

Kohn's work on one-dimensional crystals implies
that for suSciently small values of the imaginary part of
K, it is possible to follow by continuity the eigenstates
which belong to a band. A general derivation of this
result (ss) 1) is given in the following sections.

Consequently, for K= R'+iK" and small values of
~

K"
~, we can define P(K) by putting

&(K)= 2 I v (/ K))(~(/ R*)
I

or more explicitly,

(rtP(K) (r')= P expgiK (r—r')7(r~/, K)(/, K ~r'). (18)

By looking at this expression, we see immediately that
in spite of a formal appearance, P(K) depends really on
K not on K*. In fact, it will be shown in the following
sections that its matrix elements (r~P(K) ~r') are ana-
lytic functions of K.

C. Remarks on the Analyticity Properties
of Operators

In the following sections, the analyticity properties
of P(K) will be investigated but, first, we should like to
make a few remarks about analytic operators. By
definition, a matrix is analytic with respect to a complex
variable s' when all its matrix elements are analytic
functions of s. Now, it is clear that any finite matrix
which is analytic with respect to s is changed by a
unitary transformation into another analytic matrix.
Therefore, if an operator is defined in a space with a
finite number of dimensions, it is analytic by definition
if one of its matrix representations is analytic. However,
a unitary transformation in an Hilbert space does not
always conserve the analyticity of a matrix with respect

D. Nature of the Hamiltonian and
Eigenfunctions

The analyticity properties of the operator P(K) de-
pend, of course, of the nature of the Hamiltonian. Really
general and rigorous proofs concerning these properties
require great care. In fact, in a complete theory, the
existence of energy bands should not be assumed a priori
but proved for a certain class of Hamiltonians.

On the other hand, in order to derive the analyticity
properties of E(K), it is convenient to define this
operator by expansions and several vector bases will be
used. But, as we noticed above, the analyticity prop-
erties of an operator depend on its representation. The
analyticity properties of the sum of a series depend not.
only on the analyticity properties of each term but also
on the convergence of the series. Again, the convergence
of our expansions depends on the nature of the
Hamiltonian.

Consequently, the Hamiltonian of the problem must
belong to a well-defined type. In the following, for
reasons of simplicity, it will be assumed that II has
the form

H= A+V(r). —

However, as the reader will realize, the method can
be generalized and similar results could be derived for
other types of Hamiltonian.

The operator H(K) corresponding to this Hamil-
tonian is very simple;

H(K) e exrHeixr ( i~—+R)2+ lr

The eigenfunctions (rt/, K) of H(K) are periodical and
the square of their modulus is integrable; therefore,
they are vectors of an Hilbert space which can be

' S.Bochner and W T Martin, Sesera. l C.oraPleg Variables (Prince-
ton University Press, Princeton, New Jersey, 1948).
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spanned by the states
I p) defined by

(rl p) =exp(ipr),

lp)=~ '"lp&,

(22)

(23)

U(r)=u 'P V(p) exp(ipr).

The coeflicients V(p) are bounded:

Iv(p) I
&

(24)

(25)

The operator P(K) can be represented explicitly in the
reciprocal space by its matrix elements

(pl@(K) I p) =(p+ K)'~, ,+ v(p —q). (26)

If the potential U(r) is smooth, its Fourier transform
decreases rapidly for large values of y. More precisely,
it will be assumed, in the following, that for an n-dimen-
sional crystal, our potential V satisfies the condition

where the vectors y are reciprocal lattice vectors. The
state I/, K) can be defined by its matrix elements (pl/, K)
which are finite (at least for K real). The operator H(K)
can be represented in this basis. The potential U(r) is
assumed to be integrable, and, therefore, we can calcu-
late its Fourier series,

l(pl/, K)
I
&C (C=1 for K real),

P"- l(pl/, K) I &c(,~.),
(32)

(33)

for 8(/, K) &Eo and
I
E

I
&R. Here e is an arbitrary small

positive value and C(e,E,) is a positive constant. The
fact that C(e,EO) does not depend on K is very important
and will be used extensively in the following.

The proof remains valid for complex values of K in
the regions where the modulus of the state

I /, K) remains
bounded.

of p. If, in agreement with Eq. (26), V(p) contains terms
of the order p '" '& or less, then the sum is also of the
order p '" 'i. Thus the coeKcients (pl/, K) which ap-
pear in the left-hand side of the Schrodinger equation
must be at most of the order p '"+" at condition (29)
holds. Conversely, if this condition is valid, then the
sum P, l(pl/, K)

I
converges. Therefore it is consistent

to assume that the coefficients (pl/, K) are at most of
the order of p &"+".It is clear that such a result would
be obtained by perturbation methods.

In Appendix I, a more rigourous proof of this result
is given for real values of I and more stringent bounding
inequalities are obtained.

p" 'Iv(p) I & (27)
(/, Kl/, K) =P(/, Klp)(pl/, K)&co,

This condition is not very restrictive, it does not even
imply the convergence of the series given by Eq. (24).
In fact, for e= 1, a potential made of 8 functions satisfy
Eqs. (24) and (26). On the other hand, for n&1, po-
tentials of the form e "/r obey also these conditions.

Now, as we shall see, these bounding inequalities
imply a kind of smoothness of the Bloch waves which is
characterized by the asymptotic behavior of the co-
efficients (p I/, K).

As the wave function must be normalized, we have

(/, K*l/, K)—=g(/, K*Ip)(pl/, K) =1. (28)

P +'I(pl/, K) I & (3o)

This result can be derived by inspection of the
Schrodinger equation which can be written

LE(/, K)—(K+p)'j(pl/ K) =P V(p q)(ql/, K). (31)

First, let us assume that the sum Pi, l(pl/, K) I
is con-

vergent. In this case, it is clear that the main contribu-
tion in the sum P, V(p —q)(ql/, K) comes from terms
of small q; accordingly, the asymptotic properties of
this sum depend on the behavior of V(p) for large values

Therefore, the coefficients (p I/, K) must be bounded. (at
least for K real):

l(pl/, K) I
& (29)

Moreover, for large values of y, these coefficients de-
crease, and as a consequence of Eqs. (27) and (29),
we have

where Co is a constant independent of K. However, for
special values of K=K'+iK", the states I/, K) and
I/, K*) may become orthogonal to each other. In this
case, since the normalization condition (28) remains
valid for this states, their modulus must become infinite.
In the vicinity of a point of degeneracy defined by a real
wave vector Ko (for instance, the center of the Brillouin
zone for the complex band of Fig. 1) this situation may
occur even for very small values of

I
K—Kol. Strictly

speaking, for such points P(K) cannot be defined by
Eq. (17). However, it is not difficult to verify on ex-
amples, and we shall prove later on, that the matrix
elements of E(K) remain quite regular at these anoma-
lous points because cancellations occur in the right-hand
side of Eq. (17). Therefore, the difficulties introduced
by this anomaly are spurious and in the following, we
shall not pay much attention to them.

E. Change of Reyresentation and Problems
of Convergence

Until now, the states I/, K) have been defined by
their components (pl/, K), but it is useful to consider
also other representations. The components of I/, K) in
a new basis are given by series in terms of the coefficients
(pl/, K). We shall examine here the convergence of such
series. Thi.s question is important because, in order to
derive the analytic properties of (rlP(K) I

r'), we have
to use several representations of P(K); therefore, it is
necessary to prove that the series which are introduced
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This series can be majorized,

2 1&rly&(yl/, K)
I

& 2 l(yl/, K) I
~

u&uo

According to Eq. (33) when pp goes to infinity, the series
of Eq. (36) converge uniformly with respect to K.There-
fore the series of Eq. (34) converges absolutely and
uniformly with respect to K. The sum, which defines

&r~/, K&, is a continuous function of r.
In the following, it will be convenient to use also as

a basis, the set of eigenstates of H(K) which correspond
to a given real value Kp. The reasons of such a choice
will become clear in the next section. It is assumed that
this set of states is complete; this condition can be
written explicitly,

Z(y lmKp)(mKp I q) = (y I q) = ~pp (37)

by a change of representation, are uniformly convergent
with respect to K.

For instance, the wave function (r ~/, K& is given by

&r~/, K&=n—' lim P &r~y&(y~/, K)
uo ~ u&uo

=i-' lim P exp(iy r)(y~/, K). (35)
uo u&uo

Q(K)= P i/, K)(/, K*i. (41)

In the space of the periodical functions and for real
values of K, Q(K) is an ordinary projection operator.
This operator is very closely related to P(K) since ac-
cording to Eqs. (17) and (2), we have

(r I &(K) Ir'&

=v expLiK(r —r')g&rtQ(K) [r'&

=expL~K(r —r')j E &rly&(yIQ(K) ly')&y'lr'&. (42)

F. Definition and Analyticity of the Matrix
Elements (rri Kp

~
Q(K)

~

Bi Kp)

Our aim is to redefine the operator P(K) of a band S
for complex values K= K'+iK" and to show that its
matrix elements (r

~
P(K)

~

r') are analytic functions of K
in a region of the complex K space, defined by an in-
equality of the form

~

K" (A; here, 2 is a positive
constant independent of K, r, and r'. However, these
properties are dificult to establish directly.

It is convenient to introduce an auxiliary operator
Q(K). This operator is defined rigorously in the follow-
ing and turns out to be

Now the component (y /, K) can be expressed in terms
of the coefficients (mKp /, K) by a formal series,

(yi/, K)=:P(yimKp)(mKpi/, K). (38)

The terms (mKp ~/, K) can be defined explicitly by

(mKp j/, K) =P(mKp ) q)(q [ mKp), (39)

This important result will be used in Sec. IIG to derive
the analyticity properties of the matrix elements
&r~P(K) ~r'&.

and according to Eqs. (32) and (33), these Hermitian
products exist and are bounded.

Our purpose is to show that the formal series (38)
converges to (y ~

/, K) uniformly. This task is performed
in Appendix V (at least for real values of K). A study of
the convergence of the formal series (38) shows that the
sum of the series is (y ~

/, K). Moreover, it is proved that
the series converges to (y~/, K) uniformly with respect
to K. This statement can be expressed more explicitly.
Ke say that it is possible to associate with each positive
number p, a finite number Ep(p) possessing the following
properties: (1) Ep(p) is independent of K Lbut E(m, K)
is assumed to be bounded). (2) For any value E bigger
than Ep(p), we have

l(yl/ K) — 2 (ylm Ko)&m Kpl/ K)1&p' (40)
Z(m, KO) &Zz)zo(.)

H(K) —H(Kp) = —2(K—Kp)i&+(K' —Kp') . (43)

In order to give a direct definition of Q(K) and to derive
the analyticity properties of the matrix elements
(m, Kp

~ Q(K)
~
m, Kp), we introduce the resolvant

R(E K) = 1/(E—H(K)) . (44)

Now let K, be a real value of K; the states )m, Kp)
which are eigenstates of H(Kp) form an orthogonal basis
of the space of the periodic functions. In this section,
we want to prove the analyticity of Q(K) in this basis,
for small values of (K—Kp). This result is derived by
using the general properties of the Hamiltonian H. It is
generalized in the next section in order to prove the
analyticity of the matrix elements &r~P(K) ~r'& in a
strip of the complex K space. The problem is rather
delicate because the validity of the proof depends very
much on the nature of the Hamiltonian II. In particular,
the matrix elements (m, K

~
Q(K)

~

m'K) and (r
~
P(K)r')

are given by expansions and, for this reason, it is quite
necessary to prove the uniform convergence of these
series. Therefore, for the sake of simplicity, it is assumed
that the Hamiltonian is of the form H= —A+ V and
that the potential satisfies the general conditions listed
in Sec. IID.

In the basis formed by the states
~
m, Kp), H(Kp) and

Q(Kp) are diagonal. On the other hand, the states
~
/, K)

are eigenstates of H(K) and therefore for small values
of

~

K—Kp~, the operator LH(K) —H(Kp) j can be con-
sidered as a perturbation. In fact, according to Eq. (21),
we have
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We consider Ko as fixed, and in the complex energy
plane, we draw a closed contour c, in the following way:
all the points which correspond to eigenvalues E(/, Ko)
belonging to $(/= 1 d) lie inside the contour, all the
points associated with the other eigenvalues E(/', K,)
remain outside (see Fig. 2). We can define Q(K) for
small real or complex values of (K—Ko) by integrating
R(E,K) on this contour

Q( )—=
2~i, E—H(K)

For small values of (K—Ko), this definition coincides
with the definition given above by Eq. (35); this fact
can be verified immediately, if we assume the continuity
of the eigenvalues E(/, K) in the vicinity of Ko. We have

Q(K)l/, K)=E(/, K)l/, K), E(/, K)gm
=0, E(/, K) fEm.

(46)

These relations are direct consequences of Eq. (45) and
are also completely equivalent to definition (41) because
the states I/, K) are normalized by Eq. (15).In the real
K space, it is, of course, necessary to assume the con-

tinuity of the eigenvalues E(/, K); otherwise it would be
impossible to define energy bands. Thus, we know that
for real values of K, the definition (41) of Q(K) must be
valid. Therefore, for K real, the definition (42) of E(K)
in terms of Q(K) coincides always with the elementary
definition (5) of Sec. IIA, and this is just what we want.
On the contrary, for complex values of K, we do not
need any continuity assumptions; the analyticity prop-
erties of Q(K) remain defined by Eq. (42).

Now, let us show that for small values of (K—Ko)
definition (45) is meaningful for complex values of K.
LWe do not assume the continuity of the eigenvalues

E(/, K).)The operator R(E,K) can be written as follows:

R(E,K) =
E—H(Ko)

(47)
1—LH(K) —H(Ko))LE—H(K )7 '

Thus, R(E,K) can be expanded in a formal way in terms
of the operator LH(K) —H(Ko))LE —H(Ko)) '. As

H(K) is a polynomial function of K, the analyticity
properties of the matrix elements of R(E,K) can be
derived easily by using this expansion, but first we have
to show the validity of this operation for small values of
(K—Ko). More precisely, we must prove that in a small

ErIK, ) j Er G,'K~i realaxis

FrG. 2. Contour c in the complex energy plane. The points
which are inside the contour correspond to eigenvalues of II
belonging to S. The points which are outside are due to other
bands.

I
E—E(/, K,) I

&L„. (51)

where L is the isolation length of the contour. Accord-
ingly, the state If) introduced above satisfies the
condition

(flf)—= (gll:E*—H(Ko)) '

Therefore, if E belongs to the contour, the state
I f)

exists and Eq. (49) can be applied:

I (gl LE*—H(Ko)) '(—A)LE—H(Ko)) 'Ig)
&~l(glLE' —H(K)) 'lg) I

+C(gl LE*—H(Ko)) 'LE—H(K ))-'lg)
&(&I-'+&I-')(glg) (»)

On the other hand, any operator U satisfies the in-

equality

l(flUlf) I'&(flf)(flU'Ulf), (54)

which is a trivial consequence of the fact that for any
complex constant vector X, we have

(f I
(U'+a*)(U+z)

I f)&0. (55)
By putting

U= (i&)LE—H(Ko)7

in Eq. (54) and by using Eq. (53), we get

I(gl(/&)LE —H(Ko)) 'lg) &D(glg)

(56)

(57)

where D is a constant independent of E. Finally, we

domain of the complex K space around the point
Ko, the upper bound of the modulus of the operator
LH(K) —H(Ko))LE —H(Ko)) ' remains smaller than
one.

Neither H(Ko) nor (iv) which appear in LH(K)—H(Ko)) are bounded operators. However, the operator
(iV) is bounded with respect to H(Ko). More explicitly,
we show in Appendix III that for any periodic normal-
izable state

(fl —Al f) &~(flH(Ko) I f)+f/(fl f), (4g)

where A and 8 are positive constants independent of

I f). We may write, also,

(fl —~lf)&~ I(flLE—H(Ko))lf)+(flf), (49)

where E is the afFix of any point of the contour c. The
coeKcients A and t, are positive constants which depend
only on Ko and c.

Now let Ig) be an arbitrary state. We can define
another state

I f) by putting

If)=LE—H(Ko)) 'lg). (50)

In general, the operator I
E—H(Ko)) ' is not Hermitian

but its eigenvectors are orthogonal. On Fig. 2, it appears
immediately that the affix E of any point of the contour
c always satisfies the inequality
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If C(Kp) is small enough, the condition

I
K—Kpl &C(Kp)

implies
(59)

I (g I [H(K)—H(Ko)][E—H(K,)]—'
I g) ((g I g) (60)

for all values of 8 belonging to c. Therefore the resolvant
R(E,K) can be expanded in an absolutely convergent
series [see Eq. (47)]

R(E,K) =
E—H(Kp) E—H(Kp)

X[H(K)—H(K,)] + ". (61)
E—H(Kp)

As each term is an analytic function of K, R(E,K) is
also an analytic function of K, the series can be inte-
grated on the contour c and as it converges uniformly
with respect to K, the operator Q(K) which is propor-
tional to the sum of the integrated series is also an
analytic operator. More precisely, we state that the
matrix elements (m, Kp Q(K) I

m', Kp) are analytic func-
tions of K for

I
K Kp &C(Kp).

In Sec. IID, we described anomalies connected with
the fact that I/, K) and I/, K") may become orthogonal
to each other even for arbitrary small values of K".This
phenomenon occurs in the neighborhood of the real
branch points of the Bloch functions. We see now that
these anomalies have no inAuence whatsoever on the
analyticity properties of the matrix elements of Q(K)
in the basis formed by the states

I m, Kp).

G. Analyticity of the Matrix Elements
(rl~(K) lr'&

The operator P(K) is given in terms of Q(K) by Eq.
(42) and the analyticity of Q(K) for

I
K—Kpl (C(K,) in

the basis of the states
I m, Kp) can be used now to prove

the analyticity of the matrix elements (r I P(K)
I
r'). But,

for this purpose, Q(K) must be expressed in other
representations.

The matrix elements (p I Q(K) I
y') can be defined by

(pl Q(K) ly') = »m 2 2 (plm Kp)
P-+ ~ E(m, KO) ~(B B(m', Kp) ~(B

X (m, Kp
I Q(K) I

m', Kp)(m', Kp
I
y') (62)

(sum over m and m'). Each term of this series is analytic
with respect to K. Therefore the sum is also analytic for
I
K Kpl &C(Kp), if the series converges uniformly with

respect to K. But according to Eq. (50), (plQ(K) Ip')
can be written in a more explicit way (at least for

obtain the majorization [see Eq. (43)]

I (g I [H(K) —H(Ko)]LE—H(Ko)] 'I g) I

([2DI K—Kpl+L 'I K' —Kp'l](glg). (58)

K real):

(ylQ(K) ly')=2 2 Z(plm, Kp)
l m m'

&&(m, Kpl/, K)(/, K lm', Kp)(m', Kply'). (63)

We proved in Sec. IID that the series giving (p I/, K) in
terms of the components (m, Kpl/, K) [see Eq. (40)]
converges to (y I

l, K) uniformly with respect to K when
E goes to infinity. Therefore, for real values of K, the
double sum of Eq. (62) converges uniformly to the
value of (plQ(K) Iy') which correspond to the ele-
mentary definition (41). The same method can be
applied for complex values of K; however, it is not really
valid for the anomalous points because, in this case,
definition (41) becomes meaningless. However, the
difFiculty is not a very serious one; we saw before that
the matrix elements (m, K, IQ(K) Im', Kp) remain well
defined and analytic at these points. In any case, we
can define the matrix elements (plQ(K) Ip') without
ambiguity by using Eq. (62). The nature of the con-
vergence of the series giving (pl Q(K) I

p') depends on the
behavior of high-energy terms and not on low-energy
effects related to degeneracies. Therefore, we can assume
safely that the double sum of Eq. (71) is uniformly
convergent with respect to K for real or complex values
of K. Thus, the matrix elements (ylQ(K)lp') must be
analytic for

I
K—Kp

I
(C(Kp).

The same method can be used to derive the analyticity
of the matrix elements (r I Q(K) I

r') in the domain defined

by I
K—Kpl (C(Kp). These matrix elements must be

defined by [see Eq. (22) and (23)]

(rIQ(K)lr'&=p ' lim 2 2 (rip&(plQ(K)lp')(p'Ir&.
uo ~ u&uo u'&uo

(64)

Each term of this series is analytic with respect to K.
Again we can write explicitly (rl Q(K) Ir') in terms of
the states

I l, K) by replacing the operator Q(K) in the
right-hand side of (64) by its expansion (41). In this
way, we can show that the double series of Eq. (64)
converges uniformly with respect to K. This result is
obtained by comparison with Eq. (35) which gives the
function (r I /, K) in terms of the components (p I /, K); in
fact, we proved in Sec. IIE that this series converges
uniformly with respect to K when pp goes to infinity.
The matrix elements (r I Q(K) I

r') are defined by a series
which converges in the same way; therefore they are
analytic with respect to K for

I
K—K,

l &C(Kp);
Now, we can extend the domain of analyticity of these

matrix elements (rlQ(K) Ir'). In the real K space, we
consider a closed spherical domain containing the
Brillouin zone and defined by I Kl &R. Each point of
this domain is determined by a value K, of K and is the
center of an analyticity sphere of radius C(K,). Borel-
Lebesgue theorem indicates that the whole domain can
be covered by a finite number of these spheres. Therefore
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the matrix elements (r~ Q(K) ~r') remain analytic in a
domain defined by the equations

~

K'
(
&R, (

E"
~

& A
where A is a positive constant.

According to Eq.(51), the matrixelements (r
~
P(K)

~

r')
are analytic in the same domain. Furthermore, by defini-

tion, they are periodic with respect. to K for real values
of K; consequently they are also periodic for K complex
and with the same periods. This result comes from the
fact that two analytic functions which have the same
values on a segment are identical. This 6nal remark
permits to formulate the fundamental result of this
section: When the Hamiltonian H satisdes proper regu-
larity conditions, the matrix elements (r

~
P(K)

~

r') of the
operators P(K) associated with a given band 5I, are
analytic functions of K= K'+iK" in a domain defined

by a condition
~

K"
~

(A where A is a positive constant
which depends only on the characteristics of the band.
In practice, the matrix elements (r~P(K) ~r') remain

analytic in larger domains; for instance, in tubes dehned

by inequalities of the form t
K"

~

&A(X") where A(Z")
is a positive function of the direction of K".

III. DEFINITION AND ASYMPTOTIC PROPERTIES OF
THE OPERATOR ASSOCIATED WITH

AN ENERGY BAND P

A. De6nition of I'

By definition, I' is the operator of projection on the
set of all the eigenstates which belong to a band S. It
can be expressed as an integral of P(K) on the Brillouin
zone

possible to express I' in the form

(r,~P~r')= P(r~m, )(m, ~r'). (68)

Here the points M are the nodes of a lattice; the index j
is used to label the Wannier function which are associ-
ated with the same site M. We see immediately, in this
case, that, if the modulus of the Wannier functions de-
crease exponentially at infinity, the same property re-
mains true for the matrix elements (r~ P

~

r') when r or
r' goes to infinity.

In fact, the asymptotic properties of the matrix
elements (r~ P

t
r') can be related directly to the analy-

ticity of P(K) in a strip of the complex K plane, but to
show this connection, we need a theorem which is given
in the next section.

B. Analyticity of Periodic Functions m.d
Asymptotic Properties of Their

Fourier CoeRcients

The following theorem appears under diGerent forms
in the literature. Its proof which is very simple is given
here for the sake of completeness.

Theorerrl; Let f(K) be an e-periodical function of
the e-dimensional complex vector K=K'+iK", ad-
mitting real vectors K; (j=1.. rl) as periods. Thus
f(K+K;)=f(K). On the other hand, let t be the trans-
lation vectors of the reciprocal lattice. This lattice is de-
fined by the reciprocal vectors ti (t=1. .e) and we have

(r
~

P [r') = d"K(r (P(K) [r').
B.Z.

(65) K; ti ——2ir8, i, (69)

As the matrix elements (r~P(K) ~r') are analytic with

respect to K for real values of K. and in the neighbor-

hood, the matrix elements (r
~

P
~

r') are well defined and
when the potential V fu1611 the requirements of Sec. IID,
they are continuous with respect to r and r'. They are
also periodic in the following sense:

(ryt~P~r'+t)=(r~P~r'). (66)

Here t is a translation of the crystal. On the other hand,
the fact that I' is a projection operator appears clearly
in the identity

(67)

which is a direct consequence of Eq. (7).
Our aim is to show that the matrix elements (r

~
P

~

r')
decrease exponentially when ~r r'~ goes —to infinity.
This behavior is directly related to the localizability
properties of the electrons in insulators; this correlation

is, in fact, the reason of our interest in this matter and
can be demonstrated easily. For instance, if the space
of the eigenfunctions of H which belong to can be
spanned' by a set of Wannier functions (r~M;), it is

This question has been discussed previously. J. des Cloizeaux,
Phys. Rev. 129, 554 (1963).

p Vlfg (Vi —llltegel) .
l

(7o)

f(K) =2 ""g(t), (71)

and the Fourier coefficients g(t) satisfy the condition

(72)

Conversely, if the coefficients g(t) of a Fourier series
have this asymptotic behavior, the series converges in
the region

~

K'
~
(A and its sum is an analytic function

of K in this domain.

Proof: As f(K) is analytic in the domain
~

K"
~
(A,

it can be expanded in Fourier series for I real.

f(K)=2 ~""g(t). (73)

For
~

K"
~
(2, we can make an analytic continuation

Then, if f(K) is an analytic function of K in a domain
defined by

~

K"
~
(A, it can be expanded in a convergent

Fourier series in this domain:
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of this formula. We have

f(K'+iK") =P e'x'-x "g(t) .
t

(74)

therefore, we have also

(r I P(K) I
r'+t) = e

—'x'(rl P(K) I
r').

By using this result in Eq. (79), we get

(81)

lim e'"'g(t) =0.
g -+Op

(76)

Conversely, if this relation is valid for any value of e

smaller than one, the Fourier series which is built with
the coeflicients g(t) converges uniformly in any domain

I

K"
I
& eA with 0(e(1.Therefore, the sum of the series

defines a function f(K) which is analytic in the domain

I
K"IA.
Remark: The preceding results can be generalized

without difficulty. For instance, we can assume that
f(K) is analytic in a domain Sdefined by I

K"
I
&A (1")

where A(k") is a positive function of the direction of
K".Let B(r) be the upper limit of the scalar products
(K" r) when K" belongs to S. Then it is trivial to
show that

lim expl etB(t) jg(t) =0.
t~o

(77)

Conversely, if this relation holds for the coe%cients of a
Fourier series, the series defines a function f(K) which
is analytic in the domain S.

C. Asymptotic Properties of the Matrix
Elements (r I

P
I
r')

The analyticity of the matrix elements (rlP(K) r') in
a domain given by an inequality of the form

I

K" (A,
has been proved in Sec. II, for a large class of Hamil-
tonians. This result can be used now to derive, with the
help of the preceding theorem, the asymptotic prop-
erties of the matrix elements (r I

P
I
r'). More precisely,

it will be shown that when r and r' remain fixed, we have:

lim e'~'(r IP Ir'+t) =0.
g~oo

(78)

Definition (65) implies:

(rl P
I
r'+t) =

~ Z 0

d-K&rlP(K) Ir+t). (79)

But P(K) can be expressed in terms of Bloch waves as
in Eq. (5). By definition

(r+tl &p(l, K))=e'x'(rl q(/, K)), (80)

We consider here f(K'+iK") as a periodical function
of K', the Fourier coefficients of this function are
e x"g(t). But the function f(K'+iK") is an analytic
function of K' for real values of K'. Therefore, according
to a well-known theorem, the coefficients go to zero
when

I
t

I
becomes infinite. By putting

K"= .Ai —(0«&1) (t=t/ltl), (75)

we get immediately

(rlPlr'+t)=
B.Z.

d"Ke 'x'(r IP(K) Ir'). (82)

On the other hand, as the matrix elements (r I P(K) I
r')

are analytic with respect to K and periodic, they can. be
expanded in convergent Fourier series. The periods are
the vectors which define the reciprocal lattice. Thus, the
terms of the series are of the form e'x'. Equation (91)
shows immediately that the terms (rl Pl r'+t) are pro-
portional to the Fourier coefficients. Finally, we may
write

(r I P(K) I
r') =0 ' P e'x'(r

I
P

I
r'+t), (83)

IV. CONCLUSION

In the previous sections, general assumptions con-
cerning the regularity of a one-electron Hamiltonian
H= T+V and its completeness have been used to show
that the projection operator P(K) which can be
associated with a given band S has matrix elements
(r I

P(K) I
r') which are continuous with respect to r and

r' and analytic with respect to K in a strip of the com-
plex K space defined by I

K"
I (A, where A is a positive

constant. On the other hand, as a consequence of this
analyticity property, it was shown that for large values
of

I
r—r' I, the matrix elements (r I

P
I
r') have ex-

ponential tails

lim expLeA Ir —r'I j&rlPlr')=0 0(E(1. (84)
[ r—r'I ~oo

In the case of insulators, a physical interpretation of
this result can be given in terms of electronic correlation
functions at zero temperature. For each value of K, we
can introduce the operator P,(K) which is the sum of all
the operators P(K) which correspond to filled bands.
For real values of K, this operator is analytic. The
domain of analyticity of P(K) must be the same, in
general, as the domain of analyticity of the operator
P(K) related to the valence band; it may be even larger.
Thus, the corresponding operator J & satisfies a relation
of the form (84). Its matrix elements are just equal to
the one-electron correlation function as it is easy to

where 0 is the volume of the Brillouin zone.
Now, we can apply the theorem of Sec. II. We see

immediately that the property (78) is a direct conse-
quence of the analyticity of (r I

P(K) I
r') in the domain

I

K"I&A. The remark of Sec. IIB shows that this
property can be generalized, if the matrix elements
(r I P(K)

I
r') remain analytic in a strip of the complex K

plane defined by an inequality of the form
I
K"

I
(A (K")

where A (2")is a positive function of the direction of K".
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verify
(rlF. I

r'&= (~ I
C.+C"

I
~&—=G(r,r'). (Ss)

the absolute convergence of F(p),

p l(pl/, K)I«. (AI.S)
Here lcu& is the ground state obtained by filling all the
lower bands. C,+ and C, are the creation and annihilation
operators of an electron at the point of coordinate r.

Thus, in the independent-electron approximation, the
one-particle correlation function G(r, r') decrease ex-

ponentially when the distance Ir—r'I increases. This
result remain probably valid also when there are inter-
actions. It is likely to be true also for other correlation
functions. These projection operators have the ad-
vantage of being completely independent of the phase
factors of the Sloch waves. In general, difIIculties are
introduced by the determination of the individual
phases of these waves. On the other hand, these phase
factors seem devoid of any physical meaning. Ap-

parently, many problems of solid-state physics could be
treated properly without introducing Bloch waves in a
specific way, but, instead, by using projection operators
which are more simple objects. It is hoped that by
emphasizing this fact, this study may help to the
solution of these problems.
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APPENDIX I

Derivation of the bounding condition
I p I

"+' '
I (p I /, K) &C

where C is a constant independent of K (for K real)

In the reciprocal space, the Schrodinger equation can
be written

LE(/, K)—(K+p)'$(yl/, K) =Q V(p —q)(ql/, K). (AI.1)

Let us consider the solutions which are associated
with a given band S. For these eigenstates, we have

This condition can be established by showing that
IF(/, K,p) has an upper bound independent of y and K.
The sum F(/, K,y) I

can be considered as a scalar prod-
uct and Schwartz inequality can be applied:

IF(/, K,y& I

= I& v(p —q)(ql/, K& I

q

—LZIv(q) I'Zl(q'I/, K) I'3in (AI.6)

2 l(ql/, K) I'=1. (AI.7)

On the other hand, the sum P IV(q) I' converges if
the square of the potential is integrable and, for in-
stance, if we have

lpl +'Iv(p&l'& (AI.S)

since the vectors p are associated with the points of a
lattice in the reciprocal space. For e&3, condition
(AI.S) is weaker than the assumption of Eq. (26) which
can be written

I y I

2n—2
I v(p) I

2( ~ (AI.9)

For e= 1 and m= 2, this latter condition is not sufhcient
to insure the convergence of the series Q I V(q) I

'. How-
ever, even in this case, we can find an upper bound for

I
F (/, K,p) I by assuming the uniform convergence of the

mean value of the kinetic energy for the states under
consideration

Q p'I(yl/, E) I'(C". (AI.10)

This assumption is highly reasonable since the eigen-
values E(/, K) have an upper bound Fo. It is proved
rigorously for real in Appendix IV by using the results
of Appendices II and III. In this case, Schwartz in-

equality can be applied differently:

The wave function is assumed to be normalized. There-
fore, if K is real, we have

IE(/, K) I
&&„ „I2 IF(/, K,p) I

= IE V(p —q)(ql/, K) I

q

where Eo is a constant which depends on the band. %'e

want to show that the corresponding coef5cients (p I/, K)
satisfy an inequality of the form

p.+'- l(yl/, K)I «, (AI.3)

where C is a constant independent of K and /; n is the
number of space coordinates and & an arbitrary positive
constant. It is clear that the asymptotic properties of

(p I /, K) for large values of p depend on the behavior of
the following sum:

V(y —q)
P(q'+a)'l(q'I/, K) I2, (AI.»)

(q+a)' a'

where a is an arbitrary positive constant.
According to (AI.7)

Z(q+a)'I (ql/, K)
I

'

(4 P(q'+a') I(ql/, K) I'(4(c"+a'). (AI.12)

F(/, K,p) =P V(p —q)(ql/, K).

Let us derive first a weaker condition which implies

(AI.4) On the other hand, if condition (AI.S) is realized, we can
find for

I V(q) I
an upper bound of the form

I V(q) I
(&/(q" '+II), (AI.13)
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psl(pit, K)
I
(1(s), (AI.15)

where F(5) is a constant independent of K, and we
want to show that a condition of this nature holds also
if we replace 5 by (5+1). Condition (AI.15) implies the
absolute convergence of P(p) and we can try to majorize
this sum. As we have

l(yll, K)
I
&1, (AI.16)

we can find an upper bound for I(pll, K)
I by using

(AI.15)
1(pll, K) I «(5)/(p'+D(5)), (AI.»)

where C(5) and D(S) are positive constants. For in-
stance, we may choose D(5) in an arbitrary way, and put

C(S)= F(S)+D(5). (AI.18)

By using (AI.13) and (AI.18), we find an upper bound
« IF(p) I:

IP(l, K,y) I &Z lv(y —q) I l(all, K)
I

&2 ~C(5)/(LI p —al" '+&7Lq'+D7). (AI.19)

For 1&S&m, it is easy to see that the sum on the right-
hand side of (AI.19) converges and that the main con-
tributions to this sum come from regions where

I tII is
of the order of

I p I
. Therefore, for large values of p

L I y —
ql

" '+f~7Lv'+D(5) 7

dnq
(AI.20)

n LI p —«I" '7Lq'+D(s)7

where A and 8 are positive constants. Consequently,
we have

Iv(p —q) I
A'

(AI.14)
«+a)' ~ (ly —ql" '+~)'(a+a)'

The sum in the right-hand side of this inequality con-
verges and for m= 1 and m=2, it is trivial to show that
it has upper band independent of jp. Therefore, condition
(AI.5) is established for any value of n.

For n=1, this condition (AI.5) implies Eq. (AI.3).
Now, let us derive (AI.3) for n) 1.We assume that for a
number 5, (1(S&n) the following condition holds for
any real values of K:

APPENDIX II

Proof of the bomnding inequality

I (f I vl f) I «(fl —A
I
f)+c(~) (fl f)

for any state
I f) having the same periodicity as V (c= arbi

trary positive constant)

Let V be a periodic potential and V(p) its Fourier
coeKcients

V(r) =2 e'" V(p). (AII.1)

It is assumed that these coeflicients V(y) are bounded
and satisfy Eq. (26)

V(p)& ~, (AII.2)

p" 'Iv(p)I& (AII.3)

In an equivalent way, these conditions imply the exist-
ence of two positive numbers A and 8 for which we have

I V(y) I
(A/(p" '+8) . (AII.4)

Now let c be an arbitrary positive number and
I f) a

normalized periodic state; we want to show that this
state satisfies always an inequality of the form

I(fl Vl f) I (e(fl —Al f)+C(e)(f(f), (AII 5)

where C(e) is a constant independent of
I f). The func-

tion (r
I f) can be expanded in Fourier series

(rlf&=~ '"Z(qlf)e'", (AII.6)

where e is the volume of the crystal cell. We have

where G(S) is a positive constant. Therefore, from
Eqs. (AI.19), (AI.20), and (AI.21), we deduce

p' 'I F(l,K,p) I
& ~ (5), (AI 22)

where &p(5) is a positive constant independent of l and
K. Note that the whole argument breaks down if the
condition 1&S&eis not fu1611ed; in this case, the sums
cannot be replaced by convergent integrals. Now,
Schrodinger Eq. (AI.1), Eq. (AI.4), and Eq. (AI.22)
imply the existence of an inequality of the form

p'+'I (y ll, K)
I
&C(5+1) (1(S&n). (AI.23)

But Eq. (AI.5) tells us that Eq. (AI.15) holds for
1&S(2. According to (AI.23), it must hold also for
1&5(n+I. Therefore (AI.3) is proved also for n)1.

where 0 is the volume of the Brillouin zone. But, we
have also:

(fl f)=Z
I (ql f) I'

(fl —~lf)=Z v'l(&lf) I'

(AII.7)

(AII.8)

L I I —q I
"-'+KLv'+D(5) 7

dn ()
(AI.21)

'v' p' '

(fl vlf)=&(fly)(elf) v(y —q) (A»9)
pq

The modulus of the mean value of V can be majorized



JACQUES nrs CLOIZEAUX

by using Schwartz inequality

l(fl I'lf)
I
&2 Iv(p) IX I Vip+a) I l(elf) I

&{~I
v(p')(p'+ a)'I

&& 2 I(p+&If) I'I(vlf) I'}'" (A» 1o)
pq

obtain

(f1H(K)
I f)& (1—p' —e")(fl —A

I f)
+LE'—(2/e') —C(e")7(f I f) . (AIII.S)

We put

2—+C(p"), (AIII.6)
1

The Anal result is

where a is an arbitrary positive constant which is intro- and. we choose small values of &' and e" in order to have
duced in order to get convergent sums. In fact, accord-
ing to Eq. (AII.4), the sum Q, IV(p) I(p+a) ' con-
verges to a constant value. On the other hand, we have

Z(p+a)'l(p+~lf) I'l(qlf) I'
pq

=Z(i p —iI I
'+a')l(1

I f) I
'l (q I f) I

'

&E(4p'+4q'+a') I(plf) I'l(elf) I'

(AII.13)C(e) &n/2p C&B.
We verify immediately:

I
O'I vlf) l(p(fl al f)—+c(p)(fl f) (AI.I.14)

APPENDIX III

Proof of the bounding inequality (fl 6If)—
&A(fl H(K) I f)+B(fl f) for any periodic
normalisable state

I f) (A and 8 are posi
tive constants independent of I f)

According to the definition of H(K) I see Eq. (21)7,
we have

(fIH(K) I f)= (f1 (—i&+K)'I f)
+(fl vlf) & Vl(—A+Ic') If)

—2
I (f I

iK &
I f) I

—
I (f I

v
I f) . (AIII.1)

We can majorize the last two terms of this inequality.
We write

l(fl —i&if) I'&(flf)(fl —~lf) (A»1»
This equation implies

I Vli&lf) I
&pp'(fl —~lf)+(1/p')(flf), (A»I 3)

where e' is an arbitrary positive constant.
On the other hand, we can use the results of Ap-

pendix II,

I (fl I'If)
I
& p"(fl AI f)+C(")(flf—), (AIII 4)

where e" is an arbitrary positive constant. Therefore,
by using Eqs. (AIII.1), (AIII.3), and (AIII.4), we

Finally, by comparing (AII.10), (AII.7), (AII.S), and
(AII.11), we obtain: (n, p =positive constants)

l(fl I"If) I'&(fl f)l ~(f I

—A
I f)+I~(f if)7 (AII.12)

Let C(e) be a positive number for which we have

(fl —&I f)&A(flH(K) I f)+a(flf). (AI».

E(/, K) (Ep, (AIV.4)

and we can use this fact by applying the results of
Appendix III.
I'(/, K) =(l,Ki —Z I/, K) &A (t,KiH(K) i t,K)

+a(/, Kl/, K) =ax(/, K)+a.
By taking account of (AIV.4), we obtain

T'(t, K) &aP.,yI/= T. —

APPENDIX V

(AIV.S)

Proof of the enstence of a finite number Ep(p) inde
pendent of K and such that for any value of E /arger than

Ep(p), we may write:

i(pi/, K)— Q (pim, Kp)(m, Kpi/, K) i
&e

)the sum is over m and itis assumed that E(/, K) remaAns

bounded when K varies7.

The eigenfunctions of H(Kp) form an orthonormal set
of states Im, Kp) which can be defined by their com-
ponents (pl m, Kp) This set is as.sumed to be complete.

APPENDIX IV

Upper bound of the sum p p'I(pl/, K) I'.

For an eigenstate Il, K) of H(K), the mean value of
the kinetic energy is given by

T(/, K)=(/, Kl —nl/, K)=p p'I(pit, K)l'-. (AIV. 1)

We assume that K is real and we want to show that, if
the state belongs to a given band , then the kinetic
energy is bounded

T(/, K) & 7', (AIV.2)

where T is a constant independent of K and /. The
eigenvalues E(/, K) are given by

&(/, K) = (/, K
i H(K) i/, K). (AIV.3)

We assume that the energies E(/, K) associated with S
are bounded,
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In the following, we use simpli6ed notations:

1»
~ ~ ~ lrm» ~ ~

)
P no ~ t PI&no

=—lim
m E-+~ E (m, Kp) &E

(AV.1)

(AV.2)

establish the validity of the change in the order of surn-

mation, by showing that the double sum on the right-
hand side of Eq. (AV.9) is absolutely convergent. By
using the Schwartz inequality, we can write

&l(ylm, Ko) I l(m, Ko[q) I l(ql/ K) I

Consequently, the orthonormalization conditions can
be written

P(m', Kp
I y)(y lm, Kp) =8„„, (AV.3)

P(y lm, Kp)(m, Kp
I q) = 8p, . (AV.4)

On the other hand, we consider states I/, K) which
are eigengunctions of H(K). The energies E(/, K) are
assumed to be bounded. The states I/, K) are determined
by their components (y I /, K) and, by definition, these
components satisfy the conditions of Sec. IID and
Appendix I, namely:

I(pl/, K) I
&c (AV.5)

p"+'- l(pl/, K) I &c(~) 1&~&o. (AU.6)

We want to show that it is possible to associate with
each arbitrary positive number p a finite number Ep(p)
independent of / and K possessing the following prop-
erties: for any number E bigger than Ep(p), we have

f(pl/, K)— P (plm, Kp)(m, K, fE, K) I
&p. (AV.7)

E(m, Kp)&E

First, we can prove the weaker relation,

(pl/, K) =P(plm, Kp)(m, Kpl/, K). (AV.S)

By definition we have

P(pl m, Kp)(m, Kpl/, K)

and the completeness assumption is equivalent to the
relations

&LZ[(m, Ko[q) I'(v+~) '""'
mq

Xg I (pl m', Kp) I'P
I (q'I/, K) I'(q'+a) "+'*j'".(AV. 11)

Let us show that the terms which appear in the right-
hand side are bounded; here a is just an arbitrary posi-
tive constant which is introduced to insure the con-
vergence of the sums for small values of

I ql,

P l(m, Kplq) I'(q+u) ~"+»

=g(q+a) &"+I'=constant, (AV.12)

P f(ylm Kp) I'=1,

Pl(q I/, K) I
q-+I&D,

(AV. 13)

(AV. 14)

where D is a constant independent of K Lsee Eq.
(AV.6)). Thus, the double sum of Eq. (AV.11) is
bounded and for this reason converges. The double sum
of Eq. (AV.9) converges absolutely and therefore the
change in the order of the summations is valid. This
remark completes the proof of Eq. (AU. 7).

Moreover, as E(/, K) remain bounded, by definition,
it is easy to show that the convergence of the sum which
appears in Eq. (AV.S) is uniform with respect to K.
More precisely, we have to establish the validity of
Eq. (AV.7). This result can be obtained by majorizing
the rest of the series which appears in this inequality;
it is sufIicient to prove

—=P(plm, Kp)g(m, Kplq)(ql/, K). (AV.9)
q, Z(m, Ko))E0(.)

f(pfm, Kp)[

By changing the order of summation, and by taking
Eq. (AV.4) into account, we get

P(plm, Kp)(m, Kpl/, K)

=P(ql/, K)g(ylm, Kp)(m, Kpl q)

=2 E' (ql/, K)=(yl/, K) (AV. 10)

This is the result which we want to prove but we have to

X l(m, KoIq) I I(qf/, K)
I
«(AV»)

Schwartz inequality can be used as above. The term
(AV.14) is the only one which contains K and its upper
bound is independent of K. In the other series (AV. 12)
and (AV. 13), the summations are restricted to the terms
for which we have E(m, Kp)&Ep, the corresponding
sums converges to zero when Eo becomes in6nite. There-
fore, it is always possible to find a number Ep(p) for
which (AV. 15) is satisfied. Thus the condition E&Ep(p)
implies the validity of (AV.7).


