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only up to the m=3 He+ level. We used an m ' law in
extrapolating to m=4. Also shown in Fig. 5. are our
results in transforming the line cross sections into m=4
cross sections.

It would seem that fair agreement is being reached
at the higher energies where the Born approximation
is expected to hold. Both estimates are rough, however.

VI. EXCITATION OF THE 4 'D ~ 2 'P (0 4922k) LINE

This line is pressure-dependent with the apparent
cross section increasing with pressure. Population
mechanisms include collisional transfer, e 'I' —+ n 'Il

with subsequent e 'F (e)4) cascade to 4'D, and also
4 V' —+ 4 'D collisional transfer. Figure 6 is an excitation
curve to this line at 4 p pressure.

PHYSICAL REVIEW VOLUME 135, NUM BER 3A 3 AUGUST 1964

Validity of the Concept of the Core Polarization Effect in Hyperfine Structure

E. A. BURKE

St. John's University, Jamaica, %em York

(Received 28 January 1964)

The core polarization effect in hyperfine structure is discussed by a semiempirical evaluation of 16recently
calculated values of the Fermi contact term for the ground state of lithium. The analysis proceeds by an in-
vestigation of the manner in which the various wave functions approximate eigenfunctions of S', in conjunc-
tion with an examination of the one-electron orbitals employed. The concept of core polarization by non-s
electrons is shown to be valid, while if the polarizing electron is an s electron, no definite conclusion concern-
ing core polarization can be made. Finally, it is proposed that for all cases of a single polarizing electron, the
following many-electron, approximate unrestricted Hartree-Fock wave function may be used:

4=~x(B~LII'& ~'&«'&~L' '&'&«'&PhU'&v, r~+B~L&w«II'L' &'&«'»SL' ~'»o&~El,

where S, L are the quantum numbers of the polarizing electron and Bi= —B2 if L=O. Two tests of the
validity of this wave-function approximation are proposed.

INTRODUCTION

ECENTLY, many approximate wave functions of
. the ground state of lithium have been reported. ' '

For all of these, the Fermi" contact term in hyperfine
structure has also been calculated. The calculation of
the contact term is of interest since it has been predicted
by Pratt" that one should expect a contribution to the
contact term from the core, is electrons in an open-shell
configuration due to the spin polarization of the core, in
this case by the outer, unpaired 2s electron. This effect
is called. the core polarization effect and has been
applied" to cases for which the polarizing electron is not
an s electron. The hyperfine fields thereby calculated
are at least of the same order as those observed experi-
mentally and have not been predicted by any other
theory.

' J. B.Martin and A. W. Weiss, J. Chem. Phys. 39, 1618 (1963).' R. P. Hurst, J. D. Gray, G. H. Brigman, and F. A. Matsen,
Mol. Phys. 1, 189 (1958). Hyper6ne structure calculations are
reported in Ref. 1.' Lester M. Sachs, Phys. Rev. 117, 1504 (1960).

4 This result was reported as a private communication from J.N.
Silverman in Ref. 1.' K. F. Berggren and R. F. Wood, Phys. Rev. 130, 198 (1963).' J. Kerwin and E. A. Burke, J. Chem. Phys. 36, 2987 (1962).

~ Z. W. Ritter, R. Pauncz, and K. Appel, J. Chem. Phys. 35, 571
(1961). Hyper6ne structure calculations are reported in Ref. 1.

E. A. Burke, Phys. Rev. 130, 1871 (1963).' R. K. ¹sbet, Phys. Rev. 118, 681 (1960)."E. Fermi, Z. Physik, 60, 320 (1930).
"G.W, Pfatt, Jr., Phys. Rev. 102, 1303 (1956)."R.E. Watson and A. J. Freeman, Phys. Rev. 123, 2027 (1961).

The lithium atom in its ground state represents the
simplest test of the validity of the core polarization
hypothesis. One expects for hyper6ne structure a large
contribution from the 2s valence orbitals and a smaller
contribution from the core orbitals provided that the
latter orbitals are represented by an open-shell con-
figuration. "Recent hyperfine structure calculations, '—'
however, show several inconsistencies. In the 6rst place,
there seems to be little correlation between the "good, -'

ness" (as determined by calculated total energy) of a
wave function and the "goodness" (as detertnined by
deviation of experimental and calculated values) of the
contact term. Of greater significance are the results
using nearly exact wave functions which show that the
value of the contact term with and without open-shell
orbitals changes only slightly. This result has been
interpreted' as casting serious doubt on the physically
simple and highly useful concept of core polarization.

It is the purpose of this paper to investigate these
inconsistencies. For the energy versus contact term
correlation it will be shown that the energy value
(known to be a poor criterion of "goodness") must be
considered in conjunction with the structure of the
wave function before any comparisons with hyperfine
structure calculations can be made. By this analysis one
is able to show a correlation between the ground state
energy and the contact term. Furthermore, one may
then predict the best form of a wave function for more
complicated physical situations. Qn the question of core
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polarization it will be shown that (1) one cannot un-
equivocally state that the core contribution is negligible
when the polarizing electron is in an s state and (2) if
the polarizing electron is not in an s state then one will
obtain a large core contribution (spin-polarized core) to
the contact term in hyper6ne structure.

12' 25(r~)

%=1 r g
(2)

and Jq" 28(r)dr=1. From Eq. (2) it follows that the
quantity (f)/4n-= Q(0), the electron spin density at the
nucleus.

For purposes of comparison all of the calculations of

(f) may be considered in the manner which the wave
functions used approximate eigenfunctions of S'. Thus
a general description can begin with the exact eigen-
functions and then consider in turn the various approxi-
mations. The 6rst discussion of this type was given by
Pratt" in which the value of (f) was given by"

(f)=X(A 12U2.'(0)
+A'{ 2U. (0)+2U .'(0)-2U..'(0)3
+2A 1A2LU1,2(0) —U1,2(0)j)

+terms due to nonorthogonality. (3)

It is assumed here for convenience that all quantities
are real. The normalization and other constants are
included in Ã; A~ and A2 are variational parameters
associated with the two linearly independent spin
functions which are eigenfunctions of S'; the U's are
the one-electron orbitals (here evaluated at the nucleus,
r =0). A glance at Eq. (3) clearly shows core asymmetry
in the A ~A2 term. One might suspect that core polariza-

FORMULATION

Fermi" showed that for s electrons the Hamiltonian
of the hyperfine energy, the so-called contact term, is
given by

II= (g~/3)p2pr{. (21+&)/Ij((f)/4~) (&)

where

Ug, ,g, = U2, —Sg, ,g, Ug „ (6)

where S2, ,~, and 52, ,~, are overlap integrals between the
subscripted orbitals. It is not necessary (nor desirable
on account of symmetry) to orthogonalize the core
orbitals with each other.

The formula for (f) using the wave function of Eq. (4)
may be written, similar to Eq. (3), as products of A12,
A~A2, and A~'. Since, as already noted, A2 plays an
insignificant role in the energy calculation and since it
has also been observed' that the A2' contribution is
negligible in computing (f), we will neglect the A22

contributions. Thus,

tion eGects arise from this term. All calculations, how-
ever, have shown that the A& parameter is negligibly
small in energy calculations and has often been neglected
in calculating (f). As a matter of fact the values of (f)
closest to experimental values have ignored A2. Thus a
more thorough investigation must include those terms
due to the nonorthogonality of the U's.

A wave function which is an eigenfunction of S' for
the doublet ground state of a three-electron atom is"
6&Q =AP {A 1(Ul,n U 1,PU2, n Ul—,PUi. ,n U2,nj

+A2PUlsoUl s~U2aP UlanUi —aPU2an
—Ui,PUi, nU2, ej) . (4)

In Eq. (4) A „is the antisymmetrizing operator, A 1 and
A2 have the same meaning as in Eq. (3), and the elec-
trons 1, 2, and 3 are represented, in that order, in the
product of one-electron functions. The antisymmetrizing
operator can, of course, be replaced by a determinant
wave function. For the present case the wave function
can be considered as the linear combination of three
determinants. In order to investigate the nonorthogonal
terms in Eq. (3) we wish to orthogonalize where possible.
Thus in the determinant derived from A ~UlanUl, p U2,u
we may only orthogonalize U&, and U2„etc. let us
construct U2, ,~, and U2, , ~., which are U2, orbitals
orthogonal to U~, and U~, orbitals, respectively. Hence,

U2s, 1s U2s S2s, 1sUls

(f) 42rA 1'LUis'(0) (Si",2s' —S1.,2s')+ Ui ''(0) (Sia,2.'—Si",2s')+ 2Ui. (o)Ui a (o) (Si, ,2aSi s, 2.
—Si.,i"Si .,2' —Si..i .S1., 2.'+S1..2.Sl",2.Si..i ')+U2. ,i.'(0)+ U2. , i .'(0)+2U2, ,i.(0)U2, ,1.(0)S1,1,2

2Uls(0) U2s, l's(0)Sls, l's(S2s, l's Sl l' Sa2 la)s2sU1's(0)U2s, ls(0)Sls, l's(S2s, la Sla, li'laS2a, l'a)]
+82rAlA2L Uls (0) (2 S l ~2+aSslg 2a2Sls, l sS2s, l aS2a, ls)+ Ulls (0) (2 S2g, i a

+S2s, ls 2Sls, l'sS2s, l'sS2s, ls) U2a, ls (0)+U2s, l s (0)+ 2Uls(0) U2s, ls(0)Sls, l'sS2a, l'a

2 Ul's (0) U2s, la (0)S2sl's 2 Ul's, (0)U2s, l's (0)Sla, i'sS2s, ls+ 2Ula (0) U2a, l's (0)S2a,ia] . (7)

Equation (7) may be further simplified. Since Al))A2,
let us drop those terms in A ~A2 which are of order equal
to or less than the lowest order terms in A~'. Order here

"The notation is, i's is used instead of the more usual is, is'
since it is the principal quaritum number that is slightly altered
hand'Dot the orbital angujIag rgq~cntum quantum number.

is determined by power of core-valence overlap integrals
and these are quadratic, to lowest order, in the A ~' term.
Hence

(f) 42rA12B+82rAlA2C,

E. A. Burke and J. F. Mulligari, J. Chem. Phys. 28, 995
(i958).
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TABLE I. Comparison of energy and hyperfine splitting calculations for lithium.

Ref. Wave function'

35-term con6guration interaction
Two-determinant, open-shell, Slater-

type orbitals
Closed-shell, Slater-type orbitals
Closed-shell, Hartree-Pock
One-determinant, open-shell, Hartree-

Foch with (f) projected
41-term con6guration interaction
45-term con6guration interaction
One-determinant open-shell, Slater-

type orbitals
Closed shell, r;; core
Three-determinant, . open-shell, Slater-

type orbitals
Two-determinant open-shell, Slater-

type core orbitals with expanded
valence-orbital

One-det'erminant open-shell, Hartree-
Fock

Closed-shell, r;; core, rg core-valence
Six-term configuration interaction
Closed-shell, r;; core, r;; core-valence
Two-determinant, open-shell, r;; core,

r,; core-valence
Experiment

—E(a.tt.)
7.41792
7.4436

7.41792
7.43273
7.43275

7.47622
7.47710
7.41795

7.47476
7.4437

7.4450

7.43275

7.4779
7.4319
7.47630
7.47631

7 47805c

(f)(oo ')

3.989
3,772

2.093
2.095
2 337"

2.580
2.595
3.233

2.648
3.038

2.802

2.825

2.826
2.872
2.872
2.883

2.9062'

Absolute percent
diGerence of (f)

from experiment

37.2
29.8

27.9
27.9
19.6

11.2
10.7
10.1

8.9
45

2.8
1.2
1.2
0.8

0.0

a An unrestricted Hartree-Fock wave function is denoted here as open-shell Hartree-Fock. This facilitates comparisons.
b This value differs from that in the reference and has been privately communicated to the author by Lester M. Sachs.
& Charles W. Scherr, J. N. Silverman, and F. A. Matsen, Phys. Rev. 127, 830 (1962).
d P. Kusch and H, Taub, Phys. Rev. 75, 1477 (1949).

where

C —2Ut, s (0)+2Ur. ,2 (0)
+2Ui. (o) Ur. (0) (2&r. ,g.+&r.,t"&g, ,i,)

—2Ui. (o)Ug. (o)(2~2.,i.+&r.,t,~2.,r.) (9)

and 8 may be obtained from Eq. (7). Equation (9) has
been obtained by dropping the orthogonal orbitals
which will not be needed in the discussion of the A1A2
term. As an empirical check of the approximation (f)
has been calculated using an open-shell wave function
composed of Slater-type orbitals' with the result that
the approximate formula for (f) yields a value which
deviates by less than 1% from the value obtained by
using the complete formula. We may now proceed to
discuss the various wave functions used in the computa-
tion of (f).

which p&, (0)=0. By reference to the tables we see that
this is not the case. However, the former wave function.
is a 45-term configuration interaction of which only four
terms are of the three-determinant type. It must be
remembered, both here and in what follows, that in
considering (f) and in analyzing the various contribu-
tions to (f) we are actually considering the matrix
elements of (f), i.e., (f);;.Thus (f)=5;;c,c;(f);, and the
c's are the eigenvectors of the wave function. Apparently
there is insufhcient mixing of three-determinant con-
6gurations in the 45-term configuration-interaction
wave function' to compensate for the inadequacies

TABLE II. Composition of wave functions employed in
hyper6ne splitting calculations for lithium.

DISCUSSION

Wave functions and associated energies along with
the computed values of (f) and the absolute percentage
deviation of the computed values of (f) are listed in

Table I. Table II classifies the various wave functions
in terms of the number of determinants, core configura-
tion, and type of 2s orbital employed.

Three-Determinant Functions

Con6guration
Deter- Core

minants configuration

open
open
open
open
open
open
closed
closed

zero
nonzero
zero
nonzero
zero
nonzero
zero
nonzero

References

6
1

12
t, &, s

3b
3

3, 5, 8, 9, 5

One might expect that a three-determinant function for a A wave function is classified here as a nonzero 4 ~.(0) type if any matrix
element of (f) is of this type.

which p& (0) is not zero would be,closer to the experi- b Although the projected value of (f) may be considered as a two
determinant representation, it is simpler to cornp@rg it to single-deter-

mental value than the three-determinant function for
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(which will be discussed) inherent in the one- and two-
determinant approximations.

Two-Determinant Functions

By reference to Table II we note that the poorest
values and the best value of (f) have been obtained with
two-determinant approximations. The 35-term con-
6guration-interaction function of Martin and Weiss is
part of the 45-term function discussed earlier. It is
apparently quite important to include nonzero ps, (0)
terms, not included in the 35-term function, in two-
determinant functions. This surmise is further sub-
stantiated by the 41-term function by the same authors
yielding a significant improvement in (f) by the
inclusion of nonzero ps, (0) terms. It is also in agreement
with the results of Hurst, et a/. ' who used Slater-type
orbitals for which Ps. (0)=0. Furthermore, it will be
noted that both the 35-term con6guration-interaction
function' and the Slater-type-orbitals' function yield
values of (f) greater than the experiment. As a matter
of fact, all open-shell calculations of (f) for which
ps, (0)=0 yield values greater than experimental values
and this fact will prove to be quite signi6cant in dis-
cussions of core polarization.

An interesting comparison exists between the results
of Hurst et al. ,

' and Kerwin and Burke. ' Both wave
functions are identical in every respect except that the
latter is three-determinant, i.e., uses A~ and A2 varia-
tional parameters of Eq. (4). In this case then it is
certainly important to keep the A2 parameter. The
difficulty is apparently surmounted, by the wave func-
tion of Ritter et al. ~ This wave function differs from the
former two only in the valence-orbital representation
which is nonzero at the nucleus. The apparent effect is
to reduce the signi6cance of the AiAs term in (f). This
can be seen from Eq. (9) if we regard the four terms
there as 1s, 1's, 1s—2s, and 1's—2s contributions. Note
that in going from a zero to a nonzero ps, (0) the 1s con-
tribution increases (if we include 1s—2s in the 1s contri-
bution) while the difference in 1s and 1's contributions
become smaller and from the results of Ritter et al. '
becomes very small. The two-determinant function of
Berggren and Wood' will be discussed in conjunction
with single-determinant functions.

ONE-DETERMINANT FUNCTIONS

Before comparing the single-determinant results in
detail we should examine the analytic form of (f) in a
single-determinant representation. Thus

U....'(0)-
(y) =4~ Ui.s(0) —Ui.s(0)+ . (10)

It is interesting and informative to apply this to simple

Slater-type orbitals with

Ui, (r) = (a'/ir)'i'e "
Ui~, (r) = (b'/rr)'i'e s" and Us, (r) = (c'/37r)"'re '"

I.et us assume, unless disproven, that a b so that
a= 4+6 and fi= d 5—with 6«1. With this assumption
the third term in the square bracket of Eq. (10) should
remain practically unaltered in going from a closed-shell
to an open-shell representation and thus the 6rst two
terms represent the core contribution, (f),.... Hence,
using the Slater-type orbitals we 6nd

(f).... 4$(d+ 6)s —(d—6)s] 24d'A. (11)

Let us allow the best possible value of (f)„„,i.e., let it
be the difference between the experimental value (see
Table I) and the value calculated with closed-shell
Slater-type orbitals. ' One 6nds 6 0.0005 which satisfies
the condition A((1. It is well known" that the energy
value varies in the 6fth decimal place with a variation of
6 in the fourth decimal place so that this value of 4 gives
an energy which is practically unchanged, but a value
of (f) equal to the experimental value! One cannot
argue that this value of 6 will greatly affect the con-
tribution of the 2s electron since the third term in the
square bracket of Eq. (10) is virtually unaffected and,
by the converse of the conclusion drawn by James and
Coolidge, " one does not expect a great effect on the
valence orbitals representation due to an improvement
of the core representation. This effect is not inconsistent
with the closed-' and open-shell4 Slater-orbitals results
for which the energies are —7.41792 and —7.41795,
respectively, with associated values of (f) of 2.093 and
3.233. The latter value of (f) deviates from the experi-
mental value since one cannot expect the variationally
determined 6 to be the same as that required for (f).
Similarly the closed- and open-shell Hartree-Fock
results' yield respective energy values of —7.43273 and
—7.43275 with respective (f) values of 2.095 and 2.825
(as compared to the experimental value of 2.906).

Therefore, the defect in single-determinant, open-shell
con6gurations is that the shells are hardly open at all.
Thus errors which occur in lithium calculations can be
expected to multiply many times over in hfs calculations
for atoms involving many more electrons. Although
wave-function parameters could be properly adjusted to
account for hfs they would. probably not be useful for
the description of other physical phenomena. An
example would be the antiferromagnetic effect. ' This
effect can supposedly be explained by an improved
representation of the exchange-integral representation
on account of the slight change in the core orbitals.
On account of this it is also difficult to rationalize the

"E. A. Burke, Ph.n. thesis, Fordham University, 1959
(unpublished).

"H. M. James and A. S. Coolidge, Phys. Rev. 49, 688 (1936)."J.C. Sister, Phys. Rev. 81, 385 (1951).
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title "exchange polarization effect" associated with the
UHF formulation.

It has been shown' and discussed" that attempts to
remedy the defects in the wave function with projection
operators" fails, and only serves to emphasize the
inadequate representation afforded by single-deter-
minant, open-shell configurations. As a further indica-
tion of the relative ease of parameter adjustment
required to give a value of (f) close to experiment is the
six-term configuration-interaction wavefunction used by
Nesbet. For despite the fact that closed-shell orbitals
were used the 2s orbitals were predominantly of the non-
zero ps, (0) type producing one of the best values of

(f) calculated so far.
The wavefunctions which have not yet been con-

sidered are all of the James and Coolidge" type involv-
ing the explicit use of interelectronic, r;;, coordinates.
From Table I we see that the addition of core-valence
terms to a correlated core for a single-determinant
approximation' produces a significant improvement in
the calculation of hfs. As expected then, well-correlated
wave functions are quite important in hyperfine struc-
ture calculations. " The f values calculated with the
correlated core and core-valence, closed-shell functions
of Burke' and of Berggren and Wood' are inconsistent
with their energy values. This is not too surprising since
the energy is known to be a rather crude measure of
goodness. Also these wave functions, though similar,
differ in some respects. That calculated by the present
writer' used noninteger exponents throughout and the
secular equation was solvable to the tenth order only.
To that order the (f) values are the same as those of
Berggren and Wood. '

Perhaps the most interesting comparison is that be-
tween the two best values of Berggren and Wood. Both
of these use interelectronic separation coordinates be-
tween all orbitals but the former is a closed-shell (hence
proper eigenfunction of S') calculation while the latter
is a two-determinant approximation to an open-shell
calculation. From the previous discussion we saw that
the calculations of Ritter et a/. ' indicate that the AiA2
term in Eq. (7) is negligible in a two determinant ap-
proximation when the 2s orbital is nonvanishing at the
nucleus. Hence here we need only regard the A~' terms
of Eq. (7) from which it will be observed that in going
from an open- to a closed-shell representation only
three terms do not cancel. These terms are

U2s, rs (0)+Uss, l's (0)+2U2s, ls(0) U2s, l's(0)Sls, l's

In a closed-shell representation these terms combine
into 4Us, r,s(0). It will be observed that the core
orbital contributions enter in the same way, i.e., there
is no 1s, 1's asymmetry here. On the assumption of only
a slight e6ect on the valence orbital due to a splitting

as W. Marshall, Proc. Phys. Soc. (London) 78, 113 (1961)."P.O. Lowdin, Phys. Rev. 97, 1509 (1955).' G. G. Hall, Rept. Progr. Phys. 22, 1 (1959).

of the core orbitals and since the three noncancelling
terms represent core contribution symmetrically, these
terms should practically equal the closed-shell contribu-
tion. A calculation on the relatively simple wave func-
tion of Kerwin and Burke' substantiated the hypothesis
in that case. Thus the remaining Ars terms of Eq. (7)
must nearly cancel. Hence if there is to be any core
polarization by the 2s electron the remaining terms must
lessen the valence electrons contribution to (f). The
2s electron contributes to (f) in the terms

2Ula(0) U2s, ps(0)Sls, l's(Sss, l's Sls,paS2s, ls)

2Ul's (0)Uss, ls (0)Sls,1'a (Sss, ls Sls, l'sS2s, l's) ~

In order to facilitate the investigation consider the
following equalities:

Sr, , r.,——1—8r, Ss, , r, ——S—8s, and Ss, , ], =S+8s.
Now bi and 62 are at least of the same order so for
simplicity let 5~——52 ——5. I et us ignore powers of 6 higher
than unity and let us drop the orthogonal orbitals. Then
all that remains is

{4S'8Ur,(0)Ur, (0)}
—{28Us.(o)L(2+S)Ur. (o)—(2—S)Ur" (0)3}

Each of the curly brackets is positive. since S(1, and
with this wave function Ur, (0))Ur, (0). We are unable
to say definitely that the difference in the curly brackets
is negative and thus are unable to say whether an open-
shell representation reduces the contribution to (f) so
that the core contribution is not negligibly small. If the
latter statement were true of course we would be able
to state that core polarization does indeed contribute
to hfs. One might speculate, however, that since the
second of the curly brackets is the only term of those
added to an open-shell representation which contains
ps. (0) terms, there is some lowering of the valence-
orbitals contribution to (f) due to the minus sign in
front of the curly bracket and therefore a core polariza-
tion effect.

In what has preceded we were unable to state whether
or not the 2s electron (or for that matter any unpaired
s electron) can polarize the core electrons. It is perhaps
unnecessary, in any case, to know the precise mechanism
when the valence electron is an s electron. It would be
more meaningful to be able to state that core polariza-
tion is produced by a non-s electron for here hyperfine
fields are experimentally observed" which cannot be
attributed to the valence electron alone. Reconsider
Eq. (7).Let the unpaired electron be in an n, l state with
v&1 and lg0. The terms U~~, r s'(0)+ U~~, rs'(0)
+ U„q r, (0) U„~,r, (0)Sr, ,r, should remain relatively un-
changed in going from a closed- to an open-shell repre-
sentation on account of the symmetric manner in which
the core electrons contribute. The remaining terms of
Eq. (7) will be the same for the general e, l case, except

"An excellent bibliography of experimental results may be
found in Ref. 19.
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that the term 2bU„, i(0)f(2+S)Ui, (0)—(2—S)Ui, (0)$
will no longer be included since U i(0) =0 for the e, t
assumed here. Since the terms introduced in an open-
shell representation are apparently negligible for a 2s
valence electron, then with the exclusion of the U„ i(0)
term we might expect a measureable change in the value
of (f) from those terms arising from an open-shell
representation or a core polarization for a non-s unpaired
electron. To further substantiate the hypothesis com-
pare the wave functions of Ritter et al. ,

' and Hurst et al.'
The difference between the two is in the 2s representa-
tion. The 2s orbital employed by Hurst et al. is zero at
the nucleus and to that extent resembles a non-s
electron. By reference to Table I we see that the calcu-
lated value of (f) is quite different for these two func-
tions which can be likened to core polarization by a
non-s electron. Of renewed interest now is the compari-
son of the wave functions employed by Kerwin and
Burke' with those of Hurst et a/. ' When the polarizing
electron is not an s electron, or equivalently, when the
2s orbital vanishes at the nucleus, it is necessary to
include the A iAs term of Eq. (7), for from Table I we
see that (f) as calculated by Kerwin and Burke' is
much closer to the experimental value than that calcu-
lated in Ref. 2.

SUMMARY AND CONCLUSIONS

In the calculation of hyper6ne structure for the case
for which the unpaired electron is an s electron, well-
correlated, closed-shell wave functions which contain
many terms for which the valence electron's orbital is
nonvanishing at the nucleus serve very well. Thus,
con6guration-interaction wave functions which contain
many such closed-shell con6gurations for which
ps. (0)=0 cannot be expected to yield significantly good
values of (f).Similarly, restricted-Hartree-Fock (RHF)
functions which do not contain very much correlation
will also fail to yield a significantly good value of (f).

Single-determinant open-shell representations are for-
tuitously good for calculations of the Fermi contact term
in hyper6oe structure. Fortuitous because the "shells"
are hardly "open" at all so that applications to other
physical situations will be no better than closed-shell
wave functions. Since it already is a task to calculate
wave functions for many-electron atoms it would seem
far preferable to have functions which are more generally
useful. Furthermore it is predicted that errors inherent
in a single-determinant approximation for three elec-
trons will multiply many times over in passing to calcu-
lations involving many electron atoms.

A two-determinant, open-shell wave function for
which ps, (0) is not zero gives a reasonably good result
for hfs when the unpaired electron is in an s state and the
calculation is signi6cantly improved with well-correlated
wave functions. However, if the unpaired electron is not
in an s state, then the two-determinant approximation
is no longer useful in the computation of the contact
term.

Thus it seems that an exact eigenfunction of S', viz. ,
a three-determinant wave function is required for hfs
calculations. However, an examination of the approxi-
mation of (f) in Eqs. (7), (8), and (9) shows that
none of the terms of the determinant arising from
A „Ui,n Ui,nUs, P of Eq. (4) enters into (f) when the 2s
orbital vanishes at the nucleus. Hence this determinant
may be dropped when the unpaired electron is not an s
electron. For a many-electron atom one could then write
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where there is a single unpaired electron with principal
and orbital angular momentum quantum numbers of
X and L. Note that all determinants which would
allow identical spin for orbits which differ only in the
e, e' quantum numbers are not included. This approxi-
mation proved valid for lithium provided that all s
orbitals had nonvanishing contributions at the nucleus.

Equation (12) may be considered as a revised base
for unrestricted Hartree-Fock (UHF) calculations since
it is the Hartree-Fock method and particularly the
analytic approximations" to the method which are
more generally useful. For the case of 1.=0 in Eq. (12)
let Bj=—82, otherwise there is no simple relation be-
tween the two parameters. As a test of the hypothesis it
is proposed that a UHF calculation, based on Eq. (12),
of lithium be performed. It is not expected that the
value of (f) will improve greatly but that the energy
will be signi6cantly improved indicating, in general, a
better representation of the system. Also it is proposed
that improved (i.e., similar to functions of Ritter et ul. )
Slater-type functions be used in conjunction with Eq.
(12) on the ground state of the boron atom, with its p
electron polarizing the core s electrons. This latter test
will also enable us to ascertain the validity of the two-
determinant approximation of Eq. (12).
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