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Relation Between Local Order and Interference Effects in Electrical
Resistivity for Metallic Alloys

M. T. BAAL AND J. FRIEDEL

I'hysique des Solides, Fccllte des Sciences, Orsuy (Seine et Oise) Fr0nce
(Received 10 February 1964)

A relation is pointed out between the interaction of a pair of impurity atoms in a metal and the isotropic
part of the interference term in their residual resistivity. The relation is established for weak, far apart, and
magnetic or nonmagnetic scatterers in a free-electron gas. It should hold approximately down to the nearest-
neighbor distance for alloys with normal or rare-earth components. In all cases, both effects are described by
oscillating functions of the distance between the two scat terers, with the same phase. An increase of residual
resistivity with local order results.

I. INTRODUCTION

HE nature of local order in metallic solid solutions
has been much studied in recent years, ' and its

physical origin ascribed to the effect on its neighbors
of the long-range oscillations of the perturbing potential
due to a solute atom, .' The setting up of such a local
order is known to alter the electrical resistivity; and
these changes have been explained fairly satisfactorily
as due to changes in interference effects between
scatterers. ' 4

The purpose of this note is to point out a direct
relation between the interaction energy of two scat-
terers and the ~sotropic part of the interference in the
resistivity. This relation will be proved for a gas of free
electrons, and when the scatterers are spherically sym-
metrical, weak and not too near to each other. The
scatterers can be magnetic or nonmagnetic. These con-
ditions should apply approxim, ately, even for impurities
in nearest-neighbor positions, for normal or rare-earth
metals; in semimetals it should only hold at very large
distances; finally, the relation is not established for
transitional matrices or scatterers.

When it holds, this relation is such that the estab-
lishm, ent of local order under thermal equilibrium

should always increase the isotropic part of the residual
resistivity.

We first consider in detail the nonmagnetic case. The
relation is then extended to magnetic scatterers.

II. NONMAGNETIC SCATTERERS

We consider two spherically sym, metrical impurities,
one at the origin, the second at. point d. If they are weak
scatterers, the optical approximatiorl, can be used to
describe the wave function of an incoming electron k
scattered by the pair

e" "+f„.«&'(g&, k,r&)+e' ' lb„,«s(gs, k,rs) . (1)

r~, rs, 8&, gs are explained in Fig. 1.P,««, is the scattered
part of the wave function of electron k when impurity
i is isolated.

In writing (1), use has been made of the fact that the
self-consistent potential U of the pair of scatterers only
deviates from the sum of the potentials U; of each
scatterer, when isolated, by interference terms of the
second order in U, . Such terms are neglected in the
optical approximation (1).

A. interference EQ'ect

At large distances from the scattering pair, formula
(1) reduces to

/~elk ry+ f1( 1)8+e& dfs(gs)
r2

~ f, (g,) ~

is the differential cross section of the ith
scatterer, when isolated.

The total resistivity cross section is thus, using well
known relations,

FIG. 1. Optical approximation.

metallic Solid Solutions (W. A. Benjamin and Company, Inc. ,
New York, 1963).

'A. Blandin and J. L. Deplantb, J. Phys. Radium 23, 609
{1962).

'P, G. de Gennes and J. Friedel, Phys. Chem. Solids 4, 71
(1958).M. T. Heal, ibid 15, 77 (1960)..

M. T. Seal, thesis, Paris, June 1963 (unpublished); Phys.
Chem. Solids (to be published); cf. also S. H. Liu, Phys. Rev.
152, 589 (1963).

o(&o,d)=oi+os+ f*i(g)fs(g)e'I'd(1 —cosg)

&&singdg+c. c. (3)

K= (kerr/r) ksd —is the scattering vector for an in-

coming electron at the Fermi level, with wave vector
k~ parallel to the electrical current; co is the angle
between d and ksI (Fig. 1); o.; the resistivity cross
section for scatterer i when isolated.
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(~) /a;

F[G. 2. Variation with distance d of
the isotropic part of the electrical re-
sistivity due to a pair of identical
impurities.
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Owing to the angular d.ependence with d, the excess
resistivity So.=o-—o-&—0-2 is anisotropic. ' It is however
easy to check that the average cross section, for pairs
oriented at random, is

with

valency, or a change in "effective" potential, describing
a change in period (cf. Ref. 2). The W s are due to the
reaction of the valence electrons, screening out the
external perturbation V;.

As long as the impurities are weak scatterers,

U, (K) = V, (K)/ere,

2k' ksr tr E' ) K+2ksr
err=1+ 1+

~K' k k 4k ') E 2k—and
2 cos2k~d

(S~)..~ —[j*,(~)f,(~)yc.c.)

for d —+ ~ (i.e. , kid))1). (6)

where
(5o), ~ 2(oto, )'~' for d —& 0 (i.e.,kid&&1) (5)

f.et U, (r) be the potentials of the scatterers, with
Fourier components

U, (E)= U, (r)e '"'dr. —

Using the relation f(v-)= —(1/27r)U;(2ksr), Eq. (6)
can also be written

cos2k~d
(bo). —+ ——Ut(2k') U, (2ksr)

7r2 (2ksrd)'

for d~ ~. (7)

Figure 2 gives schematically the relative variation
of the average residual resistivity (p), /(pt+p&) of the
pair, in the case of two identical scatterers. '

B. Energy of Interaction

The total scattering potentials U; of the two im-
purities are made of a "bare" part V; and of a "clothing"
part 8', . The V s are either the Coulomb field due to
the excess nuclear charge describing a change of

' B. Caroli, 3 Cycle, thesis, Orsay, 1961 (unpublished).' In drawing this curve, use has been made of the fact that, for
likely scatterers, the expression between brackets in Eq. (6) is
near to (o.10.2)~'2; it would be exactly equal to (o-&f7&)" only in the
unphysical case of delta-function scatterers.

is the dielectric constant' for wave number E of the
valence electrons. ' Also the interaction energy between
the impurities is, for weak scatterers, in atomic units
(e= &=re=1),

1
tv(d) =

(2v.)'

E2
sx Ut(K) Us—(E)e' 'edsK. (10)

4'
The asymptotic form, valid for k~d))1, is

(2k~)' cos2k~d
Ur (2k') Us(2k')

(2rr)' (2ksrd)'

for d —+ ~. (11)

tv(d) —+

C. Discussion

For normal metals, the nearest-neighbor distance dp

is such that k~dp 7 to 10. The asymptotic formulas
(6) or (7) and (11) thus hold for any distance d, giving
an interference effect (Sp), =(p),»—(p, +p, ) and an
interaction energy x small, appreciable only at near-
neighbor distances. In semimetals, with k~dp&&1 for
nearest neighbors, one expects on the contrary the
asym, ptotic formulas for d —+ ~ to apply only at
distances d very large compared with interatomic

7 As shown in the Appendix, no diKculty arises in the com-
putation of (80')s~ from the singularity of U;(E) for X=2k~. '

J. Bardeen, Phys. Rev. 52, 688 (1937). P. Nozieres and D.
Pines, Nuovo Cimento 9, 470 (1958); A. Blandin, thesis, Paris,
1961 (unpublished); J. Friedel, Low-Temperature Physics, Les
IJouches Summer School (Presses Universitaires de France, Paris,
1961).
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distances; for d«ksr ', formula (5) shows that the two
impurities should scatter coherently: two identical
impurities (Ui ——Us) should have a resistivity about
twice as large as when they are separated; two im-
purities of opposite character (Ui ———Us) should have
very little total resistivity.

When relations (6) or (7) and (11) hold, it is seen
that the change in average resistivity (6p), due to
interference is directly proportional to the energy of
interaction z, whatever the nature of the scatterers or
their distance. The coefficient of proportionality is
eegutive. Starting from a perfectly disordered solid
solution and letting a local order appear under thermo-
dynamical equilibrium, the pairs of solute atoms for
which w)0 (thus (Sp), &0) should decrease in number,
while those for which w(0 (thus (bp), )0) should
increase. Both types of movement lead, as stated above,
to an increase in residual resistivity (5P)T. More pre-
cisely, it is easy to show' that, at temperature T, and
for an atomic concentration c of scatterers,

(8p)T —w(d) (5o). ( 1 )
c'+Oi —

i

ksT or+Os kT~)

16k~' 1 UP(2k') Uss(2ksr)

Pi+Ps

C2

ksT Ut'(2ksr)+ Us'(2k')
cos'(2ksrd) tr 1 )

+Ol —,I (»)
kT)

where the summation extends over all distances d be-
tween one lattice site and the others.

This conclusion strictly applies to weak, nonmagnetic
scatterers in normal metals. Normal substitutional or
interstitial solid solutions fall roughly in this class.
Experimental evidence, although scant, suggests that
the relation established between w(d) and (8P(d)), is
observed as to the sign and order of magnitude. '4 A
number of restrictions must be stressed:
(a). (5P), is an isotropic average, for all possible
directions of the electric current with respect to the
pair. It is rot exactly the average at fixed current
direction, for all possible orientations of pairs of im-
purities in a crystal, because these are limited in
number.
(b). The Born approximation used here is not very
satisfactory: it is known' ' to give not very good values
for the resistivity of isolated impurities. The relation
obtained is thus at best approximate in actual cases.
This approximation might be poor for strong scatterers,
such as vacancies or transitional impurities. ' ' "

III. MAGNETIC SCATTERERS

A similar relation between (bo(d)), and w(d) holds
for magnetic impurities, and is thus involved in both

' J. Friedel, 1963 Mol Summer School (North-Holland Publish-
ing Company, Amsterdam, 1964)."J.Friedel, J. Phys. Radium 23, 692 (1962).

atomic and magnetic short-range order. "It is again
strictly valid within the Born approximation. It should
thus apply very well to rare-earth impurities or pure
rare-earth metals. It is not proved here for transitional
impurities, although it might be that the resistance
minimum observed at low temperature in alloys such
as CuMn has the same physical origin. ' ' "

H= —2J(r—Ri)s Si—2J(r—R,)s.S&. (13)

J(r—R~) is the spin-dependent potential between s
and S,. A second-order perturbation calculation leads
to the interaction between Si and Sr,

w(d) = TraceL4(s Si)(s Ss)]
s&iM (2m)

d'k'e"" "'&'~~ J(k—k') ~'

X +c.c. , (14)
(2s )'[-,' k' ——',k"]

where d= Ri—R,.
This is the Yosida formulation, "with a general form

for J(E).We have only to suppose (cf. Appendix) that
J(E) is continuous and remains ferule for all K. It is
well known" that (14) can be written:

w(d) = —Si Ss K~ J(K) ~'F(K) sinKddK (15)
4~4d 0

with

4k'' —E' 2ksr+K
F(E)=1+ ln

when k~ is the Fermi level. The asymptotic form
analogous to (11) for k~d))1 is

(2ksr) cos2k~d
w(d) ~ Si S,J'(2k')

(27r)' (2ksrd)'
(16)

This is the Ruderman-Kittel-Yosida indirect inter-
action, " without particular restrictions about J(2ksr)
(cf. Appendix).

"A. J. Dekker, Physica 24, 697 (1958);25, 1244 (1959).A. D.
Brailsford and A. W. Overhauser, Phys. Chem. Solids 15, 140
(1960),21, 127 (1961).T. Van Peski Tingergen and A. J. Dekker,
Physica 29, 917 (1963).

r2 M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954);
K. Yosida, ibid. 106, 893 (1957); T. Kasuya, Progr. Theoret.
Phys. (Kyoto) 16, 45 (1956).

A. Energy of Interaction

I.et us take two magnetic impurities, one at the site
Ri with spin Si, the other at Rs with spin Ss. We
suppose that the interaction between Si and Ss is by
indirect exchange, via the conduction electrons of the
matrix considered as free electrons (spin s, wave
vector k). The Hamiltonian for the two spins Si and
Ss is
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B. Resistivity and the second stops at X=2k~'.

The interference factor is the same as (3) for chemical
interactions but

1 ~~M

p

f2(E) sinKddK, (A2)

1
f*~(~)f2(~) =

I ~(E) I'(S~.S~).
4~'

(17)

Tracei S~ S2 exp( ve(d)—/k~T))
(18)(Sg Sg)=

Trace Lexp( —w (d)/k~T) $

In terms of the density matrix, the correlations are
evaluated as follows:

where f~(K) and f~(K) are functions of E given
explicitly later.

The calculations of the corresponding asymptotic
expressions for large distances d between the two
scatterers involve integrations by parts, keeping only
the smallest power of 1/d. In this operation, attention
must be paid to the structure of f~(E) and f2(E).
For magnetic scatterers,

For high temperatures, (18) can be expanded in powers
of 1/T. Then the total resistivity p due to the scattering
of conduction electrons s by S~ and S2 is

fg(E)= i J(E) i'F(E)K

where F(E) is given by Eq. (15), and

f~(E) =
I J(K) I'E

(A3)

(A4)

P i+P2

(S~ S2)e' '&i J(E) i'(1—cose) sinedg

where J(E) is the Fourier transform of the exchange
integral.

For nonnsugnetic scatterers,

(S,2)
i J(E) i'(1—cosa) sinedg

p

(19)

and
f~(E) = IU(K) I'LE'~(E)X

f,(Z) =
i U(E) i2E2,

(A5)

(A6)
p~ and p2 being the individual incoherent resistivities of
S~ and S2. (18) and (19) lead at large distances d to

Pi+P~

4J'(2k~) (2k')4~1+
3k' T (2m-)'

2Si(Si+1)S2(S2+1) cos'(2k~d)
X

Sg (Sg+ 1)+S2(S2+ 1) (2k~d) '

for d~ 00. (20)
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APPENDIX: ON THE VALIDITY OF THE
ASYMPTOTIC FORM OF w AND 80

The interaction energy as well as interference eQects
lead to similar integrations over E; but the first is
taken from E=o to E= ~, i.e.,

f~(E) sinEddE
p

(A1)

The excess resistivity p
—(pz+ p2) under thermal

equilibrium, , due to interference between the scatterers,
is again positive, as for nonmagnetic impurities i formula
(12)j.

where e& is given by Eq. (9) and the simplifying
assumption is made that

Ug(E) = U2(E) = U(E) =in.Z/E'e(E), (A7)

Z being the charge of each scatterer. e(E) and F(E)
have no singularities but their derivatives are inhnite
for K=2k~. U(E) and J(E) are assumed to be con-
tinuous and Quite functions of E for all values of K. '

Now, it is easy to verify that f&(0), f&(~) and
f~(0) =0. Then the leading term in the energy, in 1/d',
vanishes between the limits 0 and ~. The next term,
in 1/d, involves the d.erivative of f~(E), which has a
singularity at E=2k~. The main contribution to this
term is in the immediate neighborhood of 2k~, it is in
cos2k~d/d', as computed in the text. But the leading
term in the resistivity, in 1/d, does not vanish for the
limit 2k~. It is the term considered in the text. The next
term involves the possible singularity at 2k~ in the
derivative of f2(E); it is in cos2k~d/d, thus negligible
for k~d)&1 compared with the 6rst term in 1/d'.

More generally, for regular, 6nite potentials, with
regular derivatives, there is no trouble. For a finite
potential with infinite derivatives for some value
K=K;, the contribution to the energy comes from the
neighborhood of K;, but in the resistivity the singularity
does not appear in the asymptotic form stopped at the
leading term in 1/d. The case of a step-function
potential would be treated in the same way.


