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it has been suggested' that the odd components of the
axial crystalline field contribute importantly to the
value of D, the arguments given are no longer considered
to be valid. " While it is clear that such an over-
simplified calculation, based as it is on a point charge
model, cannot be expected to give accurate results; it
nevertheless indicates that ionic motion probably plays
an important role in the microwave electric field effect
for Fe'+ and Mn'+ just as for Cr'+. However, the above
discussion does not rule out possible significant con-
tributions from the effect of distortion of the electronic
wave function of these S-state ions.

It would be valuable to examine ions which are iso-
electronic to the more tractable Cr'+ ion. These include
V'+ and Mn4+ which have D parameters in A1203 closely
similar" to that for Cr'+. In addition, the effect of

"J.O. Arttnan and J. C. Murphy (to be published).

electric 6elds on the optical spectra of these ions has
been studied and interpreted in terms of electronic
wave function distortion and ionic displacement. "Both
of these ions are presently under study in this
Laboratory.
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The interaction of large inclusions with slowly moving domain boundaries has been quantitatively ex-
amined and the contribution made by such inclusions to the coercive force predicted. Several physical models
of the interaction between large inclusions and moving Bloch walls were investigated by making calculations
of the energy of the closure domain con6guration about the inclusions for various positions of the moving do-
main boundary. By statistically treating a random distribution of inclusions, the coercive force was calcu-
lated as a function of the inclusion distribution parameters. Several features of the interactions between
spike-shaped closure domains and moving domain boundaries have been elucidated.

I. INTRODUCTION

' 'T has been shown by many investigators that dis-
~ ~ locations, nonmagnetic inclusions, and other chemi-
cal and physical inhomogeneities inQuence the proper-
ties of bulk ferromagnetic materials. One manner in
which imperfections affect the magnetic properties of a
material is by acting as impediments or obstacles to
the motion of domain boundaries. An analysis of the
interaction between domain boundaries and structural
imperfections is important in the understanding of
irreversible ferromagnetic properties at low and inter-
mediate frequencies.

The particular problem of the determination of the
contribution to the coercive force which results from
the interaction of domain boundaries with large non-
magnetic inclusions is treated in this paper. It consists
of an ana1ysis of the interaction of a moving boundary
with the subsidiary domain structure about such
inclusions.

One of the first attempts to evaluate the effects of

nonmagnetic inclusions on coercive force was that by
Kersten. ' He supposed that the binding energy between
a Bloch wall and a nonmagnetic inclusion is given by
the reduction in interfacial energy caused by the inter-
section of the particle by the domain boundary. It was
shown by Neel' that when a Bloch wall bisects an
inclusion, the reduction in the magnetostatic energy is
much greater than the change in Bloch wall energy and
is therefore more important in determining the binding
energy. NeeP also later showed that it is necessary to
adopt a realistic statistical model of the particle distribu-
tion to be able to compute the coercive force which arises
from small inclusions. Dijkstra and Wert, 4 using a
simplified form of Neel's statistical model, calculated the
coercive force due to inclusions with diameters up to
the thickness of a Bloch wall.

r M. Kersten, Physik Z. 44, 63 (1943).
s L. Nhel, Cahiers Phys. 25, 21 (1944).
e L. Neel, Ann. Univ. Grenoble 22, 299 (1946).
e L. J. Dijkstra and C. Wert, Phys. Rev. 79, 979 (1950).
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The existence of spike-shaped closure domains about
large inclusions was first predicted by Neel' and later
directly observed by Williams. ' Because of the presence
of the subsidiary domains about such particles, it was
recognized that a computation of the coercive force
resulting from the presence of large inclusions must
take them into account. Keel, ' Dijkstra and Wert, 4 and
Goodenough' developed similar models for coercive
force based on the existence of the spike-shaped do-
mains. They proposed that in the absence of other
mechanisms of demagnetization, the coercive force
would be equal to the critical field required for the un-
limited growth of the spike-shaped domains. The values
of coercive force calculated in this way are much higher
than those observed.

It was shown first by Williams~ and later by others' '
that the presence of the subsidiary domains around an
inclusion modifies the interaction of that inclusion with
a migrating Bloch wall. From this observation it became
clear that models for the coercive force due to large
inclusions should be based on the interaction of the
subsidiary domains with moving boundaries. Further
evidence of the existence and behavior of Neel spikes
has been obtained in ferrite materials. "

Since the observations of Williams played a central
role in the formulation of several theories relating
coercive force to large nonmagnetic inclusions, it
deserves brief mention here. He observed that when a
Bloch wall approaches an inclusion and its Neel spikes,
the spikes make contact with the wall and become
tapered tubes connecting the inclusion to the migrating
Bloch wall. As the wall moves toward the inclusion, the
tube domains become shorter and 6nally disappear
when the wall bisects the inclusion. When the wall
migrates away from the inclusion, tube domains are
re-established between the inclusions and the wall.
Finally, as the moving wall pulls further away from the
inclusion the tube domains leave the wall and snap
back to a spike-shaped configuration. This "snapping"
process which accompanies the escape of the moving wall
has been studied experimentally by Bates and Carey"
and theoretically by Brenner. " Their results indicate
that the tube domains extend approximately 40% be-
fore the wall breaks free.

Kondorsky" and Kersten" have independently
established rather similar models for the coercive force
which results from the interaction between the closure

' H. J. Williams, Phys. Rev. 71, 646 (1947).' J. B. Goodenough, Phys. Rev. 95, 917 (1954).
H. J. Williams (unpublished) cited in: C. Kittel and J. K.

Gait, Ref. 10, p. 530.
'L. F. Bates and R. Carey, Proc. Phys. Soc. (London) 75, 880

(1960).'L. F. Bates and R. Carey, Proc. Phys. Soc. (London) 76,
754 (1960).

' C. Kittel and J. K. Gait, in Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press inc. , New York, 1956),
Vol. 3, p. 538."R.Brenner, Z. Angew. Phys. 7, 391 (1955)."E.Kondorsky, Dokl. Akad. Nauk SSSR 68, 37 (1949).' M. Kersten, Z. Angew. Phys. 7, 397 (1955).

domains of an inclusion and a moving Bloch wall.
Both of these treatments suppose that the coercive
force is that field for which a Bloch wall can be pulled
away from the tube domains connecting it with the
inclusion. While there is no doubt that the tube domains
retard the motion of the receding Bloch wall, the snap-
ping process which accompanies the escape of the Bloch
wal1. may not be the most significant part of the inter-
action in determining the coercive force. The results
of the calculations reported in this paper will indicate
that the "snapping" process plays a rather insignificant
part in the determination of the binding energy of a
Bloch wall to a large inclusion. It should also be pointed
out that the calculations by both Kersten and Kon-
dorsky were not based on a statistically random distri-
bution of inclusions. Instead, they assumed a specific
ordered arrangement.

II. THEORY

From the observations reported in the previous
section it is clear that a model for the coercive force of
materials having large inclusions must include a
detailed analysis of the behavior of their associated
domain structure. In addition, a realistic treatment of
the particle distribution must be utilized.

The approach which has been adopted in these cal-
culations involves the determination of the energy pro-
file related to the position of a Bloch wall as it passes and
interacts with an inclusion and its subsidiary domain
structure. It will be shown that these energy profiles
can be characterized by parameters which, through a
statistical model, lead directly to a calculation of
coercive force.

The initial stage of all interactions is assumed to be
characterized by a planar Bloch wall which is migrating
toward an inclusion. Before the Bloch wall has reached
the extremities of the subsidiary domain structure, the
energy of the system is given by the equilibrium energy
of the unperturbed closure domain structure about the
inclusion. As the Bloch wall moves closer to the particle,
a reaction occurs such that the equilibrium closure
domain structure is altered. The energy of the system
can be determined by finding that domain configuration
for which the total magnetic energy is a minimum. By
making a computation of the minimum energy of the
system for all positions of the migrating wall, it is possi-
ble to determine the energy profile related to the wall
position. When the moving wall has passed the inclusion
and is no longer interacting with the spike-shaped
domains, the energy of the system returns to the initial
value corresponding to the equilibrium structure of the
closure domains about the inclusion.

Physical Model for the Interactions

As in most calculations dealing with domain con-
figurations, it is assumed that the magnetization of each
domain lies along an easy crystallographic direction
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and is not perturbed from that direction by the applica-
tion of an external magnetic field. Implicit in this
assumption is the supposition that the crystal anisot-
ropy energy and the exchange energy of a domain con-
figuration can be accounted for by computing the
interfacial energies of all of the Bloch walls in the
configuration.

It has been assumed that the inclusions may be
treated as cubic having edges which lie parallel and
perpendicular to (100) directions in the cubic lattice.
Since the thickness of a Bloch wall is approximately
0.1 p, it is expected that this calculation is valid only
for particles larger than one micron in diameter.

One of the important additional assumptions made
in this treatment relates to the condition of reversi-
bility which is assumed for all reactions. It was assumed
that the migrating Bloch wall moves slowly enough that
the domain con6gurations do not di8er significantly
from equilibrium con6gurations. It has also been sup-
posed that the nucleation of reverse domains, when
expected from total magnetic energy considerations,
occurs with sufficient ease that equilibrium is maintained
at all times.

Basic Equations

The factors which determine the total magnetic
energy of a given domain configuration are (1) Bloch
wall energy, (2) magnetostatic energy, and (3) mag-
netostrictive energy

The calculation of the total Bloch wall energy in
a complex configuration involves an account of the
total Bloch wall area as well as a knowledge of the
interfacial energies of the boundaries which compose
the con6guration. The following interfacial energies,
which have been determined theoretically" "and which
are in general agreement with those obtained by experi-
ment, " were used in these calculations: (1) o' lstetm)

=1.8 ergs/cm', (2) o(sotm&=0. 9 ergs/cm'; (3) trtsoto
= 1.5 ergs/cm'.

The magnetostrictive energy per unit volume for
iron is given by

where I" is the elastic modulus, equal to 2X 10"
dynes/cm' and e is the magnetostriction constant,
given by Carr" as 32)&10 '. The magnetostrictive
energy of a domain configuration is found from this
equation by computing the total volume of the domains
whose magnetization is normal to the magnetization
of their environment.

An accurate calculation of the magnetostatic energy

"L.Neel, Cahiers Phys. 25, 1 (1944)."K. H. Stewart, Ferromagnetic Domains (Cambridge Univer-
sity Press, London, 1954), p. 99."L.F. Bates and P. F. Davis, Proc. Phys. Soc. (London) 74,
170 (1959).

»W. J. Carr, Jr., Magnetic ProPerties of Metals and Alloys
(American Society for Metals, Cleveland, 1959), p. 200.

FIG. 1. Potential interactions between both 180' and 90'
Bloch walls and the spike-shaped domains about nonmagnetic
inclusions.

of a system can only be made for very simple geometric
shapes. However, an approximate method which can
be used in problems relating to domain con6gurations,
was suggested by Kittel. "It involves the supposition
that the magnetostatic energy can be treated as an
interfacial wall energy term applicable to Bloch walls
exhibiting a uniform distribution of magnetic poles.
The density of magnetic poles on a Bloch wall is given

by 4sr (Mi —M&), where Mi and M& represent the normal
components of the intensity of magnetization in the
adjacent domains. The magnetostatic component of
the interfacial energy is expressed as

o. s=2sr(Mi —Ms)'d,

where d is the thickness of the wall. The total magneto-
static energy of a domain configuration is computed with
this equation by determining the magnetic pole distribu-
tion on each of the Bloch walls in the con6guration.

Statistical Model for Coercive Force

The basis of the statistical treatment used in this
paper was 6rst described by Neep and later modi6ed
and simplified by Dijkstra and Wert. '

Consider a single domain, cubic in shape and having
a dimension J. A single Bloch wall residing within the
domain is positioned at Z= Zo. Because of the interaction
between the inclusions within the domain and the iso-
lated boundary, one may state that the total energy of a
given domain varies in an irregular manner with the posi-
tion of the moving wall. Neel suggested that the irreg-
ular energy profile can be approximated by a polygonal
contour having a 6xed number of sides. When a wall is in
an equilibrium position, the force exerted on the wall by
the application of an applied magnetic field H(Zo) is
balanced by the forces exerted on that wall by the
various inclusions and their subsidiary domain struc-
tures. Since the total force exerted on a single Bloch wall

"C. Kittel, Rev. Mod. Phys. 21, 541 (1949).
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FxG. 2. Sequence of domain con-
6gurations which arise as a result of
the interaction of a large inclusion
with a moving Bloch wall.

by the external field is given as 2H(Zs)M, L', ' the
force balance for the wall is expressed as

2H(Zo)~ L =Q'(8/BZo) Lqr(Z; —Zo) j, H, =(H '), 'i', (4)
where H corresponds to the steepest energy gradient
in each domain and the average is taken over all the
domains in a bulk sample. Following Neel, "

(H„')..=2(H'(Z, ))1 p, (5)
"L.Neel, Cshier Phys. 12, 1 (1942).

where 3f, is the saturation magnetization, Z, is the
coordinate position of the ith inclusion and y(Z; —Zs)
is the decrement in the energy of the system, which

arises from the interaction of the wall with the ith
inclusion.

Inasmuch as the energy profiles within each domain
in a real material are not identical, the coercive force
is given by

(3)
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where (Hs(Zs)) is the mean value of Hs(Zp) taken over
all values of Zs within a domain, and p is the number of
sides of the polygonal energy contour. Since a Bloch
wall interacts with inclusions which are located within
a small distance 2'8 from the wall, it follows that the
polygonal parameter, p, can be approximated as

p =2I./ "o. (6)

Following the statistical argument given by Dijkstra
and Wert, 4 Eq. (3) yields

Ly(Z —Z,)j dZ
QZp

4M, 'L~

where 5 is the distance through which the moving
domain boundary interacts with a stationary inclusion.
By letting

Lq (Z—Zp)) dZ,
~Zo

(10)

the coercive force becomes

p21.y' '~'

+her ln]

2M, 'L'u'

In order to compute the magnitude of the coercive
force it is therefore necessary to determine the parame-
ters Ayg and 5. With these parameters the coercive
force can be determined from Eq. (11) as a function of
the average domain size L, and the inclusion parameters
n and G.

III. MODELS

In all, there are seven distinct types of interactions
that involve spike-shaped domains and either 180' or
90' Bloch walls. These are illustrated in Fig. 1. Each
of these interactions has been treated separately and
characterized by values of the interaction parameters
Ayg and b.

Figure 2 illustrates the sequence of domain con6gura-
tions which arise during each of the seven interactions.

where e is the number of inclusions per unit volume.
Letting n be the volume fraction of inclusions and a
be the inclusion dimension, we have

e=o./a'.

Equations (4)—(8) give

t
2 21) "t I/2

n Lq (Z—Zp)7 dZ ln —
i

BZo ai
2M 'L'u'

The energy pro6les, from which the interaction parame-
ters are obtained, have been determined by computing
the total magnetic energy as a function of Bloch wall
position by means of the equations given in the previous
section. To a large extent, the calculations are simple
geometrical computations but which, nevertheless, are
tedious and best handled by an automatic digital com-
puter. In two instances, unique features of the inter-
actions must be treated with special consideration.

Consider the bIunt spike domain con6guration which
appears in Fig. 2. The driving force for the formation
of the blunted spike domain is the reduction in magneto-
static energy associated with free magnetic poles on the
surfaces of a pointed Neel spike. As the tubular domain
becomes more blunt, the surfaces become more nearly
parallel, and the magnetostatic energy is signihcantly
reduced. Because of the disturbance at the end of the
blunt spikes, the moving wall is no longer planar. This
particular deviation causes magnetic charges to be dis-
tributed on the moving wall as well, and gives rise to an
associated increment in the total magnetostatic energy.
It follows that the equilibrium configuration is given
by the minimum total energy, which involves a com-
promise between the magnetostatic energy of the 90'
tilt walls and the magnetostatic energy of the moving
Bloch wall.

When a moving Bloch wall erst interacts with a
spike-shaped domain at the particle-closure domain
interface, a special feature is developed. This feature
is displayed by the interaction C I, which is illustrated in
Fig. 2. As the wall moves across the inclusion, the
spike-shaped closure domain is slowly eliminated and
replaced by a newly-formed closure domain. This process
was treated quantitatively by applying the results of a
previous calculation" in slightly modi6ed form.

IV. RESULTS AND DISCUSSION

The details of the quantitative treatment will not
be given here, since the can be found elsewhere. "

Energy pro61es for each of the seven interactions for
the case of a 1-p, particle are given in Figs. 3 and 4. The
interaction parameters hqr and 5 are given in Table I.
Typical values for coercive force calculated from Eq.
(11) are given in Table II.

A direct comparison of the calculated values of
coercive force with experimental values can only be
made when the inclusion volume fraction, domain size
and inclusion size have all been simultaneously rneas-
ured. No such data are yet available. While the coercive
force data of Dijkstra and Wert4 are applicable only to
small inclusions, they represent values to which ex-

I W. D. Nix and R. A. Huggins, Phys. Rev. 121, 1038 (1961).
Errata: The value of the constant I' for a 0.5-p, inclusion should
be changed to 0.57'8X10~. Graphical representation of the func-
tions are erroneous as a result. The problem has since been solved
more concisely. (See Ref. 21.)"W. D. Mix, Ph.o. dissertation, Stanford University, 1963
(unpublished).
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-.8
Energy (ergs x 10 ) TABLE II. Compilation of values of coercive force for several

values of the inclusion size a and volume fraction o. for a domain
size L=SX10 s cm.

AI

Inclusion volume
fraction

Coercive
force Inclusion size (microns)

1.0 2.0 4.0 8.0

-4 0
I

6

Relative position of moving Bloch wall (microns)

n=1.0X10 '
=5.0X10-s;

a = 1.0X10~;
~ =5.0X10~;
0.=1.OX10 '

~ a

B.
JJ,
&c
II,

0.36 0.32
0.84 0.72
1.20 1.02
2.68 2.26
3.78 3.20

0.24 0.14
0.56 0.32
0.78 0.44
1.76 1.00
2.50 1.40

Energy (ergs x 10 )-.8

BI

«2
I

2 4 6

Energy (ergs x 10 )
-.8

Relative position of moving Bloch wall (microns)

a H& in oersteds.

pressions for large inclusions must extrapolate. For
a=3)&10 ' and @=1.0 p, the Dijkstra and Wert data
extrapolate to 0.5 Oe whereas Eq. (11) yields 0.4 Oe.
This calculated value is obtained by assuming a domain
size of 10 ' cm and by taking an average of the coercive
force values found for each of the seven possible
interactions.

Prom the energy profiles shown in Figs. 3 and 4 it is
clear that the binding energy between the moving wall

Energy (ergs x 10 )

CI

I l I

2 4 6

Relative position of moving Bloch wall (microns)

FIG. 3. Energy pro6les for the interactions involving
180' Bloch walls for a 1-p, inclusion.

AII CII

-6 w3

I I I I I I

3 6

TABLE I. Compilation of the interaction parameters 6+1 and
8 for several inclusion sizes for each of the seven distinct inter-
actions described in Fig. 1. Relative position of moving Bloch wall (microns)

Interaction
Inter- parame-
action ters' Inclusion size (microns) Energy (ergs x 106)

1.0 2.0 4.0 8.0

A I

C I

A II

C II

1.9X10
94

1.1X1P s

94
1.2X10 s

5.9
2.2X1M

12.5

3.2X1M
7.1

2.2X10
12.5

3.2X19
7.1

5.6X10 s

74.6

6.7X10 s

47.6

8 4X10 6.8X10—z

18.8 37.5
8.0X10 z

23.8
9.8X10 s

11.9
1.7X1p-s

24.9
2 5X1P—s

14.1
7X1p-s
24.9

2.5X10 s

14.1

1.3X10-s
97.6

1.5X10-z
49.8

2.2X10 2.5X10 '
28.2 56.4

1.5X10 z 1.3X10 6

49.8 97.6
2.2X10 z 2.5X10 6

28.2 56.4

1 6X10-s 1.3X10 z 1.1X10-e
18.8 37.5 74.6 -.8

4

-6 3 6

Relative position of moving Bloch wall {microns)

' d, qI in ergs~cm I; 8 in microns.
Frgs 4, Energy profiles for the interactions involving 90'

Bloch walls for a 1-p inclusion.
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and the inclusion is much greater when the wall is near
the inclusion, especially for 180' walls. It also follows
that the parameter, Aqua, which characterizes the bind-
ing energy in Eq. (11), is related more to the behavior
near the inclusion than to the processes which occur
when the wall is pulling free from the clinging tubular
domains. This result indicates that while the snapping
process should occur, it does not play as central a role
in the determination of coercive force as has been
proposed ""

Examination of the energy profiles indicates that
the tubular domains extend approximately 40% before
breaking free from the moving wall. This result is
consistent with experimental observations.

Another important feature of the interaction between
moving Bloch walls and large inclusions concerns the
transformation of the spike domain structure from one
form to another. %hen a 180' wall passes a large in-
clusion, the subsidiary domain structure is transformed
into one in which the magnetization vectors of the two
spike domains are antiparallel, regardless of the nature
of the existing domain structure before the interaction.
The interaction with 90' walls, on the other hand, causes
the domain structure to be converted into a form in
which the magnetization vectors of the two spike-
shaped domains are parallel. Some implications of this
observation can be found elsewhere. "

As can be seen from Figs. 3 and 4, the major difference
between the interaction of large inclusions with 180'
walls and 90' walls involves the absence of the deep
energy well in the case of 90' walls. Because of the
relative orientation of 90' walls with the spike-shaped
domains, it is impossible to completely eliminate both
of the closure domains at the same stage of the inter-
action. For this reason, the migrating 90' wall is less
tightly bound to the inclusion and, therefore, can more
easily escape. Because of the weak binding for the case
of 90' walls, one would expect a correspondingly small
probability that particles will have a significant in-
huence on the motion of such walls. This particular ob-
servation gives a physical explanation of the experi-
mental fact that 90' walls do not cause Barkhausen
discontinuities. "A 180' wall, on the other hand, must

22 W. D. Nix and R. A. Huggins (to be published).
'3 R. S. Tebble, Proc. Phys. Soc. (London) $68, 1017 (1955).

FrG. 5. Develop-
ment of a fold in
a Neel spike due to
the presence of a
180' Bloch wall.

negotiate a deep energy wall as it interacts with each
large inclusion and can, therefore, cause Barkhausen
discontinuities.

An aberration in the perfect spike-shaped domain
structure which is occasionally observed is shown in
Fig. 5. This work suggests a possible cause for the
formation of such a configuration. From the quantita-
tive treatment described one can show that when a
moving wall encounters the sharp end of a Neel spike,
the energy of that system is only slightly diminished
by the formation of a blunt tubular domain. It is
therefore possible that under some special circumstances,
the energy of the blunt configuration may be slightly
greater than that of the pointed shape. In such a case
the energy of the domain configuration could be reduced
by the formation of a fold in the Neel spike, as illustrated
in Fig. 5.
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