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It is noted that the Van Hove self-correlation function G, (r, t) for a dilute lluid is determined by a linear-
ized Boltzmann equation identical to that occurring in the theory of neutron diffusion. A simple model for
the collision integral, in which a molecule emerges from a collision with a Maxwellian distribution, allows
some interesting analytic results to be obtained. The double Fourier transform S, (e,ze), of G, (r, t) is expressible
in terms of the probability integral for complex arguments. Since S.(e,zo) is directly proportional to the
Mossbauer line shape, the transition of the line shape from Doppler broadening to simple diffusion broaden-
ing is explicitly exhibited as a function of momentum transfer. The spatial moments of G, (r, t) are calculated
as a function of time. The model used gives the same mean-square displacement as does the Langevin
equation. The resulting G, (r, t) is not, however, Gaussian as is shown by the mean fourth power of the dis-
placement which is 25% greater at intermediate times than would be predicted by the Langevin equation.
The non-Gaussian eifects lead to an appreciable narrowing of S.(zz, &o) for intermediate values of zz.

I. INTRODUCTION the theory of Brownian motion. This line of investiga-
tion was initiated by Vineyard and has been most ex-
tensively developed by Rahman, Singwi, and Sjolander.
Such descriptions have been useful in obtaining a
semiquantitative understanding of slow-neutron scat-
tering data, but it seems appropriate now to shift to a
more detailed molecular picture if we are to make most
effective use of the more accurate neutron scattering
data which are becoming available.

A natural first step is to consider a dilute gas in which
the atomic motions are determined by random binary
collisions, and the distribution function satisfies the
Boltzmann equation. We apply the Boltzmann equation
on the microscopic scale associated with localizing an
atom at the origin at time zero. The justification for
using the Boltzmann equation at this fine a level of
description is the demonstration by Grad' "that the
Boltzmann equation becomes more nearly valid as the
density decreases, and that it is valid for arbitrarily
large deviations from equilibrium within a mean free
path and arbitrarily rapid fluctuations compared with
the mean collision time; the limiting length is the
diameter of a molecule and the limiting time is the mean
duration of a collision. "

Since the disturbance we consider is of microscopically
small amplitude, the Boltzmann equation (BE) that we
must solve is linear. Jn addition to G, (r,t) which satisfies
a linear BE analagous to the one occurring in neutron
diffusion, there is also a linear BE satis6ed by the func-
tion G(r, t), which is defined as the probability per unit
volume of finding any atom at the position r at time t

given that an atom was at the origin at time zero. This
latter linear BE is the usual linearized BE as it occurs,
for example, in the theory of sound propagation in
gases. "In the BE giving G, (r, f) momentum and energy

~ 'HE function G, (r,t) was introduced by Van Hove'
as the double Fourier transform of the differential

energy transfer cross section, S,(x,zo) for the incoherent
scattering of slow neutrons. It plays a similar role in
determining the line shape of the Mossbauer line and of
the Doppler broadened neutron absorption resonance
line in a Quid. Jn the classical limit G, (r,t) is the
probability per unit volume for finding an atom at the
position r at time t if the same atom (or more precisely
its nucleus) is known to have been at the origin at time
zero. Recent work'4 has clarified the relation of this
classical limit to the quantum-mechanical process of
slow neutron scattering. This work has conhrmed the
validity of analyzing incoherent neutron scattering from
heavy monatomic fluids in terms of the classical G, (r, t)
We consider only this classically de6ned function and its
Fourier transform in the present paper.

A general description of G,, (r,f) in a classical Quid was
6rst given by Vineyard, ' who introduced the Gaussian
approximation

G, (r,t) = $zrw'(t)$ si' expL —r'/w'(t) j (1)

which has been employed in most subsequent work.
Non-Gaussian corrections have been considered by
Schofield' in the limit of short times, and by Rahman,
Singwi, and Sjolander in the limit of long times, but no
quantitative estimates have been given for intermediate
times where these corrections are expected to be largest.
The Gaussian approximation leads naturally to the
consideration of stochastic models for ro(t) in analogy to
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are transferred between the "test particle" and the other
molecules. Thus, an approximation to the transition
probability need not accurately satisfy the conservation
laws dictated by the kinematics of binary collisions. It
is known, '0 however, that energy and momentum conser-
vation must be exactly maintained if the linearized BE
for G(r, t) is to properly describe sound propagation. fn
the present paper we consider only G, (r,t), for which a
very simple kinetic model can be formulated. A calcula-
tion of G(r, t) using a kinetic model is necessarily more
complicated because of the role of the conservation
laws, and will be deferred to a later paper. It should be
emphasized that these kinetic models are derivative
from the Boltzmann equation, and are thus relevant
only for dilute gases and not for liquids. The models are
useful, however, in that they demonstrate, in a simple
and reasonably accurate manner, the effects of inter-
molecular collisions on the time-dependent correlation
functions.

co1lision into the element d'v' at velocity v'. The scat-
tering probability per unit time is given by

n(v) = W( v, v') d'v' (3)

f(r,v,o) = f~(v)b(r),
where

f~(v) = (m/2~k T)'" exp (—mv'/2k T)

(4)

is the equilibrium Maxwellian distribution at the gas
temperature. The function G, (r,t) is obtained by inte-
grating over velocity space:

so that the number of particles is conserved in a
collision. Since we must sample an ensemble of systems
at thermal equilibrium to determine G, (r, t) the ap-
propriate initial condition is

II. FORMULATION OF THE PROBLEM
G, (r, t) = j(r,v, t)d'v (6)

The definition of the classical G,. (r,t) corresponds to
tagging an atom at a particular time with a marker
which does not perturb the system, and then following
the subsequent motion of the tagged atom. The function
G, (r, t) describ. es this motion on the average over a large
number of systems. In a dilute gas the motion of the
tagged atom is determined entirely by free streaming
and by random binary collisions rvith the untagged
atoms of the gas. The appropriate description is thus the
i&sear BE describing the diRusion of a dilute gas of
type-2 atoms in a gas of type-8 atoms which is in
equilibrium. We can thus neglect A-A collisions as being
of negligible frequency, and 8-8 collisions play no role
since the 8 atoms are in equilibrium. The A atoms diRer
from the 8 atoms only by their distinguishability, but
are dynamically identical. In neutron scattering, this
distinguishability arises from the nuclear spin Qip or
isotopic incoherence. In the Mossbauer case, it arises
from the emission of a p ray by a particular nucleus.
The linear BEdescribing the average subsequent motion
of the tagged atom is of exactly the same form as the
governing equation in neutron transport theory. The
particular form of the collision integral is quite diRerent,
in general, but the analogy to certain primitive models
of neutron thermalization is quite close. The active
recent study of the latter problem in connection with its
applications to reactor technology can thus be exploited
in the present context.

The linear BE from which we obtain G, (r,t) is not an
equation for G, (r,t), but for the density f(r,v, t) in phase
space. The equation is

8
+v 7'+n(v) f—(r,v, t) = W(v', v) f(r, v', t)d'v', (2)

Bt

G, (r, t) d'r = 4n- G, (r, t) r'dr = 1.

In most problems in neutron scattering it is more con-
venient to deal, with the so-called intermediate scat-
tering function

X (K, t) = exp(ix. r)G, (r, t)d'r,

rather than with G, (r, t) directly. Introducing the spatial
Fourier transform of the phase-space density

f(x,v, t) = exp(ix r) f(r, tv) rd (10)

our linear BE becomes

8
+ix v+—n(v) f(r, v,t).

Bt

W (v', v)f(r.,v', t)d'v', (11)

with the initial condition

(12)

The intermediate scattering function is related to the
phase-space density through

From Eqs. (2)—(4) we see that G, (r,i) has the required
general properties that

G, (r,o) =8(r)

where W(v, v')d'v' is the transition probability per unit
time for an atom of velocity v to make a scattering

X, (K, t) = f( , Ktv)
'

d, v (13)



A6 M. NELKI N AN D A. GHATAK

and has the general properties

X,(s,0)=X, (O,t) = 1,
which follow from (7) and (8). From the isotropy of the
system X,(s,t) depends only on the magnitude of u.

Finally the quantity of direct interest in neutron
scattering experiments is

1
5 (K co) = e X (K t)dt . (15)

2%

Since X,(s,t) is determined from an initial value problem,
we must specify its behavior for negative times in order
to completely define 5,(~,&o). To do this we recall that
5,. (tr,ca) is, in general, a real function. For a classical
system, 5,(~,ca) is an even function of co, and X,(s,t) is a
real even function of time. Introducing the Laplace
transform for imaginary argument

Q(K,~o) P1+crQ(~,(o)) '= I(s,to), (22)

for any binary collision kernel, it does not violate any of
the basic constraints of the problem. One can think of it
as an absorption followed by a re-emission with an
equilibrium velocity distribution. In a sense, it corre-
sponds to assigning to a single collision the actual
properties of multiple collisions. It is thus appropriate to
say that (21) corresponds to the maximum rate of
thermalization consistent with a given collision rate u.
Since we are interested in quantities like G, (r,t) which
are integrated over all velocities, we might at first sight
expect that the results would be insensitive to the
thermalization rate. From the closely analogous "diffu-
sion cooling" phenomenon" in the decay of a ther-
malized neutron pulse, however, we know that this is not
quite the case.

If we substitute (21) into (19), divide by (n+ico
+ix v), and integrate over all velocities, we find that

and

f(x,v o&) = e '" 'f(v.,v,
—t), where I(z,ca) is defined by (18),

Q (s,ca) = f(x,v,()ad'v = e
—'"'X, (s, t) Ct, (17) I(~,ia) =v. '" e "'Irr+i(u+isvsu] 'du, — (23)

we have

5, (K,co) = (1/2lr) LQ (K,to)+Q*(K,co)j,
where f(x,v,ea) is the solution of

Lita+iu v+n( v)$f( uv, &a)

W(v', v) f(x,v', a&) d'v'+ fsr(v). (19)

and vs
——(2kT/m)'"

Introducing the variables

x= —ro/Kvs y=tr/Kvp and s=x+iy, (24)

we can write

nI(K to)=7K'"ytv(s)= v't'you(x', y)+iv(x, y)j, (25)

This completes the formal preliminaries. Ke turn now
to actual calculations using a simple model for W(v, v').

tv(s) =is —' e
—"(s—t) 'tft (26)

W(v, v') fsr(v) = W(v', v) fir(v')

is the single-relaxation-time model

(20)

W(v', v) =n fsr(v) . (21)

This model was first introduced by Bohm and Gross" in
considering the collisional damping of plasma oscilla-
tions. It is a more appropriate model for our present
test particle problem because energy and momentum
are not conserved even by the correct collision terms in
the BE. The same model has been recently used in a
mathematically similar context by Corngold et ul." in
the study of neutron thermalization.

Although the approximation (21) cannot hold exactly

"D. Sohm and E. P. Gross, Phys. Rev. 15, 1851 (1949).
'2 Noel Corngold, Paul Michael, and Warren Wollman, Nucl.

Sci. Eng. 15, 13 (1963).

III. SIMPLE KINETIC MODEL

The simplest model for W(v, v') which conserves
particIe number and satisfies the "detailed balance"
condition U(x,y) =~'"yu(x, y),

V(x,y) =7r'"yv(x, y),
(27)

and use (18) to obtain

1 U(1 —U) —V'
5, (c,co) =-

vn(1 —U). '+ V'
(28)

It is readily verified that (28) has the correct limiting
behavior for both large and small momentum transfer.
For large momentum transfer, we can neglect collisions,
and let y approach zero. This yields the familiar result

"The phenomenon was first described by G. Von Dardel and
A. Sjosstrand, Phys. Rev. 96, 1245 (1954).The theory is discussed
by M. Nelkin, Nucl. Sci. Eng. 7, 210 (1960).

'4 V. N. Faddeyeva and N. M. Terent'ev, Tables of the Proba-
bility Integral for Complex Argumerus (Pergarnon Press, Inc.,
New York, 1961).

is the probability integral for complex argument and is a
tabulated function. "

Finally, we introduce
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for an ideal gas in the classical limit

limS, (x,t0) = (Kv@c s) ' expL —ce/ x' v'$
g~ (29)

I.O

In the limit of small momentum transfer, we expect to
obtain the simple di6usion result Grst suggested by
Vineyard. To evaluate S,(x,co) in this limit of large y
we use the asymptotic expression"

0.8

to obtain
tv(s) =is 'lss(s' —-') '

y22
S,(x,c0)=-

vn 1+4(y' —1)x'+4x4

(30)

(31)

3

os
CO

O

0.6

as a good approximation for all values of x, if y is

sufficiently large. I'or x&y ', where S is appreciable,
(31) is accurately given by

OA

y2

Sg (K)ce) =
an 1+4x'y'

(32)
O.Z

D= vss/2n (33)

%e see in Sec. IV that the coefficient of self diffusion for
this model is given by

I I I I

0.2 OA 0.6 0.8
X=CO/~ Vo

I

I.O
I

l.2
I

I.4

so that (32) can be expressed in the more familiar f

1 DIt;2

Sg (K)ce) =
v ce'+ (Dx')'

orm Fns 1. The deviations from the ideal-gas line shape as the
collision rate is increased are exhibited by plotting KVOS (K cd) as a
function of (cd/Kvp) for values of y= (n/zvo) ranging from 0 to 1.

(34) The curve for y=0 is the ideal-gas result of Eq. (29).

Consider S,(x,c0) as the line shape for a Mossbauer
line. In this case a is fixed by the p-ray energy and the
mass of the nucleus, and A~ is the energy shift of the
emitted or absorbed p ray. In the limit that a is large we
have the familiar Doppler line shape (29). In the
opposite limit we have the equally familiar limit of
diGusion broadening. The basic result of the present
paper is the expression (28) which allows one to calcu-
late the line shape analytically in the intermediate
region. This is possible only because we have used the
grossly simplifted expression (21) for the collision
integral in the BE.

The characteristic narrowing of the line shape due to
collisions is best seen by plotting

In Fig. 2 we plot F(i,y) and obtain the characteristic
result that the line shape is narrower than the simple
diffusion line shape, but approaches it for large y. The
result for y= S is almost identical to the limiting result
(38).The dashed curves give the results in the Gaussian
approximation, and are discussed in Sec. IV.

IV. SPATIAL MOMENTS AND THE GAUSSIAN
APPROXIMATION

The kinetic model (21) does not allow an analytic
calculation of &,(x,t) or G, (r,t) as it does for S.(x,te), but
it does allow the analytic calculation of the spatial
moments of G, (r, t) as a, function of time. To do this
calculation we go back to (11),and make the expansion

R(x,y) =ny-'S, (x,co) (35)
f(x,v, t) = P P f„t(v,t)(ix) "F)(g),

as a function of x for fixed y. This function is normalized
to unit area when integrated over all x. We plot this
result in Fig. I for various values of y ranging from zero
to one. The approach to the simple diftusion line sha e
for small a is best displayed by plotting

n=o l=o

where

p= (v sc/xv). (40)

F(i,y) =ny 'S, (x,re)-
as a function of

p
Substituting (39) into (11), and using (21) and the

spherical harmonics addition theorem, we obtain the set
of equations,

f' =xy = to/2Dxs

for Axed y. In the limit of large y we have

2 1
limF(i, y) =-

a. 1+4' s

(37) t) I+1 l
~+—f i ~ f i~i+ f i)-Bt 21+3 21 1—

+fM(v) f td'volte, (41),
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l.o The coe%cient of self diffusion D is de6ned by

D—= -', lim(r'(t))/t (47)

0.8

0.6
3

(0
N

a
Cd

0.4

and thus has the value (sos/2u) for our approximate
collision integral. The expression (45) gives the same
mean-square displacement as is given by a simple
I.angevin equation" with damping constant a. For the
Langevin equation, however, G, (r, t) is a Gaussian of the
form of Eq. (1) so that

(r4(t))/(r'(t))'= 5/3

for all times. Examination of Eqs. (45) and (46) shows
that (48) holds for our model in the limit of short and
long times, but not at intermediate times. In Fig. 3 we
plot the ratio

0.2
(48)

0
0

I I I I

0.2 OA 0.6 0.8
ts1/2DK~

I

I.O
I

l.2
I

l.4

FIG. 2.The deviations from the simple di6'usion line shape as the
collision rate is decreased are exhibited by plotting 2Ds S,(~,ur) as
a function of (au/2Ds') for values of y ranging from 1 to 5. The
curve for y= 5 is almost identical to the simple diffusion result of
Eq. (34) which would apply in the limit as y approaches infinity.
The dashed curves refer to the Gaussian approximation of
Eq. (49).

as a function of v =at. We see that it reaches a maximum
of 1.22 at r=4.

To compare our analytic calculations of S,(tt,~o) with
the Gaussian approximation, we can use a result of
Singwi and Sjolander" for the Fourier transform of
exp) —K'G& 0(t)j with G& 0(t) given by (45). Their result
is given as an infinite series which is rapidly convergent
for large values of y and is thus most directly comparable
with Eq. (36). The result is

where f t= 0 for n(0. The—initial conditions are I'G(g, y)=ay '7r ' cosoot expt —«'Gs, 0(t)ddt

fnt(ttp0) fM(s)5n05lo, , (42)

where
(rs" (t))= (2n+1)!G,„(t), (43)

Gs„(t)—=4w fs„,o(v, t)e'ds. (44)

The set of equations (41) is a straightforward gener-
alization of the time-dependent case of the "moments
form" of the BE as used in neutron transport theory. "
The further generalization to an arbitrary W(v', v) is
also straightforward, but will not be used here. With the
initial conditions (42) the functions f„t(v,t) are identi-
cally zero unless n+l is even and n&l

The quantities of greatest physical interest are the
spatial moments of G, (r,t)

= -(,',.):. .'
2y' (1+2ny')'+41'

For y=5 this is practically identical to the simple
diffusion result (38) which is the first term in the series
The results for y= 1 and y= 2 are plotted as the dashed
lines in Fig. 2. It is seen that the Gaussian approxima-
tion gives an appreciably broader line than does the
exact solution for this model.

From Eqs. (45) and (46) it follows that the short time
behavior of the ratio (48) is given by

We can integrate the set of equations (41) in an ap-
propriate order, beginning with ftr(v, t) to obtain

2
1+ ctt+—

15
(50)

and
Gs, o(t) = (&0'/2tx')Lr —(1—& ')j This disagrees with a general result of Schoield' who

G4 0(t) = (v04/4n )pr + (r +3r+3)e ' 35, (46)—
where 7.=nt.
"A. Weinberg and E.P. Wigner, The Physicat Theory of Neutron

Chsim Ratiorts (The University of Chicago Press, Chicago, 1958),
pp. 365-367.

'6 To be more precise we refer to the Langevin equation for a
free particle with an initially Maxwellian distribution of velocities.
The displacement distribution for this case was shown to be
Gaussian by J.L. Doob, Ann. Math. 43, 351 (1942) Lreprinted in
Poise arid Stochastic Processes, edited by Nelson Wax (Dover
Publications, Inc. , New York, 1954)J.

'7 K, S. Singwi and A. Sjoiander, Phys. Rev. 119, 863 (1960).
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proved that departures from the Gaussian approxima-
tion for a classical system are of order t at short times.
This disagreement comes from our use of a BE rather
than from the approximation (21), and reflects the error
in replacing the dynamics of the system by random
collisions at short times. (Only in the fictitious limiting
case of a rigid-sphere Quid would we expect the result
from the BE to be preferable to Schofield's result which
was derived from general dynamical arguments. ) We
thus cannot expect our present results to give correctly
the Placzek moments, "

l.2$

A/ tran

UO

co 58 (K,to) dco, (51)

I

lo
g a~f

20

which depend on the analytic behavior of G, (r,t) at
short times. The entire basis of the BE as an approxi-
mate description rests on the unimportance of times
short compared to the duration of a collision. It is
precisely this short time scale, however, which de-
termines the moments (51).

V. DISCUSSION

The calculation of the present paper is applicable to
G, (r, t) in monatomic gases. The parameter n can be
chosen to yield the observed diffusion coefficient. Under
some circumstances S, (n, to) is directly observable in a
gas as the line shape for optical emission where the
Doppler broadening is reduced by collisions with a
buffer gas."To the authors' knowledge there is no ex-
perimental data on the incomplete collisional narrowing
that would occur if the number of collisions during the
relevant time scale is not large. The present model
would apply directly in such circumstances.

The available data for G,.(r, t) come from neutron
inelastic scattering" and the Mossbauer line shape" in
liquids. The analysis of these data shows that a quasi-
crystalline model is more appropriate than a gas model
of the type used here. One feature of the present analysis
which is, however, qualitatively in agreement with these
experiments is the departure from the Gaussian ap-
proximation. From the result plotted in Fig. 3 it follows
that X, (~,t) decays less rapidly with increasing n' than
does expL —z'Gs, o(t)7, and that this effect is most pro-
nounced at intermediate times. These features are

'e G. Placzek, Phys. Rev. 86, 377 (1952)."R. H. Dicke, Phys. Rev. 89, 472 (1953); J. P Wittke and.
R. H. Dicke, ibid. 103, 620 (1956).

'o See Proceedings of the 196Z Chalk Reser Conference (Inter-
national Atomic Energy Agency, Vienna, 1963), Vol. 1."P.P. Craig and N Sutin, Phy. s Rev. Letters. 11, 460 (1963).

FIG. 3. The non-Gaussian behavior of the present model is
illustrated by plotting 3(r'(t))/5(r'(t))' as a function of ot. If
G.(r, t) were Gaussian, this ratio would be one at all times

present in the analysis of Pope et al. ,
"but a quantitative

comparison is not appropriate.
One can proceed in either of two directions from the

present work. One approach is to study the dilute gas
with collisions as a model system, and to thoroughly
understand the behavior of G, (r, t) and G(r, t) by ac-
curately solving the BE for physically reasonable
interatomic force laws. The present work and its existing
extension" to G(r, t) can then be considered as illus-
trative of the kind of results that can be. obtained. Work
in this direction is certainly feasible, and is desirable to
put our understanding of time dependent correlations in
Quids on a sounder theoretical basis. It is not likely to
lead, however, to any direct comparison between theory
and experiment. A more exciting possibility, but one
which is both ambiguous and dificult, is to derive or
postulate kinetic equations applicable to dense fluids.
Such an approach puts the physical problem on the
intuitively accessible level of a kinetic equation, and
separates the complex but relatively straightforward
problem of solving the resulting kinetic equation.
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