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The gain and associated phase profile for two holes
is shown in Fig. 12. Since the holes appear in the
velocity profile and not strictly in the gain versus
frequency curve we can consider that there is one
"oscillating" hole near the cavity resonant frequency
and a complementary "nonoscillating" hole placed the
same distance on the other side of line center. The
presence of the hole at the oscillation frequency intro-
duces no additional phase shift into the feedback loop
a,nd the phase at v=0 marked 0~ in Fig. 12 is due
entirely to the complementary hole.

Defining the hole power gain as 6~&1 and noting
the loop requirement that

we find
G +G, +Gy, =0, (A12)
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From a lumped circuit element analysis similar to
that used above, it follows that a complementary
Lorentzian hole of width 4y, ~ introduces a phase at
0 defined by

The arctangent is, therefore, approximately equal to
its argument and
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To offset Oq, the oscillation frequency must move an
amount such that the cavity provides an amount of
phase equal to —
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This term is similar to pE' calculated by Lamb differing
significantly only for a cavity resonance near line center
where the two holes overlap. It appears to represent a
hole repulsion effect between the "oscillating" and
"nonoscillating" hole.

For small cavity losses —G,„((1 and so therefore is
—~a..

1—QGa= —sGa
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A strong exchange Geld, such as produced by ferromagnetically aligned impurities in a metal, will tend to
polarize the conduction electron spins. If the metal is a superconductor, this will happen only if the spin-
exchange 6eld is suKciently strong compared to the energy gap. When the held is strong enough to break
many electron pairs, the self-consistent gap equation is modified and a new type of depaired superconducting
ground state occurs. In the idealization of a spatially uniform exchange 6eld with no scattering, it is found
that the depaired state has a spatially dependent complex Gorkov 6eld, corresponding to a nonzero pairing
momentum in the BCS model. The presence of the "normal" electrons from the broken pairs reduces the
total current to zero, gives the depaired state some spin polarization, and results in almost normal Sommer-
feld specihc heat and single-electron tunneling characteristics. The nonzero value of the pairing momentum
also gives rise to an unusual anisotropic electrodynamic behavior of the superconductor, as well as to a de-
generate ground state and low-lying collective excitations, in accordance with Goldstone's theorem. The ef-
fects of scattering in an actual superconducting ferromagnetic alloy have not been studied and may interfere
with experimental investigation of the theoretical results found in this paper for the idealized model.

I. INTRODUCTION

HERE is experimental evidence of ferromagnetic
alignment of paramagnetic impurities when they

are in the form of a dilute solution, dissolved in certain

*Research supported in part by the U. S. Air Force 0%ce of
Scienti6c Research and by ARPA. This work forms a portion of a
thesis submitted by one of the authors (Peter Fulde) to the faculty
of the University of Maryland in partial fulfillment of the require-
ments for the Ph. D. degree.

nonmagnetic metals. A typical example is the recently
reported' ferromagnetism of 0.8% of iron dissolved in

gold, which has been found to exhibit a Curie tempera-
ture of 9'K. In some cases, when the host metal becomes
a superconductor at suSciently low temperature, there

R. J. Borg, R. Booth, and C. E. Violet, Phys. Rev. Letters11,
465 (1963).Note added irt proof. For an alternative interpretation
of this experiment, not involving ferromagnetic ordering, see
J. Crangle and W. R. Scott, Phys. Rev. Letters 12, 126 (1964).
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is further evidence that the ferromagnetic alignment
persists after the onset of superconductivity; e.g.,
gadolinium dissolved in lanthanum. ' ' This situation
raises the question of the nature of the perturbed state
of the superconducting electrons, which are under the
inRuence of the strong exchange field exerted on them

by the ferromagnetically aligned paramagnetic impuri-
ties. The purpose of the present paper is to report a
new solution to this problem, which leads to a state
quite diRerent from the coventional BCS ground state
of the superconductor. 4

According to the conventional point of view, the ex-
change field exerted by the ferromagnetic impurities
upon the conduction electron spins is either too weak
to produce a change in the BCS state, or it produces a
first-order phase transition to the normal state. The
strength of exchange field required to overcome the
energy gap and Qip the spin of a superconducting elec-
tron is V2 greater than the strength at which the phase
transition occurs. But we shall demonstrate that at a
somewhat lower value of strength, an unexpected soll
tion of the pairistg equatiotts enters. Thus, a first-order
phase transition takes place from the BCS to this new

phase, the "depaired" state, which subsequently passes
continuously by a second order p-hase trattsitioss into
the normal state as the strength of the exchange field is
increased.

The new solution can be found only by studying
significant departures from the BCS solution. Such situ-
ations are studied in Sec. II where the gap equation is
solved for the case of a relatively large number of elec-
tron pairs broken. A doubly infinite manifold of wave
functions is found, depending upon the assumed mean
momentum of pairing Q and the assumed value of the
strength of exchange field H. In Sec. III a singly
infinite family of solutions of the gap equation is selected
which represents the ground-state solutions in the pres-
ence of an exchange field of varying strength H. Ac-
cording to Bloch's theorem, ' in order that these solu-
tions should represent the ground state, they should
exhibit zero current. This is accomplished by balancing
the total current of the unpaired electrons against the
supercurrent generated by the nonzero value of pairing
momentum Q. This requirement produces a function
Q(H) so that, for every assumed value of the exchange
field, there is a unique value of the pairing momentum.
For these zero-current solutions the magnetization is
calculated and hence the free energy in the ground
state. In Sec. IV the peculiar anisotropic electrody-

' B.T. Matthias, H. Suhl, and E. Corenzwit, Phys. Rev. Letters
I, 92 (1958).

o N. E Phillips and .B.T. Matthias, Phys. Rev. 121, 105 (1961);
see also B. T. Matthias, IBM J. Res. Develop. 6, 250 (1962).

4 J. Bardeen, L. N. Cooper, and J. R. SchrieGer, Phys. Rev.
108, 1175 (1957).

5 H. Suhl, I-om Temperature Physics, Les Bolches, 1961, edited
by C. DeWitt, B. Dreyfus and P. G. DeGennes (Gordon and
Breach Publishers, Inc. , New York, 1961),p. 235.

C. Kittel, Isttrodssctioss to Solid State Physics (John Wiley k
Sons, Inc., New York, 1953).

namic properties resulting from the nonvanishing pair-
ing momentum are studied. It is found that a super-
current of the usual London type Qows in response to an
applied vector potential parallel to Q, but that no
supercurrent results for a weak vector potential per-
pendicular to Q. In Sec. V it is demonstrated that the
presence of unpaired "normal" electrons in the de-
paired state causes it to have a Sommerfeld specific
heat and a single-electron tunneling characteristic
practically indistinguishable from those of the normal
state. Section VI constitutes a brief summary, while
three appendixes deal with the gap equation and the
impurity spin alignment.

II. EFFECT OF ELECTRON DEPAIRING
ON THE ENERGY GAP

Throughout this paper the actual system under con-
sideration, namely a dilute solution of paramagnetic
impurities dissolved in a metal, will be idealized by a
constant exchange field independent of space which
acts only upon the electron spins. If the energy of split-
ting of the conduction electrons in the presence of this
exchange field is 2IIAO, where 6& is the BCS energy gap
parameter, then we can write the Hamiltonian for our
model in the form

5t=50o+H~op; ~;, (1)
where Xo is the usual Hamiltonian for a superconductor
in the absence of an exchange field, and 0; is the opera-
tor ~1 for the ith electron, depending upon whether it
is aligned parallel ("up") or antiparallel ("down"), re-
spectively, relative to the exchange field. An approxi-
mate eigenfunction of the Hamiltonian of Eq. (1) is
obviously the usual BCS ground-state wave function,
with the associated eigenvalue simply the standard BCS
ground-state energy. This is true because the second
term in the right-hand member is proportional to the
component parallel to the field of the total electron
spin in the superconductor, which operator commutes
with K,.

If we want to find other eigenfunctions of X, we may
at first try states of small total spin, corresponding to
the breaking of only a few electron pairs. If the number
of electron pairs broken is small enough not to affect
the energy gap, then an energy of 260 has to be ex-
pended for each pair broken, while the reorientation of
the electron spin gains, according to Eq. (1), 2Hho for
each pair broken. Thus, it is not possible to find a wave
function of this type corresponding to an energy lower
than the BCS ground-state energy, unless H is greater
than unity. But it is easy to establish' that the normal
state, because of its response to the applied exchange
field, undergoes sufficient spin orientation to acquire
a lower free energy than the BCS ground state already
at a value of H= 1/K2. Thus, states of small spin excita-
tion relative to the BCS ground state are necessarily
excited states of the superconductor. It is nevertheless
useful, in our search for alternative ground-state wave
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functions, to consider such excited states, and to imag-
ine that the excess spin, and hence the number of
unpaired electrons, becomes continually greater. Even-
tually the number of unpaired electrons will be suf-
ficiently large to affect the energy gap and to reduce it.
Nevertheless we still will have some pairing taking
place and some coherence energy. The gap equation of
BCS will still apply in essentially its original form:

=XV —de —V Q
0 + e~cl 2+i

(2)

(a)

Fin. 1.Type S (single) depairing in momentum space produced
by the spin-exchange Geld and by the shift of the Fermi sphere to
the right. The heavily shaded portion of Fig. 1(a) is occupied with
certainty by down-spin electrons which are stabilized by the
exchange Geld. The Galilean transformation causes them to
assume an asymmetric distribution at the Fermi surface. The
shaded portion of Fig. 1(b) is completely vacant of up-spin
electrons. The remaining regions of the space are available for
pairing. But because of the reduction in phase space, the energy
gap is decreased.

the work in this paper we restrict ourselves to the case
of zero temperature. )

The most natural blocking configuration might be
assumed to be one which is spherically symmetric in
momentum space, corresponding to a uniform distribu-
tion of unpaired electrons of down spin at the surface of
the Fermi sea. More detailed examination reveals, how-
ever, that such excess spin states are unstable and that
the spherical symmetry of the blocking region can be
modified, leading to a lowering of the energy of the sys-
tern. As a result the unpaired electrons tend to congre-
gate at one portion of the Fermi surface. Hence it is
necessary to consider asymmetrical blocking regions.
These give a net current Bow for the unpaired electrons.
In order to satisfy Bloch's theorem it is consequently
necessary to have an equal and opposite current Row for
the superconducting electron pairs. In this section we
find the solution for the general case of nonzero pairing
momentum and impose the requirement of exact can-
cellation of current only in the next section.

Since it is our goal to find the lowest energy eigen-
value associated with the Hamiltonian of Eq. (1), we
impose the requirement on the blocking region that it
be such that no elementary excitations of negative
energy are possible. The quasiparticle energy associated
with the addition of a single particle of wave number k,
normal energy e&, in the present model leads to an ex-
citation energy of the usual BCS quasiparticle energy
plus additional magnetic and kinetic energy terms which
are such that we obtain the boundary of the blocking
region by the following formula:

where
(+2+ e 2)1/2 (3)

o=E~+Q/r~~p+&~~p
=6L(1+eks/ps) 1/2+ q/rk+ ho'j ~

The prime signifies an omission from the sum over k
space, corresponding to the blocking of states by the
presence of unpaired electrons. Otherwise the standard
notation of the BCS paper is followed. The effect of
blocking' is expressed in the second term of the right-
hand member of Eq. (2) where the sum over momentum
space is to be carried out over all of the excluded re-
gions of momentum space. Such regions of momentum
space are prevented by the Pauli exclusion principle
from participating in the virtual pair scattering which
gives rise to the energy gap A. Because of the blocking
of these regions, we find, in the weak coupling limit
(&p))h) the following suppression of the energy gap:

—= exp
Ap

(4)

where the dependence of the right-hand member upon
the energy gap has been indicated explicitly. (In all of

~ The blocking e8ect has received some attention in the case of
pairing in nuclei. See, for example, S. G. Nilsson and 0. Prior,
Kgl. Danske Videnskab. Selskab, Mat Fys. Medd. 32, No. 16
(1961).

/ig= —
q '(1+5). (6)

The plus and minus signs refer to the case of up- and
down-spin electrons, respectively. Equation (6) applies,
of course, only when the cutoff values of the cosine of the

Qdp is the pairing momentum times the Fermi velocity
and p, i, is the cosine of the angle between the pairing
momentum and k. For convenience in the analysis, the
pairing momentum has also been measured in units
relative to the actual gap 6, rather than the unper-
turbed gap hp, resulting in the new parameters q =Qhp/d
and h=Hhp/A. Such a blocking region is illustrated by
the shaded portion of Fig. 1(a), which corresponds to the
region of momentum space occupied with certainty by
electrons of down spin. Figure 1(b) shows the region
(shaded) which is completely vacant of up-spin electrons
and which does not participate in the virtual pair scat-
tering. This is because of the blocking effect of the down-
spin electrons at the opposite side of the Fermi surface.
As can be seen from Fig. 1, the case of vanishing normal
particle energy &=0 gives the intersection of the block-
ing boundary with the Fermi surface and determines the
angle subtended by the blocking region
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angle fall within the physical region of —1(fi+(+1.
Figure 1 is drawn for the special case that only unpaired
down-spin electrons are present (1&q—h& —1). This
depairing situation involving only a single species of
electron spin will be referred to as type 5, while the
case of q

—h& —I gives down-spin electrons encircling
the Fermi sea and will be referred to as type E blocking.
In addition to these two cases, we have the situation of
double depairing, when an excess of unpaired electrons
of both up and down spin appears at the surface of the
Fermi sea. This occurs for q

—h& 1, and will be referred
to as type D depairing. This more complicated type is
illustrated in Fig. 2, where it is seen that the blocking
eGect of the down-spin electrons is augmented by the
further blocking produced by the presence of a smaller
number of unpaired up-spin electrons on the same side
of the Fermi surface. The ranges of the various values
of pairing momentum and exchange Geld are shown in
Fig. 3, where the stable BCS domain in the lower left-
hand corner corresponds to q+h(1. For q+h&1 we
have the three different types of depairing discussed
above and occurring in the three different regions of
Fig. 3 separated by the dashed lines of unit slope.

The width of the block. ing region in momentum space
is determined by solving for the single-particle energy
from Eq. (5):

e/g =L(~fi+go) s (&)

The integration over this thin blocking region at the
surface of the Fermi sphere gives the result

X 'P E '=g 'PG(q+Is)+G(q h) t—
eXOl

= —2 in(~/~, ) .

The function appearing here is deGned for positive
values of the argument greater than unity as

G(g) =g cosh ig —(gs—1)i~s (9)

For txt (1 it vanishes, while for negative values, we
define G(x) to be an odd function of x: G(x) = —G( —x).

It is a straightforward matter to employ Eq. (8) to
evaluate the gap for various assumed values of q and h.

6 8 IO i2

Such a calculation yields the lines of constant 6/Ap
shown in Fig. 3. With the results of this calculation we
can now multiply the values of q and Is by 6/hs to ob-
tain Q and H, respectively. This transformation maps
the lines of constant 6/hs as shown in Fig. 4. These lines
intercept the Cartesian axes of Figs. 3 and 4 at right
angles. Equation (8) greatly simplifies along the Car-
tesian axes and. reduces along H= 0 to the gap equation
for large supercurrents derived by Rogers, ' Bardeen, '
and Parmenter. "Along the Q=0 axis, Eq. (8) reduces
to the gap equation found by Sarma. "The present work
extends these solutions away from the coordinates axes
and out into the H Qplane. As exhibite-d in Appendix I,
simplified expressions can be extracted from Eq. (8)
for the behavior of the constant gap lines in the vicinity
of the axes. Close to the H = 0 and Q=0 axes these lines
have the shape of parabolas which bend toward and
away from the origin, respectively. The same is true in
the h-q diagram, as shown by the dashed lines in Fig. 3.

The points inGnitely removed from the origin in
Fig. 3 have been brought in Fig. 4 to the curve

FIG. 3. Contours of equal energy gap 6 for an ideal BCS super-
conductor subjected to a strong spin-exchange Geld h, measured
in units of the gap. 60 is the unperturbed BCS gap for h=0, q is
the pairing momentum (i.e., shift of the Fermi sphere shown in
Figs. 1 and 2), in units of the gap divided by the Fermi velocity.
Regions of type 8 (encircling), type S (single —see Fig. 1), and
type D (double —see Fig. 2) depairing are separated by the dashed
straight lines. The folding line f separates the unphysical (above)
from the physical (below) regions and maps into the boundary
in Fig. 4. The zero-current line, I' =0, corresponds to solutions of
the gap equation for which the total momentum of the unpaired
electrons cancels that of the pairs. The dashed parabolas represent
the approximate gap expressions derived in Appendix I.

FIG. 2. Type D (double) depairing in momentum space. Here
the shift of the Fermi sphere to the right is suKciently greater than
that in Fig. 1 that unpaired up-spin electrons are also stabilized,
as shown by the heavily shaded region of Fig. 2(b). This requires
a corresponding completely vacant region for down-spin electrons
/lightly shaded in Fig. 2(a) g. The residual phase space for pairing
is less than in Fig. 1, giving a further decrease in the energy gap.

e Q+H (o—ir) /so

Q+H =
2Q H—

It is along this zero-gap line that the solutions found
here by blocking pass continuously into the normal
ground-state wave function. As expected for a second-
order transition, it is shown in Appendix II that in the

K. T. Rogers, Ph.D. thesis, University of Illinois, 1960 (un-
published).

9 J. Bardeen, Rev. Mod. Phys. 34, 667 (1962).
~0 R. H. Parmenter, RCA Rev. 26, 323 (1962)."G. Sarma, Phys. Chem. Solids 24, 1029 (1963).
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Fro. 4. Contours of equal energy gap 5 for an ideal SCS superconductor subjected to a strong spin-exchange Geld II, measured in
units of the zero-Geld gap no. Q= (6/no) g, so that this is a mapping of Fig. 3 in which the distance of every point from the origin of
Fig. 3 is reduced by the factor 6/Ao. The unphysical sheet is shown shaded and joins the underlying physical sheet only along the fold-
ing boundary f. Points infinitely distant in Fig. 3 are mapped into the zero-gap line, 5/no ——0, a portion of which forms a boundary of
the unphysical sheet. The spherically symmetric depaired solutions (Q =0) also constitute a boundary of the unphysical sheet. The zero-
current line, I'=0, lies entirely on the physical sheet and makes a normal intersection with the zero-gap line at its point of maximum
II(IS~=0 'I55). Its local. stability portions are above the points W and S for weak and strong coupling, respectively.

vicinity of the zero-gap line the gap is proportional to
the square root of the distance in the H Qplane from-
the zero-gap line. It will be noted that the region of de-
pairing folds back upon itself along the curve

h= (1+4'')'"—q,

labeled f in Figs. 3 and 4. In Fig. 4 this curve is an en-

velope of the constant gap curves and becomes a bound-
ary for the depairing solutions in the Q(H portion. The
region between this folding curve and the zero-gap
curve contains two depairing solutions for every value
of Q and H. Thus there are two sheets of solutions,
which join along the folding curve. The first of these,
the "physical sheet, " is contiguous to the BCS domain
and is accessible by continuous variation of H and Q
away from zero. On the other hand, the second, or
"unphysical sheet" is inaccessible to experimental ob-
servation, as it cannot be reached by continuous varia-
tions of Q and H. It may be noted that type E blocking
only gives solutions on the unphysical sheet, and in par-
ticular, that the symmetrical depairing solutions, lying
along the line Q=O, are a boundary of the unphysical
sheet. Thus, we see that they must be rejected not only
because of their instability with respect to perturba-
tions as discussed before but also because of their lack
of accessibility, lying as they do on the unphysical
sheet.

III. CURRENT MAGNETIZATION AND
GROUND-STATE ENERGY

In the above section we have found a large variety of
solutions to the pairing equation. Most of these corre-
spond to some form of excited state of the system and
are not of interest to us here. Our objective is to find
ground-state eigenvalues of the Hamiltonian of Eq. (1).
To guide us in the search for ground-state solutions, we
rely upon Bloch's theorem which requires that the low-
est energy solution should have zero current. Allowing
for the charge-to-mass ratio of the electron, it will be
convenient for us to discuss current in terms of mo-
mentum density. Therefore, we now wish to select out
of all the solutions corresponding to arbitrary points in
the H Qplane of Fig. 4, th-ose solutions which have
vanishing total net momentum. But we have seen that
the unpaired electrons assume an asymmetric distribu-
tion at the Fermi surface, which results in a net total
momentum for them. This momentum can easily be cal-
culated by integrating over the regions shown in Figs.
1 and 2 (allowing for the necessary factor of p, for the
component of momentum in the direction of the pairing
momentum) to give the following expression for the
total momentum density of the unpaired or "normal"
electrons:

&-=—(ft/P~~I2V')(&Lv(r+)+V(r )j—sl:~(r+)+~(r-)j) (12)
where q&h has been abbreviated by r~. The functions



SUPERCONDUCTIVITY IN STRONG SPIN —EXCHANGE FIELD

which have been introduced in Eq. (12) are defined as
follows:

y(x) =x(x' —1)"'—cosh 'x

S(x)=-;x'(x)—(x'—1)»s,

(13)

(14)

provided x&1. y(x) and B(x) vanish for ~x~(1. Be-
sides this total momentum of the normal electrons, we
have a supercurrent momentum density resulting from
the commom momentum of pairing, q, which gives a
total value to the entire system of paired electrons of

P,= sEPpqh-. (15)

Bloch's theorem requires that P=P+P, should
vanish for the ground state. This leads to the following
equation for q:

' 4gLV(r+)+7(r-) 3+2'(r+)+&(r-)j=0. (16)

In actuality, r+ and r also depend upon q so that Eq.
(16) is difficult to solve in the general case. For the case
of r (1, however, the dependence upon r disappears
and it is possible to assign a fixed value to the variable
r+ and to solve for the corresponding value of q by the
standard formula for the roots of a cubic equation. This
procedure applies to the region S of Pig. 3. The solution
of Eq. (16) for type D blocking is more complicated, but
is facilitated by approximations which are permitted
for the relatively large values of r+ which occur for this
case. The results of numerical computation are repre-
sented by the P=0 curve shown in Pigs. 3 and 4.
Bloch's theorem is satisfied only by solutions which fall
along this line. Points which fall oR the line can, there-
fore, not represent ground-state energy eigenvalues of
the Hamiltonian of Eq. (1). It is of interest to note
that the QNO portion of the P=O curve lies entirely
on the physical sheet, but that it exhibits a minimum in
the H=Q plane at Q=Q =0.69 and H=H =0.63.
For field values II(H there are no depaired solutions
satisfying Bloch's theorem, and hence the BCS state is
the only ground state possible.

It is of interest to locate the intersection of the P=0
and 6=0 curves. In other words, we want to find the
values of the parameters Q and H at which the gap
vanishes, always keeping the current zero. This is
easily found from the asymptotic expressions for the
functions y(r~) and 8(+).The result is that the asympto-
tic slope in the A' —q plane is determined by

l,5
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the zero current line corresponds to a net positive cur-
rent and the region to the left, to a negative current.

Bloch's theorem is a necessary but not sufhcient con-
dition, for the lowest energy eigenvalue. It guarantees
only that the energy is an extrelnum relative to small
changes of the pairing rnomentuiri for a fixed value of
6ekI H. Thus the zero current requirement can lead to
unstable as well as stable solutions. This occurs along
the boundary of the unphysical sheet (Q=O and
0.5(H(1.0), as already discussed above in Sec. II,
and also along the 0(Q(Q portion of the P=O line.
Such solutions are unstable with respect to acceleration
of the supercurrent, and do not come into consideration
here. It is evident from the dependence of the energy on
the square of the current that all of the points lying
along the Q (Q(Q~ portion of the zero current line
correspond to solutions which are locally stable. But
further investigation is required to establish their actual
gross stability in comparison to the other possible zero

coth(g/")=q/h

h/q=0. 833. (18)

A

0.2 0.4
' 0.6

(b) STRONG

08 Heq IO Hg

FxG. 5. Magnetization of the zero-current depaired states in
units of Nno (density of states times zero-6eld gap) versus H
(spin-exchange Geld in units of ~0). M=Oin the BCS state, while
the straight line (n) gives the normal-state magnetization. The
e&ect of B upon the free energy is proportional to the area under
the magnetization curve. For the vertical line of Fig. 5(a) at
B=1/V2 the normal and BCS free energies are equal for weak
coupling. The depaired state has lower free energy and is stable
for all higher fields less than H~=0.755. See text for discussion
of the slanting load lines of Fig. 5(b) pertaining to strong coupling.

In the H=Q plane (Fig. 4) this intersection is the maxi-
mum H point along the zero gap line, as required by a
simple symmetry consideration. Denoting the co-
ordinates by Q~ and H", we find from combining Eq.
(10) with Eq. (17) that Q"'—H~' ———,'. Equation (18)
gives H"/Q~=0. 833, so that (Q~,H~) =(0.904,0.753).
In the vicinity of this point, the region to the right of



P. FUL DE AN D R. A. FERRELL

SCS

0.8

0.4—

0.2—

Ks 0.7
H

0.8 0.9

FIG. 6. Energy gap versus spin-exchange Geld in units of the
zero-Geld gap for weak and strong coupling. Exchange between
the polarized electrons is unfavorable to the normal state and
gives a depaired state stability range of 30% for strong 'coupling.
The stability range for weak coupling is only S%%uz. The dashed
parabolas represent the approximate gap expression derived in
Appendix II. The vertical lines with arrows indicate the Grst-order
phase transitions which occur from the BCS to the depaired state
for weak and for strong coupling.

current eigenfunctions of Eq. (1), viz. , the BCS state
and the normal state.

For the purpose of comparing the energies of differ-
ent zero current solutions it is useful, instead of sum-

ming up the various contributions to the total energy,
to make use of the following differential relationship
between the expectation value of the energy in a given
state characterized by exchange field H, and the mag-
netization which is present in that state.

D '&a(X)/a(IIa-p)) = M, —(19)

where 0 is the volume of the system. 0 '(30) can be
identified with the free energy density Ii. Thus, Eq.
(19) is equivalent to the usual integral formula for the
change in free energy upon passing between two diGer-

ent states, 1 and 2.

tions with the zero current line in Fig. 4. As already
discussed, only the upper intersection is locally stable.
From Eq. (20) we see that it is also stable relative to
the normal state, whose magnetization curve is the
straight line passing through the origin. It remains,
however, to investigate the stability of this solution
relative to the BCS state. This problem is illustrated in
Fig. 5 by the areas enclosed by the magnetization curve
and shaded horizontally. When the value of H is such
that area A is equal to area 8, then, according to
Maxwell's" rule applied to Eq. (20), the energies of the
BCS and the depaired states are precisely equal. For
smaller values of H the BCS state is the energetically
more favorable one, while for large values of H area 8
grows and area A shrinks, increasing the stability of the
depaired relative to the BCS state.

The actual computation of the relative stability of
the depaired state is facilitated by the knowledge that
the free energies of the BCS and normal states are pre-
cisely equal at II=1/V2. For the vertical line labeled
"weak" in Fig. 5, with this value of H, the areas A and
C sum exactly to area 8. For this value of H, the de-
paired state is more stable than both the BCS and
normal states by the area C. Thus, the field at which
the first-order transition from the BCS to the depaired
phase occurs is slightly less than 1/K2 and is given
approximately by

1 &ss

H ——=— (M„—M) dII. (23)
V2 M (1/V2) t/vs

Neglecting this small difference, we expect the depaired
state to be the actual ground state of the system in the

-0.8-

O.S

Ft — Md(IXA p)
—. —— (20)

F

Eacs

-1.2-

The magnetization is defined by the expectation value
of the total component of the electron spin in the direc-
tion of the exchange Geld.

-I.4—

M= —0 '(g;o;). (21)
-1.6-

g/ith this definition of M the actual numerical value
can be calculated directly by integrating over the de-

pairing regions, with the result

M= (Xh/2q)fy(r~) y(r )). (22)—
This result is plotted as the curved line in Fig. 5, where
the zero current line has been used to eliminate q and
it will be seen that for H &H& H~ there are two inter-
sections of the vertical H=constant line with the
magnetization curve, and hence two diGerentmagnetiza-
tions possible. These correspond to the two intersec-

Fro. 7. Free energy F relative to zero-Geld normal state, in units
of the BCS condensation energy Ezcs, for weak and strong
coupling. B,„ is the external spin-exchange Geld applied to the
electrons. The BCS state has no Geld dependence, while the
normal-state dependence is shown by the dashed parabolas
(labeled n). The stability of the depaired state is only a fraction
of a percent of Ezos, but is increased by an order of magnitude by
strong coupling. The second-order phase transition at the upper
Geld (Bsr and H3r') is represented by th'e tangency of the solid
and dashed curves.

'2 J. C. Maxwell, Nature XI, 357 (1875); Collected g orks
(Dover Publications, Inc. , New York, 1900), Vol. 2, p. 425.
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range 0.71(H&0.76. Over this range of stability, the
square of the gap varies roughly linearly with 6eld, as
1 H/—H„(see Appendix I). This is shown in Fig. 6 by
the dashed parabola and can be compared with the solid
curve (labeled "weak") which exhibits the exact vari-
ation of d,/Ao versus H. The gap decreases from the
value 0.23 Ao at H=0.71 to zero at H=H~, where it
has infinite slope and the second-order transition to the
normal state occurs.

The behavior of the free energy over this range is
shown by the curve, labeled "weak, " in Fig. 7, where
F(in units of the BCS condensation energy) is plotted
versus H. As noted above, the magnetization in the de-
paired state is only slightly less than that in the normal
state. Consequently, the free energy is also only slightly
lower —by a few tenths of a percent of the BCS con-
densation energy. As we will demonstrate immediately,
this is greatly increased by the exchange interaction of
the normal electrons among themselves. But even
without this eRect, one should not suppose that the
depaired state could easily be spoiled by a slight in-
crease in temperature above absolute zero. Although
the detailed temperature dependence of the model re-
mains to be investigated (except for the H =0 and Q= 0
lines studied in Refs. 9 and 11,respectively), one should
expect that the magnitude of the energy gap should de-
termine the transition temperature.

A further feature of the free energy shown in Fig. 7
is the cusp arising from the double-valued nature of 3f
versus H and from the in6nite slope in Fig. 5 at H =H .
The locally unstable depairing solutions, already re-
jected above, lie beyond the cusp in Fig. 7.

In the above work the interaction between a pair of
electrons has been included, but the interaction of un-
paired electrons neglected. The same potential which
produces scattering between pairs of electrons and leads
to the establishment of the energy gap will also give
exchange scattering between any two normal electrons
and thereby modify the energy of the depaired state.
This effect decreases the stability of the depaired state
relative to the BCS state, but its effect on the normal
state is even greater, because of the larger magnetiza-
tion. The eRect of the interaction on the spin suscepti-
bility is already well known in nonsuperconducting
metals. For the repulsive Coulomb potential this is the
usual exchange scattering which favors ferromagnetism,
and for paramagnetic metals tends to increase the
paramagnetic spin susceptibility. It is an eRect which is
included by Landau" in his discussion of the quasi-
particle treatment of the spin susceptibility of a Fermi
liquid, and has also been discussed from a somewhat dif-
ferent point of view by one of the present authors. "
A useful picture for this eRect is that of the molecular
Geld, the basis of the Weiss theory of ferromagnetism.
In the present case of interest, because of the attractive

"L. D. Landau, Zh. Eksperim. i Teor. Fiz. BO, 1058 (1956)
LEnglish transl. : Soviet Phys. —JETP 8, 920 (1957)g."J.J. Quinn and R. A. Ferrell, Plasma Phys. 2, 18 (1961).

short-range potential of the BCS theory, the molecular
field is opposite in sign relative to its usual direction
and is unfavorable to the polarization of electrons. "
It subtracts from the actual external exchange field
applied to the sample, H, . Thus, the net magnetic
6eld which effectively serves to act on any given elec-
tron spin is

Hetr =Hm —
sr1VV(M/Ergo) (24)

This relationship between the eRective forcing 6eld,
H ff and the response to it, 3f, is similar to that already
familiar in electronic circuitry. There, the signal applied
to a circuit element in series with a load impedance is
reduced by the current fI.owing through the load, in
proportion to its impedance. If the response of the cir-
cuit element is known for any value of the net eRec-
tive input, then a simple construction of the "load line"
on a graph of current versus input leads to a self-
consistent determination of both the net eRective input
and the output for any given value of applied signal. "
In the present case, the load line is a straight line of
slope —2/XV drawn on Fig. 5. The intercept with the
abscissa axis is H, . For any given value of the inter-
cept, the load line is completely determined, once the
value of NV has been specified for the material of in-
terest. In the weak coupling limit, SV~ 0, the load
line becomes the vertical line of constant applied H,
already discussed in connection with Fig. 5. For stronger
coupling, however, the 6nite slope of the load line has
important consequences. First of all, it should be
noticed that for a given value of H, , the normal mag-
netization is reduced by the factor 1+1VV. Conse-
quently, the value of the external Geld at which the gap
in the depaired state passes to zero is increased by this
same factor, giving

Hsr'= (1+XV)Hsr. (25)

The situation is illustrated in Fig. 5 by the dashed load
line. A further 6eld strength of interest is the value for
which the 3CS and normal states have equal free energy.
In the weak coupling limit this is 1/v2. Because of the
suppression of the normal state susceptibility, this field
is increased by the factor (1+XV)'~s. The areas en-
closed between the load line corresponding to this value
of H and the magnetization curve are shown with
vertical shading. Areas A and C sum exactly to area B.
As discussed above in connection with Eq. (23), the
value of H, de6ned in this way is only slightly greater
than the value at which the first-order phase transition
occurs between the BCS and depaired states. Because
of the stronger depend. ence of H~' on NV, it is evident
that the range of stability of the depaired state is in-
creased by strong coupling. As a numerical illustration,

"A. M. Clogston, Phys. Rev. Letters 9, 266 (1962).
"This idea has also been applied by the authors to the deter-

mination of the supercurrent Bowing in a doubly connected
superconducting 61m, in response to an externally applied Aux
LP. Fulde and R. A. Ferrell, Phys. Rev. 181, 2459 (1965)g.



A558 P. FULDE AND R. A. FERRELL

LONDON —BCS
}0 ~ ~~ ~~ e+ygo

0.5—
WEAK

STRONG

/

0.6 Hg 0.8

= STABLE
1 1

}.0

Pro. 8. Ratio of the strengths of the London supercurrent in the
depaired and BCS states versus spin-exchange field. )I, is the
London penetration depth and X the penetration depth for a weak
vector potential applied parallel to the pairing momentum. Only
the upper portion of the strong coupling curve has been determined
exactly. The vertical lines with arrows indicate the first-order
phase transitions which occur from the BCS to the depaired state
for weak and for strong coupling.

IV. ELECTROMAGNETIC PROPERTIES

The response of the depaired ground state of the
superconductor to an applied electromagnetic field is
easily obtained as an extension of the above work if we
limit our attention to the case of small perturbations.
For this case we may expand the total momentum of the
electrons, including both the coherent pairs and the
normal electrons, as a power series in the deviation in
the H Qplane from the P=o line -determined in the

EV=-', may be chosen to represent the strongest cou-
pling case encountered among the superconductors.
This gives H~'=1.13, while the equality of the BCS
and normal-state free energies occurs at H, =0.87.
Application of Eq. (23) yields a slightly lower value for
the first-order transition to the depaired state, leading
to stability of the depaired state in the following range

0.83&H,.&1.13. (26)

This is a range of stability of about 30%. The smallest
value of external field for which a depaired solution
exists at all is found by shifting the load line of Fig. 5
to the left until it becomes tangent to the magnetiza-
tion curve. This yields H '=0.79. Thus it is seen that
for strong coupling the effect of exchange between the
depaired electrons is to make most of the locally stable
depaired solutions stable also relative to the BCS state.
The range of stability covers almost the entire range of
available solutions. This situation is illustrated in Fig.
7 by the curve labeled "strong" for which the free
energy is greater than that of the BCS state only over
a small vicinity close to the cusp. Figure 6 shows the
decrease ("strong" curve) of the gap as a function of H,„
from 0.660 to zero at H~'. Near H~' the parabolic
variation discussed above is a good approximation
(dashed curve).

V BM V 83f
dH= — dQ — dH.

26O BQ 2hp BH
(28)

Elimination of dH from Eqs. (27) and (28) yields a
simple linear relationship between dQ=Q —

QD and the
current J, which is proportional to dI"

J= —(c'ao/4irei p)X
—'(Q —

Qo) . (29)

This equation serves to define the quantity X '. In the
weak coupling limit, dH=O, and X ' is simply pro-
portional to BP/BQ. X ' has the dimensions of the re-
ciprocal of the square of a penetration depth, and there-
fore the result of computation is plotted in Fig. 8 as
the ratio of X

—' to the reciprocal of the square of the
London penetration depth,

) I,
-'——4~ee'/mc'. (30)

c is the velocity of light, e and I the electron charge
and mass, and e the density of conduction electrons.
The curve labeled Weak in Fig. 8 represents the result
of such a computation, while the curve labeled Strong
has been determined only near the upper end point,
H~'. Exact determination of the complete curve would
require the evaluation of all four of the partial deriva-
tives occurring in Eqs. (27) and (28), which could be
carried out in a straightforward manner.

Thus we see that there is a one-to-one correspondence
between the value and direction of the pairing momen-
tum Q and J, the net current which Rows in the de-
paired superconductor. As evident in Fig. 8, the pro-
portionality constant is reduced roughly by a factor of 2
compared to the superconductor in the absence of spin-
exchange field, because of the response of the normal
electrons. We may now ask the question, "Suppose
that a uniform current J is Qowing in the depaired super-
conductor, what will now be the eBect of a perturbing
vector potential?" This question can be easily answered

by noting that the presence of a weak vector potential
can be alternatively described by an equivalent change

previous section. For small perturbations we may
neglect all terms in the Taylor series expansion except
the first-order terms, for which the expansion reduces
simply to

dP= (&P/8Q)dQ+(8P/~H)dH. (27)

Let Qo be the value of the pairing momentum which
identifies the zero-current depaired state for some par-
ticular value of H,„.Thus the infinitesimal change dQ
c» be written as a deviation of the pairing momentum
away from its ground-state value, or Q—Qo. As the load
line considerations which led to Eq. (24) still apply for
current-carrying states, we may differentiate Eq. (24),
keeping H, fixed and neglecting the subscript on H, ff.
This gives us the following relationship between the
differential changes in the pairing momentum and in
the net e6'ective exchange field:
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in the vector momentum of pairing according to the
relation

b(Qhp/vs) = (e/c)A, (31)
E)

where e~ is the Fermi velocity. It is convenient to re-
solve the perturbing vector potential into components
parallel and perpendicular to the current. The parallel
component A && leads simply to an increment of the cur-
rent in the same direction, J&&, independent of the mag-
nitude of the current which was already present.

o E)

J()=(—c/4s-)) sA((. (32)

This equation is of the same form as London's equation
for the current which Rows in an ordinary supercon-
ductor in response to an applied vector potential. Thus
the parameter ), introduced above, can be identified as
the penetration depth for the screening of such a dis-
turbance by the superconductors.

The response of the depaired state to the perpendicu-
lar component of the vector potential is, however,
quite different. Here a small perpendicular component
serves only to rotate the direction of the pairing mo-
mentum, by an angle equal to the ratio of eA, /c to the
quantity Qshs/vs. According to Eq. (31) a small
perpendicular vector potential does not alter the mag-
nitude of the pairing momentum, and thus serves only
to produce a perpendicular component of current pro-
portional to the angle of rotation and to the current
already present:

Jg= (esp/chpQs) JA, . (33)

The relationship expressed by Eq. (33) can be more
readily understood by substituting for the original cur-
rent from Kq. (29), to give the following relationship be-
tween the perturbing vector potential and the current
which Rows in response to it:

J~=(~/4 )L(Q—Qo)/Qsl) 'A~ (34)

This is similar to the relationship discussed above for
Kq. (32), except now that the penetration depth is
clearly current dependent, and is given by the expression

) .= EQo/(Q —Qo) j'"» (35)

where the quantity Q
—Qs can be expressed in terms of J

if preferred. It will be noted that only positive values of

Q
—Qs give stability of the system with respect to per-

pendicular disturbances (instability is formally ex-
pressed by an imaginary value for the penetration
depth). It should further be noted, that as the current
Qowing through the sample is allowed to become
vanishingly small, the screening of the perpendicular
component of the vector potential becomes progressively
weaker, and corresponds to a penetration depth which
approaches infinity. It is important to keep in mind,
however, that this conclusion holds only for small per-
turbations and that the electrodynamic properties are
considerably more complicated if this restriction is not
satisfied.

FIG. 9. Quasiparticle energies in the depaired state L+' versus
normal state single-electron energy e. The zero-energy reference
level for the usual BCS curve has been shifted by the energy
Ep =A p (H —pQ) to the heavy horizontal line. AOH is the spin-
exchange energy, AOQ the pairing momentum times Fermi velocity
and 60 the BCS energy gap. p is the cosine of the angle between
the pairing Inomentum and single-particle momentum, while 6
is the actual gap in the depaired state. The energies required to
add a down-spin (Eg=E Eo) or up-spin —(Et =ED E) electron-
are given by the distances from the line E=EO up or down,
respectively, to the hyperbola. The intersections of this line with
the hyperbola determine the zero-energy quasiparticle excitations
of the system.

V. QUASIPARTICLE SPECTRUM

The energy required to add an electron to the de-
paired state is easily calculated along the lines explained
in the BCS paper. In the present problem special atten-
tion must be paid to the Pauli exclusion principle,
which prevents the addition of a particle to a momen-
tum state in the blocking region. On the other hand, we

get two types of excitation when we add an electron to
one of the vacant regions in Figs. 1 or 2. These cor-
respond to the production of a bound pair or of an ex-
cited pair. Paying attention to such details, one readily
establishes that for every momentum k, there exists a
quasiparticle excitation of energy given by the absolute
value of the right-hand member of Eq. (5). The de-
paired state clearly has arbitrarily low-lying quasi-
particle excitations, as is seen from the fact that along;
the boundary of the blocking region, Eq. (5) holds. For
a given value of pI„Fig. 9 illustrates the relationship
between the BCS quasiparticle energy E& and the:
actual quasiparticle excitation energies, Eg and Eg,
associated with the addition of a down-spin electron of
momentum k and an up-spin electron of momentum
—k, respectively. It will be noted that this is the usual
relationship of the SCS theory except for a shift in the
zero of energy, as shown by the solid line drawn across
the graph at the positive energy (H—pQ)hs. The en-

ergy for the addition of a down-spin electron is measured
upwards from this value, while the energy for the addi-
tion of an up-spin electron is measured down from this
value. Differentiation of these curves with respect to E
for a fixed value of p gives the &pstom@ry SCS density
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FIG. 10. Density of states per unit energy for the quasiparticle
excitations formed by adding a down-spin (Eg =E—Ea) 0) or an
up-spin (Et=Es—E)0) electron to the depaired state, for a
particular portion of the fermi sphere. Notation is the same as in
»g. 9. The state density for zero excitation energy is given by the
interaction of the heavy vertical line at E=Ee with the 8CS curve.

of state variation shown in Fig. 10, but again with a
shifted energy origin. The density of states for down-
spin additions is shown to the right of the heavy ver-
tical line, while up-spin excitations have the density of
states per unit energy shown to the left of the heavy
vertical line. All of the excitations are, of course, posi-
tive energy, as already guaranteed by the condition in-
troduced in Sec. II that no negative energy excitations
should be possible in the depaired ground state. The
actual total density of states for the addition of a par-
ticle to the depaired state is found by superposing the
portion of Fig. 10 to the right and left of the heavy
vertical line and integrating over all the values of p, .
This has been done for a few special cases. Figure 11
shows the density of states curve for H=0.64, Q=0.75,
6=0.50 do, a case attainable with strong coupling near
the lower end of the stability range. It will be noted that
the density of states is qualitatively quite similar to the
constant density of states exhibited by a normal con-
ductor, although some structure is in evidence in Fig.
11. For stronger exchange fields, the structure is less
pronounced and the density of states curve passes con-
tinuously into the constant normal density of states
(dashed line in Fig. 11) as the gap decreases.

It follows from the existence of low-lying quasi-
particle excitations that the depaired state should

exhibit a Sommerfeld type specific heat linear in tem-
perature. The Sommerfeld y for the depaired state is
proportional to the zero-energy value of the density of
states curve for quasiparticle excitations. For the case
shown in Fig. 11, this is only 14% below the normal

value, and approaches the normal value rapidly as the

gap decreases. Normal state behavior in tunneling and
in the specific heat can be expected generally to set in
whenever a mechanism exists in a superconductor for
breaking the electron pairs. The specific mechanism
studied in this paper, that of a uniform spin-exchange
field, is by no means the only possible one. The opposite
situation to that studied here, that of randomly oriented
and distributed impurity spins, has been investigated

by Abrikosov and Gor'kov'~ —with somewhat similar
results. They found that at an impurity concentration
of 90% of that required to reduce the gap to zero, new
properties appear because of the presence of normal
electrons. Normal tunneling behavior of the expected
sort has been observed by Reif and woolf" for various
dilute solutions (e.g., iron in indium), but it is not
known whether or not their ferromagnetic impurities
are ordered. If not, then the Abrikosov-Gorkov theory
would seem to apply, but if they are ordered, the ap-
proach developed in this paper might be more relevant.
Some considerations on the energetics of the impurity
spin alignment are given in Appendix III.

l.ON ——
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Fxo. 11. Total density of states per unit energy versus quasi-
particle energy Eg.p. in units of the zero-field gap h0, for the
depaired state with energy gap 0.5 60. The density of states shown
in Fig. 10 has been summed over both spins and over all portions
of the Fermi sphere. The dashed line represents the normal density
of states. The structure in the depaired state, which would be
observable in tunneling experiments, disappears as the exchange
6eld is increased and the gap decreases. Because of the density of
low-lying quasiparticle states, the depaired superconducting state
exhibits a Sommerfeld speci6c heat almost as large as in the
normal state. The calculation assumes that the tunneling matrix
element does not depend upon the direction of the quasiparticle
momentum (diffuse surface condition).

7 A. A. Abrikosov and L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz.
39, 1781 (1960) LEnglish transl. : Soviet Phys. —JETP 12, 1243
(1961)g.

&' F. Reif and M; A. Woolf, Phys. Rev. Letters 9, 315 (1962}.

VI. SUMMARY

The problem of a strong exchange field acting on the
electron spins in a superconductor has been studied in
the ideal case of a uniform field in the absence of scat-
tering processes. It has been found that a qualitatively
new depaired state with unusual properties exists over
a finite range of the strength of the exchange field. As
the exchange field increases, the energy gap of the de-
paired state decreases and passes continuously to the
normal state. In contrast to the completely paired BCS
state, the depaired state exhibits spin magnetization,
almost normal tunneling and specific heat, and an ab-
sence of supercurrent for weak vector potentials perpen-
dicular to the pairing momentum. It is this last feature
which is the most striking and which can be expected to
be the Inost difficult to observe experimentally. This is
because scattering in an actual sample will tend to in-
validate the above treatment based on plane-wave
single-particle states, insofar as the momentum relaxa-
tion rate in the normal state is greater than the energy
gap. For short mean free path, all anisotropy in momen-
tum space should vanish, and the eGect of the uniform
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(40) can be further simplified toexchange field can be expected to be quite different from
that found above. Taking into account momentum
and spin relaxation in the present model remains a
problem for the future.

It is interesting to note that the idealized model
studied above yields a highly degenerate ground state,
characterized by the direction of the pairing momentum,
or alternatively, by the wave number of the sinusoidal
spatial dependence of the Gorkov function. Goldstone's
theorem" requires that there must exist low-lying col-
lective excitations of the system. The nature of these in
the present model has not been investigated. It should
also be noted that the perturbing field acting upon the
superconducting electron spins in the model treated
above can be an ordinary magnetic field rather than an
exchange field, provided that the orbital effects of the
magnetic field can be neglected. Thus, the results
found here extend somewhat the high-field limit of
superconductivity discussed by Clogston. " Similarly,
the temperature dependence of the model (which has
not yet been studied) might be relevant to the high-
field effects investigated in tin by Knight and Androes. "

As/6= h+(h' —1)'",

A/As (2H———1

(42)

(43)

a parabola normal to the k=0 axis and curved toward
the q=0 axis. Similarly, substitution of Eq. (42) (with
h written as hq) gives

h —ha = [ha/6(hs' —1)]q',

a parabola normal to the q=0 axis and curved away
from the h =0 axis. These parabolas are shown as dashed
curves in Fig. 3. As the mapping of Fig. 3 onto Fig. 4 is
simply a change of scale by A/As, the behavior of the
constant gap lines in the vicinity of the H =0 and Q= 0
axes is also that of parabolas.

APPENDIX I. SIMPLIFIED GAP EQUATION

Equation (8) determines the energy gap 8, for any
choice of q and h, corresponding to an arbitrary point
in the h —

q plane. It is useful to note, however, that con-
siderable simplification results when one of the varia-
bles is small, corresponding to the two strips in the
quarter plane along the two axes. To And the depend-
ence of the gap to second order in the small quantity,
we will need the erst three derivatives of the function
G(x), defined by Eq. (9). These are

APPENDIX II. SECOND-ORDER PHASE TRANSITION

It is of interest to study the manner in which the
energy gap vanishes as the zero gap line, Eq. (10), is
approached in Fig. 4. Insertion of the asymptotic ex-
pression for G(x) for large values of x into Eq. (8) gives

Ap h q+h
ln——', ln4I q' —h'I+ —ln

2g fq
—hf(36)G'(x) = cosh 'x,

G"(x) = (x'—1)-'"
G"'(x)= —x(x' —1)-'",

(37) —1+4[1/(0'—h') 3 (46)

(38)
arid

(~ /A)'=4(Q' H')B(—Q,H), (47)
assuming x&1. Taylor's series expansions in powers of
h and q are immediately found to be

where
H Q+H

g(Q, H) =1—s ln4IQs —H'I ——ln . (48)
2Q IQ—Hf

—2g In(A/As) =2G(q)+h'(iJ' —1)
—'", (39)

for 0.5 &EI& i.0 as found by Sarma" for zero
temperature.

The behavior of the constant gap curves in the h —
q

plane is readily obtained from Eqs. (39) and (40). Let
the gap= 6 curve cut the axes at q& and h&. Substituting
Eq. (41) (written now in terms of ga) into Eq. (39)
yields

—2q ln(d/As) = 2 cosh 'h —-'sq'h(h' —1)-'", (40)

respectively. Thus, small excursions from the &=0 axis
reduce the gap while small deviations from the q=0
axis increase it. (The mapping into the H. Q plane shown
in Fig. 4 changes, however, this last feature. ) For h=0,
Eq. (39) becomes

A/As= exp[ —G(V)/8, (41)

the gap equation for large supercurrents derived by
Rogers ' Bardeen, ' and Parmenter. " For q=0, Eq.

"J. Goldstone, Nuovo Chnento 19, 154 (1961), See also J.
Goldstone, A. Salam, and S.Weinberg, Phys. Rev. 127, 965 (1962)."G. M. Androes and W. D. Knight, Phys. Rev. 121, 779 (1961).

As setting /=0 gives Eq. (10), we can write

I 8 I

=«I ~O—/~H
I

=(«/H)(1 ——; in4IQs —Hsf),
(49)

where AH is the vertical distance from the zero-gap
line in Fig. 4. Substituted into Eq. (47), this gives the
linear variation of the square of the gap with AH in the
vicinity of the phase boundary. At the intersection of
the zero-current and zero-gap lines, 4(Q' —H') =1, so
that Eqs. (49) and (4'7) reduce to

as already stated in the text, and as shown by the dashed
parabolas in Fig. 6.
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APPENDIX III: ALIGNMENT OF THE
PARAMAGNETIC IONS

Ij,zB= 2(M M—)6pH.x/nz, — (51)

where pz is the magnetic moment of the impurity and B
can be interpreted as an effective decrease in the
strength of the Weiss molecular field which gives rise
to the ferromagnetism. From the linear relationship be-
tween the Weiss field and the Curie temperature, we
find that the reaction of the superconducting electrons
decreases the Curie temperature by

4(s+1)EBcsH,~ M—M„
(52)

Ehp3k''sg s

where s is the impurity spin and k& is Boltzmanns
constant. Introducing the transition temperature
T,=hp/3. 5 from the BCS theory, we can put Eq. (52)
into the form

LNo 7(s+1)H. Xpp(n dp M —M

3s n Enz pr 1Vhp
(53)

Although it has been assumed in the body of this
paper that the impurity spins are a priori locked into
ferromagnetic alignment by some unspecified mecha-
nism, it is nevertheless of interest to investigate the re-
action of the superconducting electrons back on the ion
spins. The usual way of corn, puting the interaction
energy for a given impurity spin alignment is by
means of the wave-number-dependent spin suscepti-
bility x(q) of the conduction electron system. But
because of the strong nonlinear response, this pro-
cedure is not appropriate in the present case of
the depaired superconductor. Nonetheless it is inter-
esting to note that the differential susceptibility for
q=0 is larger in the depaired superconducting state
than it is in the normal state. This can be seen easily
from Fig. 5 by comparing the slopes of the magnetiza-
tion curves for the normal and depaired states. Although
it is difBcult to calculate the differential susceptibility
for q/0 its qualitative behavior is apparent by realizing
that for q)1/$ ()=coherence distance in the depaired
superconducting state) the response of the depaired
superconducting state must approach that of the normal
state.

It might seem that this long-range positive polariza-
tion cloud around a point perturbation would tend to
favor ferromagnetic alignment of the paramagnetic
ions—but this conclusion would be incorrect. In order
to compute correctly the reaction of the superconducting
electrons back on the ferromagnetically aligned ions,
we erst assume all impurity spins lined up and then con-
sider how the energy changes as one of the impurity
spins is fl.ipped. This spin Rip corresponds to a fractional
reduction in the strength of the uniform exchange field
H, by 2/nzQ, where nz is the impurity density. The
difference of the energy increase of the electron system
in the depaired and normal states is consequently

2pr(s+1) EscsH ' ' '

8gezs
(57)

By inserting this expression into Eq. (56) one obtains
the energy of the superconducting state and sees that
it is lower with this cryptoferromagnetic screw ordering
than it would be for the strictly ferromagnetic order-
ing of completely aligned impurities (q=O). For large
H, one expects again some kind of depairing, such as
studied in the body of this paper for the ferromagnetic
case, but the details are now very much more compli-
cated and have not been calculated. As the single-
particle wave functions describing the motion of the

~ P. W. Anderson and H. Suhl, Phys. Rev. 116, 898 (1959).

As all of the factors are of the order of unity except those
inside the parentheses which can be estimated at 10—',
it is evident that the decrease in Curie temperature is
quite negligible. It should further be noted that, be-
cause M is much closer to M in the depaired state than
it is in the BCS state, the Curie temperature change is
even smaller in the former.

The stability of the system with respect to spin flip
of one impurity does not imply, however, stability with
respect to a collective rearrangement of all impurity
spins. Anderson and Suhl" have shown that for weak
fields H a space-dependent impurity spin arrangement
of a screw type with wave number q is energetically
favored. In the weak coupling limit of superconductivity
the difference in spin polarization energy per unit
volume between the normal and superconducting states
is given by

W.(q)=(X /2)(~ H. /I )'f(qb)=2& H'. 'f(qb),
prEscsHpx $pq, (54)

where f(O)=1, but the asymptotic approximation is
accurate enough for x&x. Clearly the superconducting
system will prefer large q (small wavelength). This
tendency is opposed by the loss of spin-spin alignment
energy. We can estimate this loss in a way similar to
that used for calculating the energy it takes to form a
Bloch wall. If u' denotes the mean-square range of the
spin-spin interaction, the energy density is given by

Wz(q) = fsnzgo/4(s+ 1)7''q' (55)

(see, for example, Ref. 6). Our coefficient of q' in Eq.
(55) differs from that of Anderson and Suhl and ex-
hibits more explicitly the dependence on the strength
and range of the interaction between impurity spins.
By minimizing the total energy density

W= W, (q)+ Wz (q), (56)

with respect to g, we obtain the optimal wave number
qz of the screw-type impurity spin arrangement. By
noticing that W, (qz) =2Wz(qz) we can write down &z

immediately to be
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The correction factor 1.71 is 14m ' times the Riemann
zeta function f(3) and represents the modified response
of the superconducting electrons to a square wave in-
stead of to a sinusoidal wave. The condition that the
Anderson-Suhl cryptoferromagnetic state is actually
the state of lower energy is

2f(V~4) &f(0)=1, (60)
or equivalently

qs) m/$o. (61)

Inserted into Eq. (59), this becomes

$a/to&&, '(1.71Escs/E+z) (62)

A simple Bloch wall calculation relates the wall thick-

electrons through the strong space-dependent spin ex-
change field would no longer be plane waves, but in-
stead Mathieu functions, the methods used in this
paper for computing the depairing could no longer be
applied.

The situation might be changed, however, if there is
an appreciable anisotropy energy between the im-
purities and the host lattice. This anisotropy energy
density, «el, will distort the sinusoidally varying im-
purity spin arrangement into a square wave. Most of
the spins will now be either parallel or antiparallel to a
preferred direction and only a relatively small fraction
will participate in the formation of Bloch walls.

Instead of Wz(q) it will cost now an energy density

Wzz(q) = (En z/n )&zzq (58)

to form the Bloch walls where Ps is an effective wall
thickness which will depend upon the Curie tempera-
ture as well as upon E. The factor (1/ir)q enters as we
require one Bloch wall for each half-wavelength of the
square wave. Wz(q) will now replace Wz(q) in Eq. (56)
and a wave number qg which minimizes the new total
energy expression, 1.71 W, (q)+Ws(g), can be calcu-
lated. For q= qzi the relation 1.71W, (q~) = Wio(pe) holds
and yields

ness to the Curie temperature and anisotropy energy:

(zan = aL9sgc/2(s+1)E)'". (63)

Substitution of Eq. (63) into Eq. (62) yields

zzz8c (s+1) tz&scs t'$o '
&0.65a..'

s (ENz ($@BCS
(64)

with the qualification that the entire analysis is valid
only if the anisotropy energy «eI is greater than EBt:&,
so that the next to the last term is less than unity. As-
suming this to be true, we may then note that the last
two factors combine to be independent of the energy
gap. If we introduce the quantity 8,=3h'/(2ir'ma'),
Eq. (64) becomes

elec (s+1) 8. I
&0.65H..4

~PCS ~ « ~1
(65)

As remarked by Anderson and Suhl, the left-hand mem-
ber is of the order of 10'—which about matches the
last factor on the right. Furthermore, we are interested
in the range H, =1.Thus, the question of whether or not
the cryptoferromagnetic spin alignment has lower
energy than the ferromagnetic order depends upon
whether or not b is greater than or less than «. Both
of these quantities are completely undetermined in the
alloys of interest. Barring symmetries which might
suppress the strength of « in any given case, a fair guess
might be 10 ' eV. For b to equal this would require a
root-mean-square interaction range of a = 100 A, as com-
pared to a nearest-impurity neighbor distance in a 1%
solution of about 10 A. Such a long range is very im-
probable, although indications of unusually long inter-
action range have been found experimentally in some
instances. Unless the anisotropy energy is very much
greater than estimated, it would seem that the in-
equality (65) is comfortably satisfied and that the
Anderson-Suhl cryptoferromagnetic ordering represents
the ground state of the superconducting alloy. This con-
clusion leaves, unfortunately, completely unexplained
the experimental reports of ferromagnetic alignment
and remanence in the superconducting state.


