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Thermal Agitation of Single Domain Particles
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The direction of magnetization of 6ne single-domain particles is known to fluctuate because of thermal
agitation. The relaxation time for these fluctuations is calculated here for the case of uniaxial anisotropy and
zero magnetic held. It is found that the commonly used approximation for high-energy barrier is still a good
approximation when the barrier is of the order of kT. For lower barriers, the eigenvalue is expressed as a
power series in the energy barrier in terms of kT.

l. INTRODUCTION

q XTREMELY fine particles of ferromagnetic ma-
~ terials have no hysteresis, and generally behave as

if each particle was a paramagnetic atom. ' lt is be-
lieved that this phenomenon, which is known as "super-
paramagnetism, " is due to thermal agitation which
causes continual changes in the orientation of the mag-
netic moment of each particle, yielding a statistical
distribution of orientations. For larger particles, the
relaxation time associated with these fluctuations be-
comes so large that the moments are stable within the
measurement time and the thermal agitation can usually
be ignored, except when the system approaches a state
of collapse (like a domain nucleation), in which case
the thermal agitation might help to overcome the energy
barrier and cause nucleation' slightly below the field
which would have made it possible from static equili-
brium considerations. In the intermediate size range,
between superparamagnetism and stable ferromagnet-
ism, a "magnetic viscosity" is observed, namely the
magnetization changes lag behind field changes. ' This
intermediate size range is rather narrow, and for a Axed
time of Ineasurement there is a rather sharp change of
magnetic properties when the particle size is changed. 4

In the theoretical study of the relaxation time associ-
ated with the thermal fluctuations, it has usually been
assumed"' that the energy barrier between stable
states is so large, compared with kT, that the direc-
tions of magnetic moments of the particles are con-
centrated at the energy minima. One obtains then that
the relaxation time is essentially proportional to
exp(E&/kT), where EJr is the barrier energy, and T is
the temperature. This approach is certainly valid only
for high-energy barriers, but no quantitative estimation
has ever been made for the range of its validity. Stacey'
has obtained a similar expression using noise theory,

only he ignored the possible time lag between applica-
tion of random forces and the response to them by the
system under study. More recently, Brown~ treated the
problem using the theory of Brownian motion. He ob-
tained the relaxation time as eigenvalue of a certain
differential equation, which should hold true for high-
as well as for low-energy barriers. Unfortunately, how-
ever, Brown did not calculate the actual eigenvalues of
his equation. He obtained a formula similar to the one
which is usually used, as a limiting value for high-
energy barriers, and calculated up to a second order in
the energy, the values for low-energy barriers. There-
fore, he could not give any reliable estimation for the
range of validity of the commonly used high-energy-
barrier approximation.

It is the purpose of the present paper to calculate the
actual eigenvalue of Brown's equation as a function of
the energy barrier. It will be shown that the high-
energy-barrier approximation can be safely used down
to barriers of the order of kT, and power-series expansion
will be given for lower barriers. We shall be specifically
interested in the physically most interesting case of a
uniaxial anisotropy energy (which can be either shape
or magnetocrystalline anisotropy), namely, when the
energy density of each particle is

I' =E sin'8.

Here E is the anisotropy constant, and 0 is the angle
between the magnetization direction and the particle's
easy axis. It is further assumed that there is no external
field. Introducing the notations

x= cos8, cr=EV/kT,

where V is the volume of the particle, Brown's eigen-
value equation' for this particular case becomes

dC' dC—(l —x')—+2~x(1—x')—+) C =O.
Zx dx ds' C. P. Bean and J. D. Livingston, J. Appl. Phys. Suppl. 30,

120S (1959).' A. Aharoni, J.Appl. Phys. 33, 1324 (1962).See also A. Aharoni
and K. Neeman Phys. Letters 6, 241 (1963); A. Aharoni, Rev.
Mod. Phys. 34, 227 (1962).' L. Neel, Ann. Geophys. 5, 99 (1949).

4E. F. Kneller and F. E. Luborsky, J. Appl. Phys. 34, 656
(1963).

' W. F. Brown, Jr., J. Appl. Phys. Suppl. 30, 130S (1959).' F. D. Stacey, Proc. Phys. Soc. (London) 73, 136 (1959).

Here C is proportional to the probability density dis-
tribution function, and the eigenvalue X is related to the
relaxation time 7 of the system into stable equilibrium

' W. F. Brown, Jr., Phys. Rev. 130, 1677 (1963); See also W. F.
Brown, Jr., J. Appl. Phys. 34, 1319 (1963).
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by:

X= (V/kTrq) (yo '+CPM, '),
for the coeS.cients a

(m+1) (m+2) (m+3)

where M, is the saturation magnetization, yp is the
gyromagnetic ratio, and p is a dissipation constant. The
latter can be found from experimental linewidths and
can be usually taken' as

q~yp '3I, ',

which is the value of g that minimizes 'A, according
to (4).

Equation (3)has to be solved with the boundary condi-
tion that C is regular at x=~1.This should lead to dis-
crete eigenvalues, X„.The lowest of these is X=O, associ-
ated with the eigenfunction 4= const, which describes
a steady state. The method to be described in the follow-
ing section can be used to calculate any of the other
eigenvalues X„, as functions of the reduced energy
barrier, n. However, it will be specifically applied to the
smallest positive eigenvalue X~ which is of most physical
interest.

2. THE EIGENVALUE 21

This suggests expanding 4 in a series of form

c=p a„I' (x),
m=p

(6)

where I' are the Legendre polynomials. Substitution of
(6) in (3), with the subsequent use of the I.egendre
diterential equation, differentiation and recurrence
formulas, yield the following 3-term recursion formula

When n vanishes, Eq. (3) reduces to the differential
equation of Legendre polynomials. Therefore,

~.(0)=N(~+1),

and in particular

X~(0)=2.

(2m+3) (2m+5)

(
X—m(m+1)

2Q

m(m+1)

(2m —1) (2m+3)

(m &&2)

1V2 = —X, 1V3——1—(-,'X) —(-,'n) . (11)

As was mentioned before, a /a 2 tends to zero as
—a/2m when m —+~ and therefore X ~ 0 as n'/4m.
This ensures convergence of the infinite continued
fraction obtained by iterating Eq. (10):

m(m 1—) (m —2) a„,=0, (m&0). (7)
(2m —1) (2m —3)

It is seen that as m —+~, either a /a 2~2m/a or
a /a 2

—n/2m. Of these two solutions for the second-
order difference equation (7), the forxner obviously
represents a diverging series when substituted in (6).
The latter represents a series that converges like

exp( ——',n) uniformly in x, and is thus the solution that
fulfills the boundary conditions. It is also readily seen
from (7) that there is no interaction. between terms with
odd values of m, and those with even values. The odd
and even functions 4 can thus be treated separately.
The eigenvalue of most interest P ~ belongs to the odd-
functions set.

Let the following notations be introduced for brevity:

2nm(m+1) a
Ã = (g)

(2m —1) (2m+1) u„2
4u'm'(m —1) (m —2)

0-=
(2m —3) (2m —1)'(2m+1)

2Q
y„=m 1—,(m&0). (9)

(2m —1)(2m+3)
Substituting these relations in (7) and rearranging, one
obtains

g =p {P/(m+1)) q„+E +,} , (—m&2) (10)-
and

LX/(m+1))+~ +
P./(m+3))+&~, +

P,/(m+5))+V~2+ (12)

One can in principle start with any nz, and obtain the
left-hand side of (12) by working the recurrence rela-
tion (10) upwards, to one of the values given by (11).

8 E. Jahnke and F. Emde, Tables of Functions $Vith Formulas
and Curves (Dover Publication, New York, 1945), 4th ed. , pp.
ii4, i15.

Using (9), Eq. (12) is then a transcendental equation,
which can be solved' for P as a function of n, and one

Details are essentially as in the calculation of the eigenvalues
of spheroidal wave functions. See Carson Flammer, Spheroidal
W'ave Functions (Stanford University Press, Stanford, California,
1957), Chap. 3.
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can obtain all the eigenvalues by starting with differ-
ent values of m in (12). In particular, it is readily seen
that the first nonzero eigenvalue )~ is obtained for
m=3. For this case one obtains from (12)

1—(s) )—(-'n) =o(n')
or

Xi——2 —(;n)+-O(n') .

2.0—

1.5—

1.0—
.8—

.6—

Substituting in (12), and going one term further:

X 2n

2 5

48o,'

875L1+ (2n/75)+0(n') j
and by using the binomial theorem one can obtain from
this relation the terms 0.' and o.' in ) ~, etc. Using this
procedure, ' one obtains

~ 2

.15

.I

.08—

.06—

.04
O. I 0.2 OA .6 .8 I 0 4 6 8

with:

At=2 Q c (-',n)",
n=O

c4= —0.01030480

cy= —1 cs= +0.00081434

cs ——+0.34285714 cs ——+0.00022854

(13)
Fro. 1. The first positive eigenvalue X of Brown's equation (3),

which is inversely proportional to the product of the absolute
temperature and the relaxation time 7 according to (4), plotted
as a function of the reduced energy barrier n KV/kT —Curve (a.):
The actual eigenvalue. Curve (b): Brown's approximation for
n»1, Eq. (14).

c3———0.02285714 cy 5)& 10-'.

The terms c~ and c2 were calculated by Brown' using
second-order perturbation theory. The terms added
here are sufhcient to compute X~ with an accuracy of
better than 1% for moderate values of n, up to about 4.
For larger values of a, the eigenvalue X~ was computed
directly' from the transcendental equation (12). The
results are plotted in Fig. 1, curve (a).

For large values of n, Brown~ gave the asympototic
formula

~z ——4~—'I'~'~'e- .

This function is plotted in Fig. 1, curve (b). It is seen
that already in the region shown, this approximation is
good enough, so that there is no point in continuing
the exact computations any further.

3. DISCUSSION

The high-energy-barrier approximation, Eq. (14),
which was derived by Brown' using the assumption
0.))1, turns out to be a good approximation even
when 0. almost equals 1, i.e., when the energy barrier
is about kT. Especially if one is interested just in the
order of magnitude of P, as is often the case, one can
actually use this approximation for all practical cases
studied so far. For standard experimental techniques
involving measurements of magnetic properties, the
time of measurement can be taken' as 10 sec, in which

case one can study with reasonable accuracy only pro-
perties of particles for which o. is not much smaller
than the "critical" value' ' of about 25. Although ex-
perimental points are given by Kneller and Luborsky, 4

for example, for D/D„=0.4, which corresponds to
0.=1.6, what one actually measures for such values of
n is evidently the size distribution of particles. Even
with Mossbauer effect, in which the "time of measure-
ment" can be taken as 10 ' sec, one can hardly approach
the region of n where there is any appreciable difference
between the two curves in Fig. 1, unless something is
done about the size distribution of the particles. It is
probably only with detailed experiments of the type
mentioned by Roth, "namely, studying magnetic scat-
tering of neutrons for which the passage time through
the particle is of the order of 10 "sec, that one might
be able to distinguish experimentally between the two
curves of Fig. 1.

For a less than about 1.5 the high-energy-barrier
approximation starts a rather fast decrease, while the
correct eigenvalue continues to increase slowly. In
this region, the correct eigenvalue can be computed to a
very high accuracy from the series (13).

It should be finally noted that the transcendental
equation (12) yields the higher eigenvalues X„, besides
the first one X~ discussed here. If they are of any interest,
these eigenvalues can be computed directly from (12),
or by constructing a series similar to (13).

'0 W. L Roth, Acta Cryst, 13, 140 (1960),


