
P H YS ICAL REVI EW VOLUME 135, NUM BER 2A 20 JULY f 964

Oytical Effects of Energy Terms Linear in Wave Vector*
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(Received 30 January 1964)

Energy terms linear in wave vector are allowed in the second valence band of CdS. Perturbation theory
shows that excition states formed with holes from this band will also have a linear splitting. The eBect of such
terms on the optical properties are discussed using a spatial dispersion approach. Previous reQectivity ex-
periments have some anomalous structure which is shown to be caused by the linear term. Comparing
theory with these experiments provides an estimate of these linear terms, which have not been previously
measured.

I. INTRODUCTION excitons states whose holes are from these bands. ' The
attempt to understand the origin of the anomalous
structure of the reQectivity curves was the motivation
for examining the eRects of the linear terms.

Figure 2 shows the measured reQectivities" of the
principal 8 series exciton state in CdS. Of the three
different experimental geometries, only kJ s and EJ s
shows the extra shoulder of interest. This anomaly has
three principal characteristics:

(1) It appears near the transverse frequency.
Contrast this with the extra peaks in the 2 series
exciton' spectra, which appear at the longitudinal
frequency, and are caused by surface effects. This fact
suggests that the explanation for the two phenomena are
quite different.

(2) The structure is only observed for k J s, and not
for k~~z. For EJ z, the k ~ 0 symmetry of the 1s exciton
states for k J z and. k~~z is the same, Fs. The existence of
the linear splitting for kJ z, but not for k~~», easily
explains this observed directional dependence.

(3) When k J z, the structure is observed for EJ z

(Fs), but not for E~~z (Ft). Both transitions are allowed

by group theory, and both modes of polarization form is
exciton states which are easily observed in good crystals.
This polarization effect, which was originally a puzzling
feature, is explained in Sec. II. The linear wave terms
mix the F~ state with the longitudinal exciton, which
eliminates the linear wave vector term in the energy of
this state. The theory of exciton states in CdS, including
the effects of linear wave vector term, s, is developed in
the next section.

In Sec. III, the reQectivity is calculated using the
spatial dispersion formulation of Pekar. ' The nonlocal
effects are included using an extension of the classical
inte retation which has been recentl su ested. ' The

S OME crystal symmetry groups allow energy terms
which are linear in wave vector. These low-sym-

metry crystals must lack an inversion center. The linear
terms appear as &Ah, and for 6nite wave vector, they
split a state which is degenerate at k=0. Zincblende'
and wurtzite' 4 are two examples, and there has been
much past speculation' on the possible effects of such
splittings in semiconductors with these crystal groups,
This article presents evidence of such terms in wurtzite
CdS, and shows their effect on some optical properties.

The conduction band and three principal valence
bands of CdS are shown in Fig. 1.Excitons formed with
holes from the different valence band are described as
2, 8, and C series, respectively. Each band is doubly
degenerate at 0=0. Bands with I'& symmetry, such as
the conduction band, allow linear terms for wave
vectors perpendicular to the uniaxial (z) axis. In the
conduction band, ' such terms are believed to be absent
or at least negligibly small. They may also exist in the
lower two valence bands, and their existence there
explains the unusual reQectivity measurements on
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are accounted for by having three independent prop-
agating modes in the crystal, each characterized by a
diferent refractive index. In a local theory there would
only be one mode.

The effective mass of the 8 valence band are needed
to calculate the re6ectivity. These have not been m, eas-
ured, but may be estimated from a knowledge of the
2-band masses, which is done in the Appendix.

0.5
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II. B-SERIES EXCITONS

In wurtzite structures such as CdS, each valence and
conduction band is doubly degenerate at k=o. In the
k p perturbation calculation to determine the effective
m, asses of a band, the only oG-diagonal elements in the
two-dimensional matrices are terms linear in wave
vector. ' 4 Since these were found not to be important
for A-series excitons, 4 the optical theory could be
formulated using a scalar Hamiltonian. ' This simplifica-
tion is one reason why exciton theory in CdS has been
able to be developed extensively. For 8- and C-series
excitons, these off-diagonal term, s m,ust be included,
requiring use of the matrix formulation.

2.566 2.570 2.566 2.570 2.566

Energy (eVj

2.570

FrG, 2. The reQection spectra of the is 8 series exciton in a
single sample of CdS from Hopfield and Thomas. (a) k~~s, EJ s,
(b) kis, EJ s, (c) k J s, E~~s; only (b) shows effect.

+(r) =Z»(k)A'(r), (2 l)

where Ps(r) are the Bloch functions, and the»(k)
satisfy

Electrons in the conduction band have the wave
function

H, (k);;8;(k)= (X—&s)&;(k), (2.2)

f
' (ks/2m„) (k,'+kss)+ (k'/2m, ) ()k, '

H, (k) =
i

c(k,—ik„)

lc(k,+ik„)

(k'/2m„) (k,'+k„')+ (k'/2m„, )k,')
(2 3)

There are two independent eigenfunctions»(k)
satisfy (2.2) and (2.3), giving two-electron
functions in (2.l). The eigenvalues of (2.3) are
found by diagonalization

which
wave
easily

hydrogenic, characterized by an average dielectric
constant ep= (er6t, )'I' and an average effective mass
les 31ir + 3pf/ . Hi has as a factor an anisotropy
constant y,

) =Eg+ (A'/2m, i) (k,'+k„')+ (A'/2m())k s

WC(k.s+k„')'I'. (2.4)

For wave vectors perpendicular to the s axis,

kg= (k,'+k„s)'~',

the conduction band may exhibit a linear splitting at
0& —+0. But measurements indicate that no splitting
exists in the conduction band, ' and C is zero, or small
enough to be neglected.

Thek p Hamiltonian for the top valence band, which
has a different group symm, etry, lacks the oB-diagonal
terms. Only the quadratic terms in (2.4) are present.
%hen discussing excitons from this band, the resulting
four-dimensional matrix Hamiltonians has four equal
diagonal elements. These are the sum of the diagonal
term of (2.3) for the conduction and valence bands plus
the Coulomb interaction terms. This Hamiltonian has
been analyzed in detail. ' One choice of center-of-m, ass
coordination allows the diagonal Hamiltonian B~ to
be expressed as an isotropic part Bo plus an anisotropic
correction Hi, Hq=Hs+Hi. He may be viewed as the
unperturbed Hamiltonian, and its eigenstates are

7 fi&&LPi (e&/e&l)lail

Since 7 is small (y 0.2 for A series, y 10-' for g
series's), the choice of center-of-mass coordinates is
justified, and the ground-state wave functions will be
hydro genic.

The lower two valence bands have the same irreduc-
ible representation as the conduction band, and their
k p Hamiltonian must be similar to (2.3), with just
different constants m~&, mhtt, and C. Postulating that
the energy terms linear in wave vector are small
compared to exciton binding energies, the off-diagonal
terms in the exciton Hamiltonian m, atrix may be
treated as a perturbation. This causes a linear splitting
in the exciton Hamiltonian, and mixes the exciton state.

A suitable set of eigenstates must be chosen in order
to represent the four-dimensional matrix. The two
s-like conduction-band states may be identified by just
the spin, n, and P,. Approximate eigenfunctions were
previously obtained for the hole bands. "The wurtzite
valence band structure near k =0 m, ay be approximated

"See Appendix."J.J. Hopfield, Phys. Chem. Solids lS, 97 (1960).
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(2.6)

(2.7)

The interesting effects occur for wave vector components
perpendicular to the 2' axis. For simplicity we set k, =0,
and worry only about the principal geometries of Elis
and EJ s. For k J s, the Fs has a transverse (Fpr) and
a longitudinal (Fpz) state. The optical dipole transitions
allowed by group theory are to Far (EJ s) and Fi(E!ls).
The reduction of the I'5 state to its longitudinal and
transverse components depends upon wave vector
direction. Select k=0„, but the results will apply to
any wave vector in the (x,y) plane

F-: (1/~2)l-. l+)-p.l-)],
F5L ~ (1/~~) [&0 l +)+pc l )]~

The four states (2.7) and (2.8) are chosen as the basis
for the excitons matrix Hamiltonian. It is convenient to
use the ordering A, tJ'sr, 4'sz, 4'i

~Hg V 0 0
V IIg 0 0

e~citon 0 0 ~ +~ y
.0 0 V Hg.

-'-' D. G. Thomas and J. J, Hopfield, Phys. Rev. 116, 573 (1960).

(2 9)

by introducing spin-orbit interaction-and a (111)strain
into a zincblende valence band. Perturbation theory
then relates the wave functions of the three bands. The
top band are J= ~, Mg= &~ states. The states for the
8 band are

!7t» +) Jl B[(2 37tB/~)s&a (++sy)pit]

I~» )=+r[(2 3~&/@sPa+(~ sy)ot&]

X,= [2+ (2—37,/S)s]-i&s

The C band is the same as (2.5), with lie replacing lt~.
The measured energy splittings of the bands beneath
the A band" are 7t~=0.016 eV and 7to=0.073 eV, and
the spin-orbit splitting is 6=0.060 eV. Only excitons
from, the 8 band are suKciently resolved to allow the
effect of the linear term to be observed in optical
experiments. Since the lower two valence bands have
identical group symm, etry, the same calculation applies
to either band. In principle, the C band should show the
sarge effects. The two states of a valence band will be
labeled

l &&, and the results apply to either the 8 or
C band.

The symmetry of the exciton states is found from,

the product of the representations of the conduction
band (F7), the valence band (I'7), and the hydrogenic
state. Only the 1s hydrogenic state is easily observed
optically, and its symmetry (Fi) will be used. FiXF7
XFr=Fi+Fs+Fp. The Fp representation is two dimen-

sional. The four exciton states forming a possible basis
of the matrix Hamiltonian are

V is the off-diagonal term from the valence band which
is linear in wave vector,

V= PAJ, (2.10)

p=Cms, /(m„+ms, ) . (2.11)

p is the exciton splitting parameter. Here only the
center-of-mass part of V has been retained, and the
exciton relative coordinate parts have been set equal
to zero. These relative terms will mix the 1s state
with other hydrogenic levels, 4 but these effects are not
important here. The additional term A in (2.9) rep-
resents the splitting of the longitudinal exciton' above
the transverse state. Long-range Coulomb interaction
raises its resonance frequency above that of the trans-
verse state, ar. d this may be represented by the diagonal
constant 6 in this basis.

The linear interaction V mixes the fp and Ppr states

b~ ——bp(K)+qK~, p~= (1/V2)(/preps):, (212)
8p(E) = Bp(0)+O'EP/2m, .

The Ppz and Pi states are also mixed, with eigenvalues

h+'= hp(K)+(A/2)+[(~/2)'+O'K 'y' (2.13)

The constant &p is small ( 10 ' eV-cm) and A 10—'
eV; for wave vectors of interest, EJ. 10' cm ', so that
6» pE&. To lowest powers in E,/6, the states are

h+'= hp(K)+A+ p 'Kt'/A, 0+'=Az+fl v Kt/A )

8 '= hp(E) —p'Ets/A, f '=Pi PszqK&/A. —
(2.14)

Because the longitudinal-transverse exciton splitting is
so large, the states/i and Ppr, do not mix appreciably,
and neither has a linear splitting. Consider the two
allowed transitions: For EJ s, the exciton band will be
linearly split at E,=O; for Elis, there is no linear
splitting. This is what is observed experim, entally. It
should be emphasized that the results (2.12), (2.13),
and (2.14) are true for any wave vector in the (k„k„)
plane.

For k J s and Elis, (2.14) shows that the linear term
does contribute to the exciton mass. The energy is
(k, =0)

2 (p2-
h'= hp(0)+

2 m, Z52

The quantity O'6/2p' 1.3X10 '7
g, so that the

resulting mass correction is appreciable. This surprising
result implies that for kg s, the exciton mass in the
lower valence band depends upon the polarization of
the exciting electromagnetic field. If this difference
couM be detected experimentally, it would provide the
most direct method of measuring the linear crossing
constant.

III. REFLECTIVITY

The ordinary local theory of optical experiments is
inadequate in calculating the reQectivity of this system.
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1 8 82
[epE—+42r(Pp+P )]= E,

C2 g]2 Bx

58)2 82

8~ ——
I
+O'—P~= Pg8( 0)' E,

i axi at2

B~(k,) = 8(0)+ (fPk.2/2n2) + to&, .

(3 1)

(3.2)

(3 3)

Instead, one must use the spatial dispersion theory
introduced by Pekar. Here a separate polarization wave
is associated with each of the two components of the
split exciton band. At optical frequencies near the
resonance frequency both polarization modes are
important. %hen the coupling to the electromagnetic
field is introduced, three independent modes of prop-
agating energy result.

The refractive indices for the three m, odes are found
easily by a classical analysis. Label the two polarization
modes P+.

FIG. 3. The electric Geld
amplitudes for three bulk
propagating modes; (a)
without a surface layer; (b)
with a surface layer, the two
modes T0 and R0 see a di-
electric constant eo.

tbj
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Since only the leading terms of k are important in (3.2)
set

8~(k )'= h(0)'+28(0)I (k'k, '/2n3)&pok, ]. (3.4)

Defining Pp as the polarizability constant for the exciton
band for to=0, then Pp

——P~/2=P /2. This follows from
the definition, of Po as proportional to the square of a
matrix element

p+ I(lt+IH'I0) I'

.and. from (2.12) for P+, H' is the transverse electro-
magnetic interaction.

For a plane solution, with P+, E exp(ioo/c)(nx —ct),
(3.1) and (3.2) become

1 1

2 n' t.+as n' t—ani '——

.b =. 4trP, Lntc28 (0)/5 2oo]2,

Once the refractive indices are known, there remains
just the boundary problem of m, atching amplitudes at
the surface. The modes for the reactivity problem are
shown in Fig. 3(a). Including the boundary layer from
which the polarization wave is excluded, ' the modes
appear as in Fig. 3(b); here, the modes Tp and Rp in
the surface layer see a background dielectric constant
60= So .

Two boundary conditions are needed in addition to
the Fresnel condition that E and H be conserved.
These are that P'+ ——P =0, which applies at the surface
layer x=xp, Fig. 3(b). In particular, P+=0 a.t x=xp
1S

T.(xp)
0=

s~ t4+ an~

2SC2h (0) bto
1—

B(0)

a = (2n3C2/l22Cto) po.

—iF
&(0)'

For P, replace a by —a. The reQectivity is

Ai —A2+ino(Ai —A2/ep) tan(noooxo/c) '
)

Ai+A2 —iso(At+A2/eo) tan(soooxo/c)

Ai a t4 t4 +t4Lst +s2 +s3 +sin2+sts3+S2S3]

+SiS2S3 (Si +S3+S3)

which may be solved to give the refractive indices for
the three modes e~', e2', and m3'. '

Call Tj, T2, T3 the electric field amplitude of the
three bulk propagating m,odes, corresponding to the
solutions ni, S2, S3 of (3.6). The total internal ele
6eld is

+ 3 (ni+ 3)+St 2S3]+ni 2S3I . 1 +S2 +S3

+nin2+ n 2n 3+n on i] (a'+2t4)—
y (t (s,ynpyno)+n, n,s,]ctnc

In order to calculate the reRectivity, it is necessary to
know the parameters pertaining to the 8 exciton. These
were usually known only approximately. An efI'ort

has been made to estimate them, realistically „in the end,
one would like to have &p the only unknovfn parameter,

E(x)=P T.(x)e-""',

T (x)=T (0) exp/in (pox/C)]

C

Now (3.5) is a cubic equation for n',
1

n' S4 (ep+ 2t4—+a2)+npgep (2t4+ a')+f42 b]—
t4(eot4 b) 0 (3 6) A2=t4Lni'+S23+S3'+s2'(St+no)+nt (no+no)
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FIG. 4. The theoretical eGects of increasing linewidth on Is 8
series exciton spectrum for k J s, EJ s. (a) I'=2.5X10 ' eV, the
peak at the longitudinal frequency is present at this small width;
(b) 1'=7.5X10 s eV; (c) I'=2.5X10 ' eV, the extra structure is
being washed out at increased linewidth.

and to be able to determine it by comparing the
calculated and the measured reQectivity curves. The
other input numbers and their m, ethod of evaluation
is outlined below:

f. Resonance frequency. Because of the structure in
the reQectivity spectra, the classical Kramers-Kronig
version gives the wrong value for the transverse
frequency. Calculations with the crossing term included
show that in the absence of damping, the low point of
the anomalous dip is at this resonance frequency.
Dam, ping tends to wash out this minimum, but the
measurements indicate that this frequency is 2.5679 eV.

Z. Elicitor mass. These are derived in the Appendix.
The values used in the calculations are ns„+nrem, 1.3——
and p0

——1.7. The reduced mass turns out to be the sam, e
as for the A-series exciton, so that the binding energies
and Bohr radius of the two series are roughly equal.

3. Polarisabi Hty P. Because of spatial dispersion
effects, interpreting the reQectivity curve as a classical
spectra gives the wrong value for p. However, it may be
predicted by relating it to the polarizability for the 1SA-
series exciton p(A). Assuming that the Bohr radius for
the 2- and 8-series excitons are equal, the two polar-
izabilities dier only in their band to band matrix
element. These may be estimated from (2.5) and

observed experimentally, the 8-series exciton must have
a larger linewidth. This is reasonable, since the 8 state
has all of the decay m, odes of the 2 state, plus the
additional possibility of decaying to the lower energy 3
state. A rough calculation was m, ade of the decay rate
from the 8 to A state with the spontaneous emission
of an acoustical phonon. The main contribution is from,
deformation potential interaction, and the process
contributes a linewidth of the order of 10—' eV, which
m,ay account for the increase. Figure 4 shows theoretical
reQectivity curves for values of 2.5)&10 ' eV, 7.5X10 '
eV, and 25)&10 ' eU. The value F=7.5)&10 ' eV is
large enough to wash out the subsidary peak, and is
used in the remaining calculation.

5. Surface layer thickness. A surface layer of 70 A was
arbitrarily selected for the calculations. The results
change little for values of this param, eter between 0 and
100 A, since the effect does not depend upon the
presence of the layer.

Using these parameters, y can be varied to see the
effects of the linear crossing on the reQectivity. Figure
5(a) shows y=0 (dashed line) and Io=0.3X 10 ' eV-cm
(solid line), while Figs. 5(b) and (c) have 0.5X10 '
eV-cm and 0.8X 10 ' eV-cm. Figure 5 (b) represents the
experim, ental curves quite well, so that q 0.5X10 '
eV-cm. From the uncertainty of all of the other param-
eters, the uncertainty on this value may be as high as
50%. The important result is that the presence of such
small crossing terms can explain the anom, alous features
of the reQectivity. Since these have never been measured
previously, the fact that they are 6nite has been
established, and a tentative value presented. This value
is in agreement with previous theoretical estimates. 4

The reQectivity can be explained by the presence of
the linear crossing term, . The main argument which
could be made against the explanation is that it is not
unique: other forms of band structure could possibly
lead to the same reQectivity curves. An identical set of
calculations was made on a system which looks quite
similar —this is where the bands split quadratically. The
two bands have masses m~ and m2, and associated with

0.5

p(~) =p(~)
2+ (2—3)tn/5) ' 0.4—

(b (c)

Since 4s P(A) =0.0125 then P(B)=0.00058. The values
0.00060 and 0.00065 have been used in the calculations.
The latter number gives a slightly better 6t to the
experim, ental data, but the uncertainty in the other
param, eters precludes selecting either value as more
reasonable.

4. Liemidth. Calculations on the 2-series excitons
show that the sharp subsidary peak occurs at the
longitudinal frequency for linewidths less than 5&10-'
eV. Since the 8 exciton has the same Bohr radius, it
should feel the same potential and the reQectivity
spectra should show the same peak. Since this is not

0
U
Q

gg 0.2—

0.1 —
III,

0.3
0 I

2.566
I

2.570

0.5
I I

2.566

Energy (eV}

0.8x
I I

2.570 2.566
I

2.570

FIG. 5. The theoretical eGect of increased linear splitting on the
refiectivity spectrum (a) p= 0 (das.hed Hne) and y= 0.3X1M eV-
cm (solid line); (b) q =0.5X10~ eV-cm; (c) y=0.8X10 eV-cm.
The middle value appears as the most reasonable fit to the
experimental data, Fig. 2.
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each band is a polarization wave. This system will also
have three propagating modes, and the boundary
conditions P&= P2= 0 are applied as before. ReAectivity
curves were calculated for a wide range of m~ and m2,
but none led to the type of structure observed experi-
mentally. It is concluded that the linear crossing term
must account for the effect.

ACKNOWLEDGMENT

Ke wish to thank D. G. Thomas for graciously
providing the data used in Fig. 2.

APPENDIX

The effective masses of holes in the second valence
band, which are needed for the reQectivity calculation,
have not been measured. But using a k y perturbation
model which relates the three valence bands, the 8
band masses are estimated from a knowledge of the A
band masses. without this relationship, each band
would have the form (2.4) and its own set of independ-
ent constants; of course, for F9 bands C=O.

The scheme employed to relate the constants for the
different m, asses is to view wurtzite as a strained zinc-
blende material. This model was previously used to
estimate oscillator strengths in CdS."By simultaneously
introducing the strain and spin-orbit interactions into a
sixfold degenerate zincblende valence band, a wurtzite-
type structure with the three doubly degenerate bands
results. The valence band states which result are those
given by (2.5). The masses may be obtained by also
introducing the it y perturbation matrix appropriate
for zincblende. The linear wave vector terms do not
contribute to the masses and are omitted. The most
general form for quadratic wave vector terms is

'Dk '+Gk' Fk.k„Fk.k,
Fk.k„Dk„'+Gk' Fk„k, . (A1)
Fk.k, Fk„k. Dk.s+Gks.

Including spin degeneracy causes (A1) to appear twice
in a sixfold representation. One way of finding the
masses is to include (A1) in the simultaneous diagonal-
ization of the spin. -orbit and strain terms. Although
this is possible, the result is not simple enough to be
useful. An easier method. is to transform the ir y

"G. Dresselhaus, Phys. Chem. Solids 1, l4 (1956).

TABLE I. Masses for the various bands.

Bands
g=0.333 g=0.20 g=O
4=2.20 d=2.46 d=2.86

A band:
m)t/m=g-'
mg/m= (g+d/2) '

8 band:
m~~/m = [g+d37s~(2 —3Xs/S) ]
mg/m=[g+dEs'j '

C band:
m~~/m = [g+d3Tc'(2 —3Xc/&)'3 '
mg/m = [g+dEc'3 '

3.0
0.70

0.79
1.03

0.62
1.25

5.0
0.70

0.81
1.09

0.62
1.39

0.70

0.83
1.20

0.61
1.65

perturbation to a matrix with basis states given by (2.5).
Since the transformation is linear, the wave vector
terms will still be of order k' in all matrix elements. The
off-diagonal terms are only important when wave
vector-dependent mixing of the basis states occurs. This
effect may be ignored for small wave vectors, so that
the diagonal clem, ents determine the m, asses. They are

A band, E~ )~+ (D/——2) (k,'+k„')+Gk',
8 band, E~=) g+DNs'(k. '+k„'

+L2 —(3)I,~/g)]~k s)+Gks

C band, Ec=Xc+DXc'fk~'+k~'
+[2—(3Xc/5) j'k ') +Gk'

Note that the constant F of (A1) does not enter into
the band masses. Only two constants, D and 6, deter-
mine all six masses, and these may be found from the
two masses of the top valence band. The perpendicular
mass is known, ' m&=0.70m (m=electron mass), and
the parallel mass is estimated m&& 5m. The 8 and C
band masses are listed for A-band parallel masses of
3.0, 5.0, and eo. Define d=(2m/k')D, g= (2m/ls')G,
and the results are listed in Table I.

For excitons from the 8 valence band, the following

parameters may be estimated:

jap= 0.17,
m, ~+my, ~=1.2 ~ 1.4,

y=10 '.
The measure of the anisotropy p is very small, and

the isotropic Hamiltonian approximation is very good.


