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APPENDIX 3. SPECTRUM OF THE CHARGE
DISTRIBUTION IN POLYCRYSTALS

From Eqs. (19) and (42) for the one-dimensional case

~

qs ~'/e'= 1+P (1—m/L) {exp[i(x—x)stt]+c.c.), (A7)
m=1

where ~=kd. Using the relations

g trt exp(imx)
m=1

p[l x(L+1)j
((L+1) sin(-', xL) sin(-', x)

2 sin'(-'x)

i[L—cos(-', xL) sin(-', x) —sin(-', xL) cos(-', x)j}, (A9)

one finds after trivial calculations

P exp(imx)
m=1 (

qs ('/e'= sin'-'L(x —sr)/L cos'six,

= exp[-,'ix(L+1)] sin(-,'xL)/sin(-, 'x), (A8) which is equivalent to Eq. (43).

(A10)
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A variational method closely related to the intermediate coupling method of Lee, Low, and Pines is used
to calculate the ground-state energy and low-lying excited states of the Frohlich Hamiltonian with a uni-
form time-independent magnetic field. The energy is calculated in a power series in co,/ao to order (&o,/oi),
where co, is the cyclotron resonance frequency of the electron in the absence of electron-phonon interaction
and or is the frequency of the longitudinal optical phonons. It is shown that in the presence of electron-
phonon interaction the energy of the nth magnetic level is no longer proportional to n and that the effective
mass for motion along the direction of the magnetic field is a function of n. The calculated variational en-
ergies approach the weak field result expected from the calculation of Lee, Low, and Pines (LLP) when
io,/co ~ 0, and in the weak coupling limit the ground-state energy becomes exact to order (co,/co)s.

INTRODUCTION
' 'T is well known that if one wishes to compute the
~ - energy spectrum of a spinless electron of mass m in
a magnetic field, H, with associated vector potential A,
one replaces the energy operator p'/2nt for the free
electron by (p —eA/c)'/2srt and solves the resulting
Schrodinger equation. The energy spectrum so obtained
can be written

(p,'/2srt)+ (st+-,') tea&p, (1)

where oio ——eH/mc, p, is the component of electron
momentum along 8, e is the magnitude of the electron
charge, and rt takes on values (0,1,2, .).

In this paper we shall discuss what happens to the
energy of an electron (more precisely, a polaron) in a
polarizable but magnetically inert crystal when a rela-
tively weak magnetic field is turned on. Polaron
theory' ' predicts that in the absence of external fields

*Address after August 15, 1964: M. I. T. Lincoln Laboratory,
Lexington, Massachusetts.

H. Frohlich, Adoarsces irs Physics (Taylor tk Francis, Ltd. ,
London, 1954}, Vol. 3, p. 325. We use the notation of Frohlich
unless otherwise speciled.' T. D. Lee, F. E. Low, and D. Pines, Phys. Rev. 90, 29/ (1953).
This paper will henceforth be referred to as LLP.' Particularly useful as a survey of the entire subject of polarons
is the book Poluroes crId Excitorls, edited by C. G. Kuper and G. D.
Whittield (Oliver tk Boyd, Ltd. , Edinburgh, 1963).

the polaron energy spectrum has the form

p'/2m*+ (Xp4/4stt'Aio) +0 (ps/rtt'(I'toi)'), (2)

and
tt = rrt/srt*

oi, = eH/rptc.

(4)

At this point (3) is only suggestive; it motivates the
more careful study of low-lying polaron energy levels to
be undertaken in the present paper. We shall show, to
the accuracy of our calculation, that in fact (3) becomes

if (P'/2m)(&Aco, where co is the frequency of the longi-
tudinal optical phonons and ns is now and henceforth the
band mass of the electron. In (2) m* is the "effective
mass" of the polaron and X is a dimensionless constant.

If we could proceed in analogy to the free electron we
would regard (2) as the energy operator for the polaron,
replace p'/2rtt in (2) by (p eA/c)'/2—sit and solve the
resulting Schrodinger equation. The energy levels of the
polaron in the magnetic field would then take the form

tt[(rt+ ,')I+toiP, 'j-
+ (E/t'tee) [(e+-,')Aio,+ (p,s/2m)]'

+O[((e+-,')hco +P '/2m)s/(Ace)'j, (3)
where
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VARIATIONAL CALCULATION

We can omit the electron spin energy without loss of
generality so that the Frohlich Hamiltonian with mag-
netic field can be written"'

X Xs+Xt )

Xo=Z b~'b~+(P*+ '~'y)'+P-" '+P '

/4~&~'&' 1
X&=I

I 2 (e ' '—
b&,t+h c ), . .&s)

(6)

(7)

where (P„P„,P.) is the electron momentum operator,
X= (o&,/o&)U', r= (x,y, z) is the electron displacement, and
we have used the vector potential A defined by

e A/(2mb o)&'~'c= (——,'X'y, 0, 0)

to describe the external, uniform, time-independent
magnetic field in the 2' direction.

We shall build up our variational wave function step
by step by a succession of unitary transformations on
the normalized wave function

""**'"*'IC'())Io)—= IP 0) (9)

where
I 0) is the phonon vacuum and

I
C (ss)) is the one-

dimensional harmonic-oscillator eigenfunction defined
by

(P '+-'~Y) IC'(~))= (~+a)l'IC'(~))

However, since we are interested only in the energy
spectrum of K it will not be necessary to deal explicitly
with wave functions; thus if our variational wave func-
tion is tt 'I P„N,O), where it is a unitary operator, the
corresponding variational energy is

(0,N,P. I
AX&—'I p.,n,o).

If 'll is a product of unitary operators:

%,=%.4%,3%L2%ly (10)

and if we define 4, 3C&' ')& '=X&') with K&0)= then
4 In this way we sidestep the important but dificult problem of

the energy levels of an electron interacting simultaneously with a
rigid periodic lattice and an external magnetic held.' L. D. Landau and E. M. Lifshitz, Quantum 3fecha&epics (Addi-
son-Wesley Publishing Company Inc. , Reading, Massachusetts,
1958).' From this point on all lengths are taken in units of
re = (&&&/2m'&)'&', all momenta and wave numbers are in units of b/re
and 1/r~, respectively, and all energies are in units of ba&.

exact in the limit

co, —+ 0 with m~, constant.

The I'rohlich Hamiltonian will be used to describe the
electron-phonon system, which means that we treat the
lattice as a continuous polarizable medium and assume
that, aside from the polarization energy, the electron-
lattice interaction can be taken into account by merely
replacing the electron mass by an effective band mass
(which may be field-dependent). 4

St ir ——Q kb&, tb&, (12)

The effect of 'll& on BC(" can be readily calculated by
computing the effect of 'll, ~ on the different operators in
X&" using (13), below.

%,tP'ltt =P—Q kb&, tb&„

%lgbi, t%,g
'= e'"'bi, ~,

%.yr%Ly ~= r.
(13)

The purpose of this transformation is to locate the
origin of the coordinate system describing the phonon
field, at the position of the electron.

Transforming operators in (6)—(8) according to (13)
we obtain

Xt &=2 ~.+(P. Z~'.+zl -y)

+ (P.—Z &.~~)'+ (P.—Z &.~~)'

+ (4~~/g)"' 2(1/&) (b"+b~) (14)

As in the case of a free electron in a magnetic field in our
gauge, the energy of the system will not depend upon
P,. To show this we eliminate P, from (14) by intro-
ducing

"its ——exp —(2ip P„/X'),

which shifts the y coordinate of the electron. In our
units I p„,yj= —i so that

'lt,y'its
—' ——y —(2P,/X') .

Thus

X&'&=+ n&,+Q k ln&,rct+II' —2II Q kss&,

+ (4z-a/g)"' P(1/k) (b&,t+b&,), (15)
where

and, as in (14),
II= (-'~'y, P.,P )

sg —6g%g ~

Since we will ultimately have to take expectation values
in the state (9), which contains the state IC (I)) as a
factor, it is convenient to rewrite (15) in terms of the

the variational energy we seek is the diagonal part of
X&'& in the states

I p„n,0).The purpose of the rest of this
section is to build up a set of operators 'Ll~ %,4 which
yield a variational energy, Ez, for low-lying states which
has the properties: (a) Er goes over to the form ex-
pected from the LLP variational energy' in the limit
(5), (b) Ep is exact to order X' in the weak coupling
limit (cr —+0). By "low-lying states" we shall mean
states with excitation energy well below Ace.

All our transformations 'll, ; will be represented in the
form 9,;=e~' where S;1'=—S,, and we shall dehne the
various 4,; by specifying the corresponding S;. SC(') is
then computed from S; and 3C" ') by applying the well
known identity:

X"&=e 'Xi'—'&e '=—X&' '&+LS X&' '&j

+(1/2')L~', L5''X" "jj+ . (11)

Ke begin with the first canonical transformation of
LLP, defined by
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where f», s», and u» serve as variational parameters and
are assumed to be real functions of k.

'tt8b»«3 '= b»t —f» —(at+a)s» —~(at —a)u»

+i Q(u s»—s u»)(b t—b ),

'ttsat'K3 '=at++(s —iu )(b t—b ).
(19)

At this point we remark that p, in (17), can be re-
placed by a c number since it commutes with %Le

specified by (18) above, with t,4 to be given below, and
with %&2). Thus, although in the ground state of K('&,

p, =0, we will be able to obtain an upper bound to the
energy of the lowest lying state of K&'& for given p, by
minimizing the expectation value of X~'& in the states
(9) for each value of p, .

Examination of K(3) shows that the largest terms

harmonic oscillator raising and lowering operators
defined by:

at=A '(p„+ (i/2)X'y), a= X '(p„—(i/2)& 'y) . (16)

In terms of these operators we write (15) in the form

K&'& =Q n»+Q k ln»ni+p. '+X'(ata+-,') —2p, Q k,n»
—X[(at+a)P k„n» —i(at —a)P k,n»]

+(4 /8P'2(1/k)(b. &+b.) (»)
In order to motivate our anal two transformations we

note that (15) is the same as the corresponding LLP
Hamiltonian [see LLP Eq. (9)] with the c number
P in LLP replaced by the operator II. This suggests
that we replace f»(P) in the LLP transformation
exp[+» f»(P)(b»t —b»)] by f»(II). We do this in our
next two transformations, which amount to using an
f»(II) expanded to second order in powers of k II.

From another point of view we can regard our final
two transformations as eliminating operators linear in
phonon operators which contribute to the ground-state
energy in order X4 and lower. This is done in analogy to
the procedure in LLP, the eGect of which is to remove all
terms linear in the phonon operators from the Hamil-
tonian. In the field-free case, considered by LLP, this
can be done in a simple way because the only operators
in the LLP Hamiltonian corresponding to (17) are
phonon operators.

To eliminate the dominant terms linear in the phonon
operators we introduce

S8——Q [f»+ (at+a)s»+i(ut —a)u»](b»t —b»), (18)

which are linear in phonon operators are terms with
coefEcients of order )' and are quadratic in "a"opera-
tors. To eliminate such terms to lowest order in P we

specify 'll, 4 by

S4——Q ~»(b»t —b»), (20)

where 0»= (at+a)'r»+(ut —a)9»+i(atat —aa)q», andr»,
t», and q» are variational parameters assumed to be real
functions of k.

If the reader has explicitly constructed K&'& from (19)
and (17),he will have verified that it is a very bulky and
ungainly expression. %orse yet, the commutator ex-
pansion for X&4& obtained by inserting S4 and 3C&@ into
(11) does not even terminate. In order to proceed
further we must make certain assumptions about the
size and structure of our six variational parameters.
These assumptions, listed below, will be shown to be
self-consistent at the end of the calculation. Thus we
assume

f» ——f(k,k„p,)=0(&&'),

s» ——k„s(k,k„p,) =O(X),
u» ——k.t u(k, k„p,)=0(&&),

(21)

and
r»=O(&'), t»=O('A'), q»

——O(X') . (22)

The assumed order in X of the various variational
parameters in (21) and (22) is just equal to the order of
the terms which they are designed to eliminate. For ex-
ample, the term P» s»(b»t —b»)(at+a) in S8 of (18) is
designed to eliminate the term X(at+a)g» k„f»(b»t+b»)
which would have been present in 3'.&@ had we set s~= 0
in (18).Thus s» is assumed to be of order X.

From (21) it follows that the largest terms in %&3& are
of order Xo; therefore, the expectation value of X&4& in
states (9) is correctly given to order X4 by the expecta-
tion value of the operator

K&'&+ [S4,K&'&]+-,'[S4,[S4,X&'&]]. (23)

Furthermore, we can extract the part of K&@ which
contributes to the expectation value of (23) to order X'

in the states (9) and replace X&'& in (23) by this ex-
tracted part, X,g~3). Picking out the terms of K(') which
contribute to K~|'@ is simpler than one might'expect
because a large majority of operators in 3'.&@ have
coeKcients of order ) or higher. Such operators can
contribute to Ez to order )' only if they are diagonal or
if their cormnutator with S4 is diagonal. Using (20)—
(23), we can write down Ks&'& almost by inspection from
K&@.The result is

%a&'& =P (1—2k, (1—»)P, )n»+P k In»ni+-'g'+X'ata+E3 —P [(1—2k, (1—»)P +k2) j»—(4s&M/8)'"(1/k)]

X (b»t+b») —l& P [(at+a)'k„s»+ (at a)'k u»+—i(atat ua) (k„u»——ka»)](b»t+b»)

+Q k 1f»f&(b»t+b») (bit+bi) —2 Q k.l[(a~+a)'s»' —(at —u)'u»'] fi(bit+bi)

—4 g k 1f»[(at+a)'s»si —(at a)'u»u&+—i(atat aa) (s»ui+—u»s&)](bit+bi) (24)



A422 DA VI D M. LARSEN

and

E3=Q (1—2k,p +k') fi,' 2—(4zn/g)'i' Q (1/k) fj+(Q k,fg')'+Q (1—2k, (1—g)p,+k') (sg'+up ) (1+2ata)
+4(I '+I ') (1+2ata)+2K(I, —I~) (1+2ata)+ d„LQ (1+k')sj,'+4I ']

+ d.[ P(1+k')ug'+4I„']+'A'(d, + d„)+4K(d I, d,I—„), (25)
where

I,=g k„st fj„ I„=gk,u~fg,

d.=Q sg', d„=Q ug',

gp, =Q k,fj,'.
In (25) and in the following we consider P.' to be a quantity of order X', and we therefore neglect terms which

contribute only to order p, ', X'P,4, X'p, ' or higher. While it would have been possible to calculate Ea to higher order
in p,' we feel that there is not much point in doing so (thereby adding further complication to an already compli-
cated expression) when we are only able to calculate the energy associated with motion in the z—y plane to order X .
The variational result in any case is expected to be most accurate when X'«1 and p,'«1.

In (23) we replace K&~ by 3Cis&'&, insert S4 from (20), and evaluate the commutators using the orthogonality
properties among fq, u~, and sq implied by (21).

Omitting only, but not all, terms which have no diagonal part to order X' or X'p,' in the states (9), we obtain for
our effective Hamiltonian, 3C~&'~:

m&i" ——P '+-'),'+X'a'a+E, +P (1—2k, (1—q)P Pk')a&'+2 P P(1—2k, (1—z)p +k')f„(4~n/g—)'&'(1/k)]~,
+2K P L(at+a)'k„sg+ (at —a)'k, up+i(atat —aa) (k„ug —k,sg)]op

+8 g L(at+a)'kis&I. —(at a)'k, u&I —+i(atat aa)(k„u&I—, k~sj,I„)]a—j, 2Q k If—&finvn&. (26)

If we let E4 be the diagonal part of Xz&+ —(~X'+X'ata+E3+P, ') we get

E4 {PP(1—2k, —(—1 —g)P,+k') (rq'+ t~')+ 2 (X+4I,)k „sqrq+ 2 (X—4I„)k,uqtq]
—2 (Q kfgtg) —2 (Q kerg)'} f3+ 6ata+6 (ata)']

+2{+L(1—2k, (1—g)P,+k')rqtq+ (X+4I,)k„sqtq

+ (X—4I )k,uj,rg] —2(P kfgrg) .(P Ifiti) }L1—2ata —2(a"a)']
+2{2L(1 2k~(1 &)P~+k2)q&2+2(X+4I )kuu&qI, 2(" 4I~)k*s&A]}L1+ata+(ata)

+2{+[[(1—2k, (1—rt)P +k')fq (4nn/g)'~'(1—/k)](rq —tq)]}(1+2ata). (27)

In (27) we have used the following relations for the
diagonal parts of operators

(at+a)4
l

D
——(at —a)4

l
& 3+6ata+6 (ata)2, ——

(a' )'a( +a)'aI D = (a'+—a)'(a' a)'(D-
= 1—2ata —2 (ata)',

(atat aa)
~

D= ——2(1+ata+(ata)'),

where if 8 is an operator, 8
~
ii is the diagonal part of 8

in the states (9).
To complete the variational calculation we must mini-

mize the ground-state energy from (26) and (27) with
respect to f~, s~, u~, r~, t~, and q~. At first sight this
seems formidable. However our initial postulate that f~
is of order A', s~ and N~ of order P and r~, tj,, and qI, of
order P

' suggests that to obtain a first approximation for

fq we should consider only terms in (O,O,P, ~
(E3+E4)

)&
~ p„0,0) of order l~' and minimize them with respect to

fi, These terms a.ppear in E3, they give exactly the
polaron energy of I,LP, Ez„Lp, when the polaron mo-
mentum is in the s direction, namely,

g(1 2k,p,+k') fi,'—+(Q kfg')'
—(«n/g)E(1/k)f' (2g)

Minimizing with respect to fi, gives, as in LLP,

t'4irn

E g k(1 —2k, (1—rt)P +k')
(29)

k„'fg'

I.= P.+4I,]Q—
1—2k, (1—rt) P.+k'

= —XI/ (1+4I),

(31)

Next we And a first approximation to sq and Nk by
minimizing all terms in the ground-state energy for
fixed p, which depend upon sq and uq and are of no
higher order than )P. These terms also appear only in E3
and are

Q(1—2k, (1—q) p,+k')sg'+2I, (X+2I,)
+Q (1—2k, (1—g)P,+k')ug'+2I (—X+2I ) . (30)

Minimizing the expression (30) we find

( +4I.)kwf~
$1%

1 —2k, (i—g)p,+k'

ug ———(k,/k„)sg,
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where
P 2 2

1—2k, (1—g)P +k'

Using the solutions (31) we calculate ri„ ti„and q~
from (27). Since we are neglecting terms of order X'p, 2

we can set P, =O in our expressions (29) and (31) for
fi„sq, and u~ before substituting them into (27). The
result upon minimizing the ground-state energy of E4
(at fixed P,) with respect to r~, ti„and q~ is

(h+4I, )k„sj,

of smallness. It should be emphasized again that (33) is
expected to be most accurate for low-lying states,
p,'«1, rid'«1.

Comparing (33) and (34) we find that in the limit (5)
if we formally replace mo, /~ in (33) by pi2, (33) becomes
equal to (34). Thus our calculation, within its limits of
accuracy, verifies (3).

We now inspect terms of (33) which vanish in the
limit (5). The term 2ti(~,/co) is easily identified as the
zero-point energy of the polaron with the LLP effective
mass, in the magnetic field. To understand the term

tk
1—2k, (1—it)p +k'

3

chic

( ioc
~l (~+2)—+P*' I,

40 cg 5 i0
(35)

(X—4I„)k,eg
~k

1—2k, (1—q)P,+k'

(X—4I )k,sg —(X+4I,)k„ui,

1—2k, (1—q) p,+k'

(32)

Note that (29), (31), and (32) are consistent with (21)
and (22).

If we now go back and recalculate fi, using values of
the other parameters given by (31) and (32) we find no
correction to order X' to the expression for fq given by
(29). Thus for purposes of calculating Ea+E4 to order
X', (29) is exact. By inspection there are no corrections
to st, and Nq in (31) of order lower than X'. Corrections
to sk and Nk of order X' contribute to the energy in order
X'. We therefore conclude that (29), (31), and (32) are
exact to the order of our calculation.

Evaluating the energy expectation value in the limit
of infinite volume using (25), (27), (29), (31), and (32)
we obtain finally

we must recognize the possibility that the presence of an
external field can alter the internal structure of the
polaron so that the effective mass becomes explicitly
6eld dependent. ~ %e therefore regard the factor
—3ti4co,n/40~0 as the lowest order field-dependent cor-
rection to p, (where ti is the ratio of the band mass to the
LLP effective mass).

Finally, we identify the remaining term

(ted+3) ti'co, 'n/96aP

as the lowest order residual magnetic correction to the
Beld-free polaron ground-state energy, since we cannot
regard this term as arising from an effective mass
correction associated with the zero-point motion of the
polaron.

In order to compare (33) with the weak coupling
solution to be derived in the next section, we evaluate
Ep to order ~ in the ground state and first excited mag-
netic state (x=1). The weak coupling limit for the
ground-state energy of (33) is

1 ( Cl)M~ 1 (M~)—~+-I 1—-
I

—+
2k 61 io 240(or)

(36)

( (" ( "5'l——
t 4~I P.'+2l ~—P'+I ~—

I I

40 4 K~ E ~)i
while the energy difference between the ground state
and first excited magnetic state is

3 chic ( (dc——u ~l (~+2)—+&*'
I

40 co k co

A Glc 3 (Q)c)

6 M 20(M)
(37)

where

1 (a).)'
+—(t +3)t 'I —

I ~, (33)
96

ti= 6/(6+u) .

In obtaining (33) we have used the variational result
of LLP that the energy of a polaron with momentum P
is given by

~+I P' (3/4o)t 'P'~+o(P') — (34)

We have neglected terms of order 'A'P, ' and X'P,' in (33),
assuming, as before, that P,2 and X' are of the same order

PERTURBATION THEORY

In this section we calculate the ground-state energy
and the energy of the I= 1, P,=0 state by treating 3'.i in
(8) as a perturbation on the eigenfunctions of Ko given
by (7). We do this in order to show that to order X' the
corresponding variational energies of (33) are exact in
the weak coupling limit. Also, it turns out to be rela-
tively easy to calculate the energy to higher order than
X4 in the weak coupling case by the method given.

7 This has been demonstrated for a polaron in an electric field in
the weak coupling case. D. M. Larsen, Phys. Rev. 133, A860
(1964).
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The unperturbed states may be written

I~(n,p*,p.)) I {n.}),
where

I P& and
I {nq}&are assumed normalized,

E(P.+2~'y)'+P'+P' j I &(n P* P ))
=L(n+l)l'+p. 'jl&(n, p*,p.)& (38)

and

»'»
I {np})=&~

I {n~}) (39)

where Xq is the number of phonons of wave vector I in
the state

I {nq}&.We shall denote the phonon vacuum
state by I 0) with

I k) defined by b qt
I 0)= I

k).
We take as unperturbed ground-state wave function

the state

summation on n on each term of the expansion. To do
this in a systematic way consider sums of the form

S2=e & Q n'(X"/n!) for l/0,

50= 1.

From (45) it is easy to show

S2„,——xl:1+(d/zx) )S, (46)

x=np= (k,/X)-', (47)

so that S~=X, S2=X'+X, So——X'+3X'+X, etc. If we
make the identification

42m 1 X2 (Sg—X) X'(S2—2XS,+X')
— 1— +

8 2 k'(1+k') 1+k' (1+k2)2
IP(n, k.,k,)&lk),

I4 (0 0,0)) I
o). (40) then (42) becomes

From (8) we observe that 3C& connects (40) only to
unperturbed states of the form

where H„(x) is the Hermite polynomial in x of nth
order. To evaluate (41) we evaluate Q t"I /n! by re-
placing P t"H„(x)/n! by e "+"*and performing the
resulting integral. We then extract I„from its genera-
ting function by differentiation. The result is that the
perturbation expression giving the energy correction in
order a is

42m exp —(k,/X)2 1 (k, 2~ 1
-Z —

I

— . (42)
8 2 k' - n! kg 1+neap+k, 2

We propose to evaluate (42) in a power series in X2.

To do this we observe that for 6xed k&' the summand in
(42) is a sharply peaked function of n as X —o 0 because
of the factor (1/n!)(k,/X)2". The value of n which
maximizes this factor is approximately

np ——(k,/X)'. (43)

This motivates the expansion of the factor (1+n'A2

+k,') ' in (42) as follows:

(1+nX2+k,p) '

with energy 1+(n+2)X2+k,2. The matrix element

( IQ(n»*k) le "'k"l&(000)&lo&

contains, besides trivial factors, a factor of the form I„
~b—xp))

dy+„ le
& ((2 uo)2+221/« —(pop (41)

J

4xe

8 2 k'(1+k')
(49)

Next we look for contributions in order X2 in (48).
These come only from terms in S~ of order y' '. From
the recursion relation of (46) it is easy to show that the
coefficient of this term in S2 is —,'l(l —1). Therefore we can
replace S2 by 12l(/ —1)x' ' in (48) to obtain all contribu-
tions to order X2. The contribution of the (m+1) st term
in the bracket in (48) is

(m —2)! P2 ea

1m(m 1) P ( 1)r+mxm —
1I

~~ (m —2—r)!r! (1+k'

=X2
(1+k2)2

where 8;,; is the Kronecker delta. Thus the total
contribution to order X2 in (48) comes solely from the
third term (m= 2) in the bracket and is

l P(S2—3S2x+3Six'—x')
+ . (48)

(1+k')'

First we note from (47) that x is of order g—'. From
(46) it follows that the highest power of x in S2 occurs as
y'. It is clear that if we keep only these highest powers
in each S& (which amounts to replacing S& by x'), all
terms in the bracket in (48) vanish except for the first.
This means that to order )' the only contribution from
(42) is

=E(1+ny,2+k,2)+ (n —n,)xpj-'
4m.n k~'

8 ~ k2(1+k2)2
(50)1 (n np)X' (—(n np)X' '—

+I ~ ~ ~

+k'- 1+k' ~ 1+k'
(44)

Finally, in order Xo we can replace S& by (1/24) l(l —1)
We insert expansion (44) into (42) and perform the X(l—2)(3l—5)x' ' and proceeding as above we find
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that only the fourth and 6fth terms in the bracket
contribute, the sum of the contributions being

—4mnX4 +3 P . (51)
k'(1+k')' (1+k')'

Converting the sununations on k to integrations in
the limit of infinite volume and adding the contributions
{49)—{51) to the zero-point energy, isa', of the un-
perturbed state (40), we obtain the weak coupling re-
sults for the ground-state energy, E„„to order X4:

1 re, f n (oi,) n
E„.= n+—

I

—1——— + I

—
I

2 oi 5 6 5 oi) 240

The energy of the first excited magnetic state is
obtained from perturbing

I 4 (1,o,o)& I o)

which yields the expression (53) corresponding to (42)

4z.n exp —(k,/)I, )' 1

$ e!
(k, '" (I—X 'kis)sxi-
( X 1+(e—1)X'+k.'

We expand the factor (1+(e—1))'+k, s) ' in powers of
I (rs —1)X'—kisf/(1+k') and evaluate (53) by the same
technique used to evaluate (42). We find that the weak
coupling excitation energy of the first excited magnetic
state is

I

~ —-I——
(
—

) +ol, (
—

) I.

Comparing (52) and (54) to (36) and (37), respectively,
shows that the variational ground-state and 6rst excited-
state energy become exact in the weak-coupling limit.

DISCUS SION

It should be possible to observe the main features of
the energy spectrum (33). Ascarelli and Brown' have
observed a polaron cyclotron resonance line in AgBr at
70 kMc/sec in a field of 6600 Oe. The line was narrow
enough so that its peak could be located within a few
percent. In a 6eld ten times stronger a much narrower
resonance line would be expected, and for reasonable
values of a one should in principle be able to resolve a
magnetic Gne structure and observe the nonlinear de-
pendence of the resonance energy levels on the magnetic-
6eld strength.

Of course we have simplified the theoretical calcula-
tion by assuming that to order X4 we can still describe
the interaction of the electron with the rigid lattice by a

SG. Ascarelli and F. C. Brown, Phys. Rev. Letters 9, 209
(1962).

band mass. It may be that the correct band mass de-
pends upon co„ in which latter case additional nonlinear
effects in the cyclotron resonance will be observed.

It is difFicult to estimate the accuracy of our vari-
ational energy. We have proved that it is exact to order
a in the weak coupling limit but we do not really know
how rapidly the error increases with n. If we assume that
the LLP effective mass for n=2 is within 5 jo of the
correct value in the 6eld-free case, then we might expect
that correction terms in (33) which go as li' would be
within perhaps 20% of their true value for n=2. This
error would decrease rapidly with decreasing a.

A calculation of the magnetic energy levels of the
polaron has been made previously by Tulub. ' He finds
that the polaron effective mass for weak 6elds is given
by the LLP effective mass plus a term proportional to
(oi,/oi) . This result is in disagreement with (33) of the
present paper. Tulub does not calculate the ground-
state energy of the system nor does he recognize that the
polaron magnetic levels at fixed p, are not equally
spaced. Although derived for the intermediate coupling
region, Tulub's effective mass does not approach the
weak coupling result to order n. It is not completely
clear that the mathematical method and approximations
used by Tulub are appropriate for the problem of the
polaron in a magnetic field.

Hellwarth and Platzman" (henceforth called HP)
have calculated the free energy of polarons in a magnetic
6eld by Feynman's method. This method is superior in
accuracy to the LLP method (a modification of which is
employed in the present paper) for calculating the
ground-state energy and effective mass for free polarons.
It would be interesting to compare the energy spectrum
which produces the HP free energy to the spectrum
obtained here. Unfortunately, HP do not calculate
energy levels explicitly, and the comparison is dificult.

Because the LLP method normally produces a
ground-state energy which goes over to the ground-
state energy of perturbation theory for small n, it is of
some interest to investigate the result of perturbation
theory in the case )&&1 with arbitrarily small nonzero
0.. To this end we examine the order of the individual
terms of the sum on I in (42) in the limit X —+~. We
find that for re&0 every term is of order —n/X and that
the sum on all v~0 is convergent; however, the m=0
term is of order —n ink. Thus for X suKciently large the
energy correction in perturbation theory to order a is
given by the x=0 term. The perturbed energy is
therefore

I(kI 9 (o,k.,k,) I
x, Iy(0,0,0)& I o& I'

(55)
k 1+k,'

Assuming that a perturbation expansion in n for the

s A. V. Tulub, Zh. Eksperim. i Teor. Fiz. 56, 565 (1959) fEnglish
trsnsl. :Soviet Phys. —JETP 9, 392 (1959)g."R.W. Hellwarth and P. M. Platzman, Phys. Rev. 128, 1599
(1962).
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ground state is possible when X is very large and 6xed,
we conclude that a power-series expansion in )' of the
ground-state energy has a 6nite radius of convergence
in the weak-coupling limit. This suggests strongly that
the modi6ed LLP variational method employed in this

paper, even if carried out to all orders in 3, would fail for
)))1.We should note, however, that in typical ionic
crystals X= 1 when the applied fields are in the hundreds
of kilogauss. At such field strengths the validity of the
Frohlich Hamiltonian, given by (6)—(8), is doubtful.

The question of how the size of n affects the radius of
convergence of an expansion of the ground-state energy
in powers of ) ' obtained from carrying out the modified

LLP variational method to all orders in X', remains
unanswered.

In the limit of very weak field, namely, the limit (5),
one can show, using a method due to Platzman" for
performing the summation on e in (42), that the weak-

coupling energy to order a is correctly given by the

n p. M. Platzman, Phys. Rev. 125, 1961 (1962).

eigenvalues of the effective Hamiltonian obtained by
replacing p' by II' in the field-free weak-coupling polaron
energy, given by'

sin '((p')'I']-
E-(p')= p'

(ps) 1/2

The essential step in the proof of this result is to neglect
the commutator Lp„,yj wherever it appears. This neg-
lect can be rigorously justified in the limit (5). The
effective Hamiltonian E„,(II ) is applicable only when
the condition

eX'+p '(1
is satisfied.

The validity of replacing the field-free polaron energy
spectrum E(P') by E(rsvp'+P s) in the presence of a
sufBciently weak magnetic held is undoubtedly not re-
stricted to the weak coupling limit, but the author has
not yet found a rigorous proof of this for the inter-
rnediate coupling case.
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Volume Magnetostriction in Gadolinium Single Crystals*
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The magnetostriction of single-crystal gadolinium has been measured from 77 to 325'K in magnetic
fields up to 20 kate. A preliminary result of this work is the behavior of the forced volume magnetostriction.
These results have been employed to obtain the partial differential coeKcient of Curie temperature as a func-
tion of pressure over the above temperature range by means of the well-known thermodynamic expression
due to Kornetzki. It is found that 88/BP = —1.26+0.10 'K/1000 atm at 290'K. These results are compared
with the results obtained by direct measurement and discussed further.

80
p P/K(Boo/BH), —(2)

BT
= 1/T (B~/BH)

(Bco/BH) p = —(BI/BE)rr,

HE forced volume rnagnetostriction above techni- of the Curie temperature are related through'
cal saturation in ferromagnetics is related to the

pressure dependence of the magnetization through the
~ ~ 1/B (BB!BE

thermodynamic relation

where re= AV/V. Kornetzki, ' assuming that a change in

the spontaneous magnetization with a change in the

volume at a definite temperature and at a definite rnag-

netic Q.eld can occur only through a volume dependence

of the Curie temperature or the exchange interaction

energy and an arbitrary form for Mrr, r= f(T/B, H),
where 8 is the Curie temperature, finds that the forced
volume magnetostriction and the pressure dependence

*Work supported by the U. S. Atomic Energy Commission.
~ M. Kornetzki, Z. Physik 98, 289 (1935).

where p is the density, o. the specific magnetization, p
the volume thermal expansion coeKcient, and E the
volume compressibility.

The magnetostriction of single crystals of gadolinium
has been measured from 77 to 325'K in magnetic
fields up to 20 kOe. A preliminary result from this study

' The right band of Eq. (2) should be multiplied by (1+V/1VI),
where E is the Weiss molecular Geld factor. Calculating Ã from
the susceptibility measurements in the paramagnetic region
H'/ffI was found to be less than 0.03 and consequently was
neglected.


