
MAGNETIC RESONANCE KITH LARGE ANGULAR MOMENTUM

field strength and rotating field is indicated in Fig. 4.
It should be pointed out that the width of a single

coil resonance depends quite strongly on the form of the
deflectability factor f(Am&/J), particularly for small

Arne/J, since this determines the contribution made by
small rotations such as are obtained far from resonance.
This factor in turn depends greatly on the slit arrange-
ment, For instance, if there is a finite source slit and the
detector slit is wide enough to just include the base of
the resulting trapezoidal beam intensity cross section,
the factor goes as (Asns/J)' rather than as (Dnss/J) for
small Asns/J. This would give a narrower line than is
indicated by the calculation here.

VII. COMPARISON WITH EXPERIMENT

The computer program has also been used to calcu-
late the line shape corresponding to the conditions of
an experimental line observed for the molecule OCS.
This molecule is well suited for the purpose for several
reasons; it consists of atoms whose nuclei are all spin-
less, so that there are no internal interactions to split
the rotational magnetic-moment line; its relatively high
moment of inertia means that at room temperature the
most probable angular momentum J is 22, so that the
classical limit should be applicable; and its easy handl-

ing and the occurrence of its mass at a low background

of the mass spectrometer means a strong, quiet beam
signal could be obtained. Multiple slits' were used to
give high beam intensity for very narrow slitwidths.
Experimental curves of the line shape were obtained for
separated coils, both in phase and out of phase. These
are shown in Fig. 5, together with the corresponding
curves computed for the same conditions, including a
deAectability factor chosen in accordance with the
multiple slits.

The agreement between the maxima and minima of
the interference patterns is very good. The fact that the
experimental curves drop to zero much faster off-
resonance than do the theoretical is probably due to the
fringing field of the coil, so that the condition of non-
adiabaticity does not hold, and the component of
angular momentum follows the field and does not
change. Inhomogeneities of the field Ho are responsible
for preventing the out-of-phase curve from dropping
completely to zero at resonance.

The general agreement of the theoretical calculation
with experiment confirms the applicability of the
classical treatment of the multiple quantum transitions.
The results of Sec. II oBer a simple conception of the
transition process which, for a full quantum mechanical
treatment, would be extremely complicated. The fact
that such transitions do occur makes possible the direct
measurement of extremely small gyromagnetic ratios.
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In this paper a theory is developed which permits one to treat radiation processes involving a large number
of photons in 6rst- or second-order perturbation theory. The theory is applied to the interaction of an atomic
electron with a very intense linearly polarized laser beam, It is found under certain approximations that
induced radiation will occur at all harmonics n~0 of the fundamental laser frequency co0. The intensity
distribution of this radiation is symmetric about the axis of polarization of the primary beam and is peaked
at an angle of about 45' with respect to direction of propagation of the secondary radiation and the polariza-
tion of the incident radiation for the first few modes. This angle markedly shifts toward 0' for increasing z
(higher harmonics). The transition probabilities are high enough to make the etfect readily observable.

I. INTRODUCTION

HEORETICAL work on the interaction of intense
radiation (intensity I)10' W/cm') with matter

has recently received much stimulus with the advent
of infrared and optical masers. Most detailed calcula-
tions have dealt with the radiation field in the classical

*This paper presents the results of one phase of research carried
out at the Jet Propulsion I aboratory, California Institute of
Technology under Contract NAS7-100, sponsored by the National
Aeronautics and Space Administration.

approximation'; only a few approached the problem
via quantum electrodynamics (QED).' Obviously the
application of QED to a multiphoton problem is

' See, for instance, K. Shimoda, T. C. Wang, and C. H. Townes,
Phys. Rev. 102, 1308 (1956); D. Kleppner, H. M, Goldenberg,
and N. F. Ramsey, ibid. 126, 603 (1962); Voh Han Pao, J. Opt.
Soc. Am. 52, 871 (1962).' Z. Fried, Phys. Letters 3, 349 (1963);L. S. Brown and T. W.
Kibble, Phys. Rev. 133, A705 (1964). See also H. Paul, Ann.
Physik. 11, 411 (1963); Z. Fried and J. H. Eberly, Bull. Am.
Phys. Soc. 8, 615 (1963); M. Mizushima, Phys. Rev. 132, 951
(1963).
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somewhat difficult since the QED is inherently geared to
perturbation theory. A nonperturbative approximation
is, of course, much more advisable. Recently, Fried'
employed such a method, namely the well-known
Bloch-Nordsieck method, for a calculation of Thomson
scattering of intense radiation. But the method is
unfortunately only applicable to free e]ectrons. Here
we propose an alternative approach which applies in
principle also to bound states. This approach simply
consists of considering j.A —(j ~ A) rather than j.A alone
as a perturbation. j A is of course the product of electron
current and vector potential, the usual electron-photon
interaction (we are using the Coulomb gauge), whereas

(j ~ A) is the expectation value of the interaction with
respect to the photon variables alone. It therefore is
still an operator in the electron variables. If certain
modes of radiation are occupied by a large number of
photons, the expression j ~ A —(j A) is significantly
different for these modes from j ~ A alone, whereas for
modes which are unoccupied the diHerence between the
two types of interaction is insignificant. j ~ A is a pertur-
bation for a small number 37 of photons but ceases to be
one if E increases, the expectation value being propox-
tional to +1V. On the other hand, j.A—(j ~ A) will

always be a perturbation, the expectation value being
zero. Subtracting from the interaction the expectation
value (j A) of course modifies the Hamiltonian. In order
to remedy the situation we add this term to the interac-
tion-free Hamiltonian Ho and consider Ho+(j ~ A) as
the new zero-order Hamiltonian with new modified
eigenfunctions, etc. , the starting point of a new pertur-
bation calculation. If the photon number is large enough
to warrant a transition to the classical limit for expecta-
tion values, then the new zero-order Hamiltonian is
just the Hamiltonian of an electron in a given external
electromagnetic field, and the new eigenfunctions are
those corresponding to such a situation. So far, we did
not mention the term proportional to A' in the non-
relativistic interaction Hamiltonian. Details will be
given in Sec. III. Here it suKces to say that it will be
treated completely analogously to the j ~ A term.

In Sec. II we will give preliminaries: the representa-
tion of the radiation fields to be used, transition to
classical fields, decomposition of a laser beam in terms
of eigenfunctions of the free radiation Geld, etc. In
Sec. III the interaction theory will be developed along
the ideas outlined above. Finally, in Sec. IV the theory
will be applied to the induced emission of radiation from
electrons subjected to a very intense laser beam (I)10"
W/cm'). The calculations are subject to certain approx-
imations which will also be discussed.

H)=Ac Q EV (k),
a, k

with eigenfunctions

&~ =II ~(»(K) I»'(K)),

(3)

(4)

where ()(iV
I
tV') is the Kronecker symbol and the func-

tion (4) is meant to be an infinite product over the
countably infinite set of possible modes in the (large)
quantization volume V. Obviously any wave function
can be represented as a sum over the complete set (4):

&(»(K))= E &(»'(K))II ~(»(K)
I
»'(K))

811N'

The function y is not necessarily a product of functions
over all modes y, K as in Eq. (4). It contains all the
possible information about the radiation field. For
instance,

I
l-(»(K)) I

is the probability to find iV~(K) photons of polarization
y and with propagation vector K, etc. Therefore,

(6)
811N

is the proper normalization. Since the vector potential
is given by

A= —Q k "'yk( )

y(e((k r etc()& (k)+e—t(k—r c)tt)& t(k))— (7)

where the yg,
'"& are unit vectors of polarization, it is

not dificult to find the expectation value of Eq. (7)
with the help of Eqs. (1), (2), and (5):

2mkc '~'

P h
—1/2 (cr)(et(k r—ckt)

V

811N

between these different sets of operators is'

a~t(k) = LiV~(k)]'t'e '& (k'

a (k)=e'& (")I iV (k)]'t'.

In a representation in which E is diagonal we have

y. (k) = -iL(l/BiV (k)).
The Hamiltonian of the free transverse radiation 6eld
is then given by

II. PRELIMINARIES

It is convenient here and in the following to represent
photons by their number and phase rather than by
creation and destruction operators. For a photon of
polarization (r and propagation vector k the connection

+S.,b(K
I

k))+e-"'("'-"')P l*(E (K)
811N

X (&.(k))'t'l. (»(K)—s.,s(K
I
1 ))) . (g)

' W. Hei&ler, The Qttantttrn Theory of Radiation(Clarendon,
Press, Oxford, England, 1957), 3rd ed. , p. 65.
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From
E= —(1/c) (BA/Bt), H= VX A, (9)

ing to a wave vector K;=x and polarization p. We
now put

expressions analogous to Eq. (8) may be obtained for
the electric and magnetic fields.

It is often said that in order to be able to describe
the electromagnetic fields classically the number of
photons must be large. That this is not entirely true
may readily be seen by taking the expectation value of
the fields (9) with respect to the eigenfunction (4) of
the Hamiltonian (3). No matter how large 1V' is, the
expectation value is exactly zero. However, if the number
of photons is not only large but uncertain, so that
instead of using Eq. (4) we have to use Eq. (5), it is
easy to show that the expectation value of any operator
or any product of operators of the radiation field behaves
as a classical quantity. To amplify this statement let
us suppose that the wave function (5) is centered about
a large value E' for certain modes. In other words,
{(1V) is only appreciable for 1V in the neighborhood of Eo
and negligibly small for other values of E. Also, for
those modes of the radiation field which are not
occupied, the wave function i consists of a product of
Kronecker symbols B(1V I 0). In this case the expectation
value (8) of the vector potential may be written:

t 2skcq"'
Q IAI{)=l I

g'k ''g~ '2cos(k r—ckt)
Ev&

X 2 lf(1V,(K)) I'(1V-(k))'" (10)

X2 IF(1V.(k))
I
'L1V. (k)j"'. (15)

Since 1VP in Eq. (14) is assumed to be very large, the
sum over 1V in Eq. (15) is to a good approximation
given by

P IP(1V) I

'1V'&'= (1Vo)'&o. (16)

It is now practical to go into the continuum, i.e., let
the quantization volume go to infinity. In this case
we have

(17a)

{.(1V,(K))=b(1V„(K,) IO) b(1V„(K, „)Io)
XF(1V,(K; „+,)) .F(1V,(x))

XF(1V,(K; ))8(1V„. (K, ) I0), (13)
where

F (1V)= (a/n. )"' exp{—(a/2) (1Vo 1V)} (14)

with large Eo. With the wave function (13) we then
obtain for the electric field (the expectation value)
taking the Eqs. (7) and (9) into account:

Pic '~'

(1-IEI{-)= —2 P' k'i'ski' sin(k r —ck t)

811N
1Vv(K) ~ L(2~)'!l'j1Vv(K) . (17b)

The prime indicates that the sum over the modes n, k
runs only over those modes which are occupied. To
obtain Eq. (10) we have put

f (1V~1)=i (1V) (11)

the error becoming vanishingly small with increasing S'.
From Eqs. (2) and (1) we also see that Eq. (11) is
tantamount to assuming the operators a and u~ to be
c numbers, fox

a (k){(1V~(K))
=exp{—

I 8/81V (k)]}(1V (k))'"1(1V,(K))
= (1V.(I )+1)'&2{(1V,(K)yb,.b(K

I
k))

= (1V (k))'"i (1V~(K)) (12)

using Eq. (11). It is also clear that the expectation
value of a product of operators is equal to the product of
the expectation values of the operators, provided that
the approximation (11)holds. The expectation values of
E and 8 are true classical fmlds.

%e are now in a position to construct the wave
function of a laser beam. For simplicity we assume a
monochromatic plane-polarized beam. Let the set of
photon modes y, K be ordered in some way:

yi K„. . yK;; . yK, ;

Let the laser beam have a center frequency correspond-

With Eqs. (17) and (16) we obtain for the electric field:

(t I
F

I t) = —s.—i(kc)»o doke„(~~k»o

Xsin(k r —ckt)L1V '(k))"' (18)

For future applications we wish Eq. (18) to represent
a laser beam of frequency coo=c~ propagating into the
Z direction of a space-fixed coordinate system with a
polarization along the X axis (unit vector g,). In order
to do so we choose for X .

1P=nb bi»exop{ b, (k, ~)'—bo(k '—+k —')} (19)

The physical signi6cance of the quantities b&'~' and b&'"
is easily seen through evaluation of the integral (18)
with the expression (19). For large values of bi and bo

we have, again to a very good approximation:

({.
I El&)= —2(2m@rpnb& 't'bo ')'t'g, sin(x r—orpt)

1
Xexp — (Z—ct)' — (x'+y') . (20)

2bg 2b2

This expression represents a laser pulse moving with
velocity c in the Z direction. Clearly the quantities b&'"
and b2'" signify the spatial extensions of the electric
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6eld, b2'/' in x and y direction, b~'" in Z direction. For
our purpose it is sufhcient to consider a continuous
laser beam, since the processes we will investigate are of
short duration and are confined to a small volume
(atomic system). In this case we let bi and b~ go to
in6nity but such that the quantity nb& '/'b2 ' stays
6nite. Putting

~b;I/2b -~=-'n (21)

III. DEVELOPMENT OF THE THEORY

The total nonrelativistic Hamiltonian of an electron
in a given potential coupled to the radiation 6eld is

with
H=H p+Hi+H, , (23)

H p
—(ts'/2m) V'+——y (r), (24)

the Hamiltonian of an electron in a given (attractive)
potential,

(»)Hi Pic P k». (k——),

which is obviously the number density of photons, 4 we
have finally:

&{ I
E

I f)= —(4m.tt(ppn)'"y, sin(I(Z —c((t) . (22)

The steps which lead from the state vector (13) of the
photon field to the final expression for the expectation
value of the electric field (22) may of course be applied
to any other quantity of interest. Specificially, we will
do this in the next section for the interaction Hamil-
tonian of an electron with the electromagnetic field.
Details of the calculation will however be omitted. The
reader is referred to this section for details.

a change in the number of photons. The latter, although
being modi6ed by the presence of the high-intensity
radiation field, may still be evaluated by perturbation
theory. Let us therefore try the following ursa' for the
wave function of the electron and radiation 6eld:

~t =e """'"'{(»(K))x(r,t) (28)

l9
g(i~/A) Hl eXp ~ &

—(it/+) III

()» (k)

( t)
(est expI ~ (3O)

8» (k)

signifying that each term containing k r in the interac-
tion Hamiltonian (26) is simply replaced by k r —ckt.
It is clear from Eq. (29) that the electronic wave
function x merely represents the electron being sub-
jected to a given time-dependent external field.

%e note here for later use that the expectation value
of H, (t) occurring in Eq. (29) with the expression (13)
for the wave function of the photons in the approxima-
tion discussed in Sec. II is given by

Here f' is given by Eq. (13). Inserting Eq. (28) into the
time-dependent Schrodinger equation with Hamiltonian
(23) and taking the expectation value with respect to
the photon variables yields an equation for y.

stt(~/~t)x(r t) = {Hp+&{'IH (t) I{))x(rt) (29)

In the derivation of Eq. (29) we have used the rela-
tionship

the Hamiltonian of the free radiation field and

Mk 2mAc

2 &-"'~""'~"( (k)+ '(—k))
mc V

ere'A p p (Qp')&/s~z(~). &z, (pie((j+&'i r

sscV ~,& P,&'

&(I g (k)+u t(—k))I up(k')+ay( —k')$, (26)

the interaction Hamiltonian. The creation and destruc-
tion operators for photons are represented by Lsee
Eqs. (1) and (2)j

(t t (k) =
I » (k)j'(' exp{—L()/()» (k)7), (27a)

a~(k) = exp{fr)/B)V (k)])$1V~(k)J" (27b. )

Let us assume that the atomic system (the electron) is
subjected to an intense radiation 6eld, the radiation
field being represented by the state vector (13). We
wish to separate a direct interaction with this radiation
field, i.e., an interaction which does not change the
number of photons, from an interaction which leads to

4 The reason for the factor $ in Eq. (21) is simply that the mean
time averaged energy density (1/4~) (L"'+IP) =Assn,

e 47rkn) "'
&i IH;(t) Ii)= ——

I
cos(((Z —(p t)——

18 Gpp 1 Bx

27I5$ Il
+ cos'(~Z —(ppt) . (31)

Nk0p

Since the Hamiltonian of Eq. (29) is Herrnitian it is
clear that the solutions of Eq. (29) form a complete
orthonormal set of wave functions X„provided they
were orthonormal at some initial time, which we assume
to be the case henceforth. It is this set of wave functions
which represents that part of the electron-photon
interaction which does not disturb the number of
photons. Let us now turn to the part of the interaction
which does alter the number of photons. Consider the
total Hamiltonian:

H=Hp+&VIH, (t) I&)+Ht+H' &&IH, (t) I&) (32)

which is of course identical to Eq. (23). But now we
assume the last two terms on the right-hand side of
Eq. (32) to be the perturbation. An expansion in terms
of the eigenfunctions of Eq. (29) of the wave function
P for the complete system satisfying the time-dependent
Schrodinger equation with the Hamiltonian (32)
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leads to the following expression:

f=P f„(1V~(K), t)x„(r,t)e t"t@'~'. (33)

f„(X,(K), t) = —— dr d'rx„*(r, r)
0

XIII;(.)—6 II;(.)If)7
XX„(r,r)l (X~(K)). (35)

It is expression (35) which we will use in the next section
to obtain induced emission probabilities for the system
at hand.

IV. AN APPLICATION

I.et us then apply Eq. (35) to a calculation of induced
emission of radiation from an atomic electron. Phys-
ically we imagine that the laser beam is passing through
a dilute gas. In this case we may ignore any correlations
between different atoms either due to interactions
among atoms or the coherence effects of the laser beam.
We also imagine that due to the very high intensity of
the incoming radiation all atoms are essentially ionized
in a special way. To clarify this statement let us write
down the Schrodinger equation for an outer electron of
a given atom in the atomic field of force and the
radiation field corresponding to Eq. (29) [using
Eq. (31)]:

A2

V'+p(r)+iI'tea cos(aZ —toot)—
2m Bx

Imposing the initial condition

f-(»~(K) 0)=&-t(&.(K)), (34)

where f is given by Eq. (13), first-order time-dependent
perturbation theory then yields in a straightforward
manner':

(38) is, under the circumstances (namely: extremely
strong linearly-polarized, radiation, therefore a strong
Stark effect in the x direction, little effect in the y and
s directions) not at all a bad one. ' Applying then the
approximations outlined above to Eq. (36), it is not
dificult to discover that the solution is given by

X„=P~(y s)e "'t"'~"(2w) ' ' expLsF&(x, t)], (39)

where

Fg (oe,t) = lx —t ((fiP/2m)+ (mc'/4It) n')

+l(c/Mp)a slnG)st —(mc a /811(op) sln2ropt. (40)

The wave function P is defined by

8 8—+ +Is(y, Z) 0 =F- 4, (41)
2m gy2 ()g&

and the continuous wave function, exp(iFi), satisfies

SK
+i7icn cosset—+ n' cos'&oat expLrFi(x, t)j

2m Bx Bx 2

=i7i(r)/Bt) expfiFi(x, t)5, (42)

an equation describing a one-dimensional free electron,
in a given time-dependent electric field. We see that
indeed the wave function (39) satisfies Eq. (36) taking
the above-mentioned approximations into account.

We are now in a position to work out the matrix
element (35), since we know the wave functions X„
from Eqs. (39) and (40) and we also know the photon
state vector from Eqs. (13) and (14). In order to be
consistent we have to use the same procedure in
calculating the matrix element (35) as the one used in
obtaining the expectation value (22) for the electric
6eld, a procedure which has been thoroughly discussed
in Sec. II. Proceeding then, we first notice that within
the adopted approximations

+-,'(mc')n' cos'(aZ —coot) X„=i'(B/Bt)&„. (36)
d&rX„(r,r)(f

~

a, ( )r~ f.)X„.(r, r) =0, (43)
Here n is the dimensionless parameter

n = (47re'hn/m'c'G1 o)
't' (37)

measuring the strength of the radiation interaction. We
now assume that the atomic potential is separable, i.e.,

4(r)=4 (*)+4 (y,z). (38)

This approximation allows us to introduce two further
approximations. First we can omit the s dependence in
the cosine terms of Eq. (36) or, in other words, work in
the dipole approximation, since the electron will stay
bound in the y and s directions according to Eqs. (38)
and (36). Second we may ignore the a-dependent part
of the atomic force field entire, assuming very strong
incident radiation. It is felt that the approximation

' D. Bohm, QNoltlra Theory (Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1951), p. 410.

provided that the quantum numbers of the initial statee'=—m', l' are different from m=—m, L This follows
directly from the structure of the interaction term as
given by the two last terms on the left-hand side of
Eq. (42). Continuing with the evaluation of the matrix
element (35) we specify the transition rt' —+ rt to be one
in which a photon with polarization P and propagation
vector k is emitted, whereas the electron undergoes a
transition from the state specified by" e'=—m, l' to a
state specified by m=—m, /. Inserting then the appropriate

' Indeed under these circumstances the radiation field emerging
from the sample will be that due to a harmonically oscillating free
electron. We suspect that the quantum mechanical calculation
will agree with a classical calculation as it is the case with Thomson
scattering. Our result LEq. (54) g will show this to be in fact true.' m is the collection of quantum numbers associated with the
motion in the y and s directions LEq. (41)] and t is the (con-
tinuous) quantum nuinber for the motion in x direction LEq. (42)j.
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lo

Fn. 1. Intensity dis-
tribution of secondary
radiation in arbitrary
units. The angle & is the
angle between the direc-
tion of polarization of
the incident laser beam
and the direction of
propagation of the in-
duced radiation. The
distribution is shown for
the 6rst three harmonics
and has been calculated
with a value of n equal
to one corresponding to
a laser beam intensity of
I=6.10'3 Wcm~ and a
value for the electron
velocity o =2 10' cm. /sec

loo R04

wave functions (39) into the matrix element (35), leads to a 5(N (k) ~1) from the expression (13) for the
performing the time integration, and selecting only the photon state, we obtain @fter some algebra for this
relevant part of the matrix element, i.e., that part which amplitude 2:

e 2skc) '~' +~ l' —l) exp{iLruvo+ck+ (k/2m) (P—I"))1)—1 2seo
A= b(t' —l—k,)yg&». p.l P J„u l (N, (K))—

mc V) n=—oo mcVmuo+ ck+ (Ii/2m) (P t")—
+ ( I' —l)expo[@ +c[k—k')+[5/2m)o' —l")]t)—1

&(Q'(kk') "'t~o[» yo &" 8(t' —f—k.+k.') Q J
~

n
b, k' g ~o+ c (k k')+ (k/2—m) (P—l")

+ ( /' —l) exP{ifmoo+c(k+k')+ (k/2m) (P—f'o))1) —1
+~(I' f k. k.'—) g—J—„~ ~ LN (k'))"'f(N, (K)). (44)

no»+c(k+k')+ (k/2m) (P—1")

a result which is readily verified using the generator function for Bessel functions expLo (1—t ')). Finally ~ =a»/c.
In order to 6nd the transition probability per sec for the emission of a photon we have to take the absolute square

of Eq. (44) and take the time derivative in the asymptotic limit t —+ oo. It is clear from Eq. (44) that by taking
the square two kinds of terms will be encountered. First (in easily understood notation) terms of the following kind:

Although we do not wish to repeat here the algebraic steps which lead to Eq. (44), a few explanations are in order.
The prime on the summation over 5 and k' means that only those modes are to be summed which are occupied by
the laser beam. a is the dimensionless quantity defined in Eq. (37). k is the propagation vector of the emitted
photon, k of course its x component. The occurrence of the Bessel functions in expression (44) is due to the
integration over time, since with wave functions of the type (39), (40) we encounter integrals of the type:

t +00 it (e+n(oo) 1
dr exp(ier+ib sintoor) = i P J (5)— (45)

0 e+stoo

with the asymptotic limit for large times

8%. Heitler, Ref. 3, p. 139.

exp{i t (tuoo+ 8+ck) ) 1'—
~o+a+ck

8, ~ (2s./c)Q(k+c —'(u+mcoo)),

(46)

(47)
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proportional to t leading to a constant transition probability in a well-known manner. But there are also other
terms (cross terms) which are not as simply behaved. The cross terms

/exp(it(mup+a+ck)) —1]Lexp( it—(mbpp+a +ck)) —1g8= +complex conjugate,
(~p+ a+ ck) (mp) p+ a'+ ck)

are oscillatory even in the asymptotic limit 3= ~. Specificially we have in this limit:

2' sintL(e —m)(pp+a —a'j
8 —+- Lb(k+c '(ep)p+a))+8(k+c '(mppp+a))].

c (B m) p—)p+a a—

(48)

(49)

The transition probability will therefore consist of two parts: one part which is constant or time-independent, and
another part which is oscillatory in time. Now, this time-dependent part is so rapidly oscillating, as can be seen
from expression (49), that it is unobservable, its time average being zero. We may therefore omit all cross terms in
performing the absolute square of Eq. (44). Multiplying also by the phase-space density of the photons, we obtain
for the transition probability per solid angle and frequency interval dk:
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The total transition probability is found by summing over all 6nal states. To be sure, we should also take an average
over the initial states of the electron. But first we do not know their distribution and second we will see that
the transition probabilities are rather insensitive to it. Summing over t in Eq. (50) and introducing the angle 8
between the direction of propagation of the emitted photon and the x direction (the direction of polarization of the
incident radiation), the arguments of the 8 functions become

or
k+ I)(+ (fi/2mc) k' cos'8 —(k/mc) t'k cos8= 0,

k+ (v&1))(+ (k/2mc)k' cos'8 —(k/mc)l'k cos8= 0.

(51a)

(5»)
The roots of these equations correspond to a frequency of the emitted radiation cv given by

5 cos28
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—1+i 1—2n(pp
mc'

(52)

for not too large l'. We see that positive roots only occur for negative values of n, and the frequencies of the
emitted radiation then are just the harmonics of the fundamental laser frequency coo. Neglecting recoil and introduc-
ing the initial velocity p= kl'/m of the electron, we finally find for the differential transition probability of emitting
a photon with frequency a(pp and polarization P from Eq. (50):
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e is given by Eq. (3'I); yz&'& is a unit vector in direc-
tion of propagation of the emitted light.

Since the velocity of the electron v is according to
Eq. (39) the average momentum divided by the mass
and since the electron will be ejected from the atom
with equal probability in either direction, we may omit
the term linear in v in Eq. (53). Equation (53) then
simplifies to:

d~Ae(ecoo) (' za)0 e2—(e~"'e )'LJ-(«v"" e.)3'
dQ 4x Sc

4
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This expression agrees with that given by Brown and
Kibble' if magnetic interactions are omitted. It also
agrees with the classical result for the radiation field of a
harmonically oscillating point charge as given by
Jackson' if v is put equal to zero. Since

P(pq~~~ p )'=sm'0 (55)

which vanishes for 0=0' and 180' and since the Bessel
functions vanish when 0=90' or 270', we see that the
secondary radiation field for each harmonic consists
of four lobes rotationally symmetric about the axis of
polarization of the primary laser beam. YVe notice that
the direction of maximum intensity shifts toward 0'
(i.e., toward the direction of polarization of the primary
laser beam) with increasing frequency. Using the
asymptotic expression for Bessel functions with large
index and large argument it is not dificult to discover
that the intensity distribution of the mth harmonic
becomes for o.&1:

n sin'0 1+(1—'cos'8)'")
exp —2e log—

0. 'cosO —icos'8 n cosO

+n cos8 . (56)
n cosO

' J. A. Jackson, Classical Flectrodynamics (John Wiley 8z Sons,
Inc. , New York, 1962), p. 501.

This valid for large e but of course not too large e, both
because eventually the recoil cannot be neglected any
more, and because the nonrelativistic calculation
becomes invalid. In any case Eq. (56) shows that the
intensity is sharply peaked at an angle 8= (nn/2) "'rad.
For an infrared laser operating at coo=10" sec ', m=100
means ultraviolet light. Hut for I= 100, expression (56)
is perfectly valid, so that we expect two very sharp
cones of ultraviolet radiation centered about the
direction of polarization of the incident laser beam to
emerge from our sample.

Turning now to the magnitude of the effect, we first
notice that the transition probabilities (54) increase
erst with increasing intensity of the primary radiation.
This is in contrast to the Thomson-scattering cross
section, which is always inhibited with increasing
intensity of primary radiation. As discussed by Fried'
the reason for this decrease is just the opening up of
more scattering channels with increasing intensity,
those channels being precisely the ones we investigated
here. On the other hand, if n goes to zero the transition
probabilities (54) also vanish, since a free electron
cannot spontaneously emit radiation. Of course the limit
n=0 in Eq. (54) is a mathematical limit, since the
physical approximations which lead to Eq. (54) will
break down long before n is zero. Assuming now for
the electron velocity v a value of 2&&10' cm/sec"
numerical integration of Eq. (54) shows that for an
infrared laser (coo ——10'3 sec ') the total transition
probabilities are fairly large. Specificially we find a
total transition probabijity of 10' sec ' for the first
kw harmonics, assuming o.= 5 corresponding to a laser
beam intensity of 4.10" W/cm'.
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"This value is suggested from ionization experiments which
show that the mean energy of the liberated (ionized) electrons is
about 10 eV no matter what the cause of ionization. See H. S. W.
Massey and E. H. S. Burhop, I.'lectronic and Ionic Impact Phenom-
ena (Clarendon Press, Oxford, England, 1956).


