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was 20 dB smaller than predicted by the theory. This is
probably attributable to the nonuniformities in the
electron density and dc magnetic-Geld strength in the
plasma which reduce the resonance amplitude. The
effects of these nonuniformities on the narrow plasma
resonance peaks are naturally more pronounced than
on the broad geometrical resonances. Second, an
additional resonance, not predicted by the theory, was
discovered in the combination frequency power as a
function of the dc magnetic-field strentgh. This reson-
ance occurs near values of the dc magnetic 6eld for
which the electron cyclotron resonance frequency is

equal to the arithmetic mean of the frequencies of the
incident waves. Unlike the other resonance peaks, the
magnetic-field value for which this resonance occurs is
independent of the electron density. The origin of this
resonance is not understood at this time.
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The relativistic equation of motion is examined for a charged particle in a constant magnetic Geld and a
transverse electromagnetic wave propagating along the Geld. A general dicussion is given of the effects at
cyclotron resonance of the magnetic Geld of the wave and the relativistic mass increase with energy. An exact
solution to the equation of motion is found for the case of a circularly polarized wave. The solution shows

that when the index of refraction of the medium in which the wave propagates is not unity, the energy of the
particle is a periodic function of time, the exact relationship being expressible in terms of elliptic integrals.
When the index of refraction is unity, the effect of the magnetic Geld of the wave just compensates for the
change in mass with energy, and the energy of the particle increases indeGnitely at resonance. Several possible
applications of this solution to classical cyclotron resonance phenomena are pointed out. As a numerical ex-

ample, the case of an electron in a constant magnetic Geld of 1000 G initially at resonance with microwaves
whose E Geld is 0.1 esu is considered.

I. INTRODUCTION

'HE interaction between a charged particle and an
electromagnetic wave in the presence of a

constant magnetic Geld underlies several phenomena
currently under investigation concerning the Van Allen

particles, ' plasma in the earth's magnetosphere, ' and
the diagnostics, heating, and confinement of plasma
in the laboratory. ' This interaction exhibits resonance
effects when the wave frequency is at or near the
particle's cyclotron frequency. In this paper we study
the nature of the interaction when neither the magnetic
field of the wave nor the relativistic mass change of the

r E. N. Parker, J. Geophys. Res. 66, 2673 (1961);A. J. Dragt,
J. Geophys. Res. 66, N41 (1961); D. G. Wentzel, J. Geophys.
Res. 66, 359 and 363 (1961).' R. A. Helliwell, J. Geophys. Res. 68, 5387 (1963).

'S. J. Buchsbaum, E. I. Gordon, and S. C. Brown, J. Nucl.
Energy C2, 164 {1961);M. C. Baker, et al. , Nucl. Fusion, 1962
Suppl. , Part I, 345 (1962); H. A. H. Boot and R. B. R-Sherby-
Harvie, Nature 180, 1187 (1957); R. Z. Sagdeev, Plasma Physics
and Controlled Thermonlclear Reactions, edited by M. A. Leonto-
vitch (Pergamon Press, Inc. , New York, 1957), Vol. 3, pp.
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particle with energy are neglected, and we place special
emphasis on the resonance effects.

The equation of motion of a particle of rest mass
res„and charge e in a constant magnetic field Bs is

Ii= eLE+ (v/c) XB+(v/c) XBoj.

Here E and B are the electric and magnetic fields of the
electromagnetic wave, y the particle's momentum, v

its velocity, and c the speed of light in vacuo. Gaussian
units are used, and the dot signifies differentiation with

respect to time. The electromagnetic wave is charac-
terized by an angular frequency ao and a propagation
vector k, and in this paper we consider only the case
where Bs and k are parallel and k and E are perpen-
dicular, i.e., a purely transverse wave which propagates
parallel to the constant field Bs. For convenience, we

take the direction of Bs and k to be the z direction. If
the medium through which the wave propagates has an
index of refraction e, then

rs= kc/a =8/E'.
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Bp

FIG. 1. An electron in a circularly polarized electromagnetic
wave and a constant magnetic 6eld.

We shall denote the total energy of the particle, rest
plus kinetic, by BC and the particle cyclotron frequency
by

0= eBo/mc= —eBs(1 n—'/c') "/—m„c (1.3a)

eBoc/X. — (1.3b)

In dealing with Eq. (1.1) it is common practice to
neglect the term involving the magnetic field of the
wave and to treat the particle's mass as a constant so
that p=m„v. ' Thus "linearized, " Eq. (1.1) becomes
mathematically trivial, and its solution has the follow-

ing two properties: (1) The particle's velocity in the s
direction is a constant; (2) at cyclotron resonance, i.e.,
when ~—ki —Q=O, the energy of the particle increases
indefinitely according to the formula

X=Xs+enisEt cos8s+ e'E'P/2m„.

We have defined the component of the particle's
velocity perpendicular to the s direction to be v&, and 8
denotes the angle between the E of the wave and vi.
The subscript 0 appended to any variable refers to the
initial value of that variable at 1=0.

This solution to the linearized version of Eq. (1.1)
fails to illuminate several important features of the true
interaction in the neighborhood of cyclotron resonance.
This fact has been realized by several investigators, and
some approximate treatments of Eq. (1.1) including

See, for example, T. H. Stix, The Theory of P/asma Waves
(McGraw-Hill Book Company, Inc. , New York, 1962), p. 9; or,
W. P. Allis, S. J. Buchsbaum, and A. Bers, Waves in Aniso$ropic
Piasssas (MIT Press, Cambridge, Massachusetts, 1963), p. 19.

nonlinear effects have been given. ' In this paper we
present an exact solution to Eq. (1.1) for the case of a
circularly polarized wave. This solution reveals the
following properties of the true interaction: (1) The
energy of the particle obeys a differential equation of
the form (dX/dh)'+V(K)=0, where V(K) is some
function of 3C. Since this is the same differential equation
as that describing one-dimensional motion of a particle
in the potential field V(X), a qualitative picture of the
dependence of energy upon time can be obtained by
plotting the function V(K) and imagining a particle
moving on the resulting contour. (2) If the particle is
initially not at resonance, i.e., (oi —kzp —Qp)&0, or if
the particle is initially at resonance with the index of
refraction eA1, then V(K) has a shape similar to those
shown in Figs. 3 to 6, and the energy and the particle's
momentum in the s direction are periodic functions of
time. (3) If the particle is initially at resonance and
if e= 1, the particle's energy and momentum in the s
direction both increase indefinitely. In this case V(K)
has a shape similar to that shown in Fig. 2, there being
only one finite zero. Of course, Eq. (1.1) does not
include the effect of radiation damping and we would
expect this effect, if included, to finally limit the energy
of the particle.

Before going on to the mathematical derivation of
the above-stated results, we will present a physical
picture of the effects causing them. As an example we
shall consider the case of the electron depicted in Fig. 1.
At time t=0, the fields are as shown and the electron is
directly above point 2 with its velocity antiparallel
to the K of the wave so that initially it is gaining energy.
If at this instant co =Qo so that we start from exact
resonance, subsequent motion of the particle may
destroy this resonance condition in two ways. First,
as the electron gains energy, it becomes more massive,
and, consequently, its cyclotron frequency decreases.
Second, the magnetic field of the wave accelerates the
particle in the direction of Bp and Ir, and as the electron
acquires some velocity in this direction it will see the
wave at a Doppler-shifted frequency which is lower
than or. The relative importance of these two effects
depends on the ratio B/E=ss, the index of refraction
characterizing the propagation. If e)1, the wave is
more 8 than E, and the magnetically produced Doppler
shift is the prime resonance destroyer. If m&1, the
wave is more E than 8, and the gain in mass is pre-
dominant. In either case the angle 0 between E and v,
which initially was x, changes with time until it
finally becomes acute. When this happens, both effects
reverse; the electron now loses energy and the magnetic
force has a component antiparallel to Bo and k. This
situation is maintained until 0 once again becomes

5 See, for example, T. H. Stix, The Theory of Plasma Waves
(McGraw-Hill Book Company, Inc. , New York, 1962), p. 162;
J. W. Dungey, J. Fluid Mech. 1S, 74 (1963); S. Rand, Phys.
Fluids 5, 1237 (1962); T. Consoli and G. Mourier, Phys. Letters
7, 247 (1963).
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obtuse, and the electron reverts to gaining energy. This
alternate acceleration and deceleration of the electron
by the K of the wave accounts for the periodicity of
the dependence of energy on time described in the
preceding paragraph.

When e= 1,however, so that 8=E, a most interesting
phenomenon occurs. In this case, the magnetic and mass
effects just cancel one another, and ~—ki —0=0
throughout the electron's motion. What happens is
that as the electron gains energy and the cyclotron
frequency consequently decreases, the magnetic field
of the wave produces just the right velocity along Sp
and k to Doppler-shift the wave frequency to the value
necessary to maintain resonance. The e6ect is equiv-
alent to a synchrotron which maintains its synchronism
automatically. For this reason, we shall refer to the case
where n = 1 and the particle is initially at resonance as
the synchronous case. That such an effect can exist
was first realized by Davydovskii. '

In the succeeding sections the preceding highly
descriptive discussion will be formalized. In Sec. II we
reduce Eq. (1.1) to an ordinary differential equation
for the energy of the particle as a function of time. In
Sec. III, several solutions of this equation at resonance
are presented for various conditions. In Sec. IV, a
numerical example is presented.

de/dt = (pp/k) j, . (2.3)

Equation (2.3) expresses the fact that an electromag-
netic wave cannot change the energy of a particle
without also changing its momentum, a relationship
easily understood if one adopts a photon picture of the
interaction. Equation (2.3) may be immediately
integrated to give

II. SOLUTION OF THE EQUATION OF MOTION

We start with the expression for the rate of change
of energy of a charged particle in an electromagnetic
field,

(2.1)

For a plane electromagnetic wave, Maxwell's equations
require that

kXE= (rp/c)8. (2.2)

If we use Eq. (2.2) to eliminate 8 from Eq. (1.1)
and then compare the z component of the resulting
equation with Eq. (2.1), we arrive at the relationship

where
(cp—ks —Q) =diQ+dsM,

d2= 1—Ã

(2 9)

(2.10)

Equation (2.7) relates the effect of the magnetic
field of the wave to the change in cyclotron frequency
produced by the change in mass with energy. For initial
cyclotron resonance, i.e., when ~—kip —Op=0,

di ——(ass —1)rp/Qp ———dip/Qp. (2.11)

We may now verify the statements made in Sec. I con-
cerning the case when e= 1, the so-called synchronous
case. From Eqs. (2.10) and (2.11),d&=ds ——0 when n= 1,
and therefore, by Eq. (2.9), rp —ks —Q=0 for all time.
Thus, if a particle is initially started at resonance, it will
remain at resonance ind, efinitely when e= 1. In Sec. III
we d.erive the rate of energy increase for this case.

The results derived so far are valid for any electro-
magnetic wave satisfying Eq. (2.2). We now confine our
attention to the case of a circularly polarized wave. In
this case the fields are given by

B,=B cos(est —ks), E.=E sin(rot —ks),
B„=Bsin(&pt —ks), E„= Ecos(est —ks), (2.12—)
8,=8p, K,=O,

appropriate Lorentz transformation that an observer
in the frame in which the particle has zero velocity in
the z direction will observe the wave frequency equal
to the particle cyclotron frequency. To compute the
effect of the wave magnetic field on resonance we
compute the quantity

d(pi ks)—/dt = (kc/eB p) d(Qp, )/dt . (2.5)

Using Eq. (2.3) and the fact that Q(dX/dt)= —KQ,
which follows directly from Eq. (1.3b), Eq. (2.5) may
be expressed.

d(rd ks)/d—t= (kc/eBp) (p, kX/—oi)Q. (2.6)

Equations (1.2) and (2.4) may now be used to obtain
the desired equation

d( cp ks)/—dt= (di+1)Q, (2 7)

where d& is a constant determined by the initial
conditions

(ts'rp —ksp —Qp)/Qp . (2 g)

Equation (2.7) may be integrated to yield

K(t) =Kp+ (rp/k) (p.(t) —p,.p) . (2.4) and the three components of Eq. (1.1) may be written
out as

We now note that the correct condition for resonance
when the particle has a component of its velocity in the
z direction is

co—kz —0=0.

p,+Qp„= (eE/pp) (pp —ks) sin(rpt —ks),

p„Qp.= —(eE/oi) (&p
—ks) co—s(Mt —ks),

(2.13a)

(2.13b)

If this condition is satisfied, one finds by making an

V. Ya. Davydovskii, Zh. Eksperim i Teor. Fiz. 43, 886 (1962)
LEnglish trsnsl. Soviet Phys. —JETP 16, 629 (1963)g.

p, = —Q (B/Bp) Lp. sin(ppt —ks)
—p„cos(cot —ks)). (2.13c)

We show in the Appendix that Eqs. (2.13) are equiv-
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alent to an ordinary diRerential equation for the
cyclotron, frequency Q(t) or for the energy X(t). The
equation for X(t) is

and the differential Eq. (2.14), subject to the boundary
condition 3C=X0 at t=0, is soluble with elementary
integrals to give

where
(dX/dt)'+ V(X)=0, (2.14)

where
6rppppt=we 3(r—4s —2rp)w+2r4(r4p —3rp), (3.2a)

V(X) =-:(-/X')(dp (X-Xo) +4rrd, Xo(X-Xo)
+4(rro+dprp) Xp'(X —Xp)'
+8(rrrp —rp)Xo'(X —Xo) 4r—4'Xo'}; (2.15)

r r (d—r—Qp+ d,tp)/(u, (2.16a)

rp= —(Qp/Cp)LEPrpQp srn8p/eBp +E Qp/Bp cog,
= (Qp/tp)[(urp/c) (E/Bp) sin8p

—E'Qp/Bop(of (2.16b)

(2.16c)re =Qo E /6) Bo

r4 eor pE cos8p/——Xpco

= —(Qp/pp) (r rp/c) (E/Bo) cos8p. (2.16d)

III. BEHAVIOR FOR INITIAL CYCLOTRON
RESONANCE

In the remainder of the paper we consider only the
solution of Eq. (2.14) when the particle is at resonance
at t=0, i.e., ps kent Qp —0 I—n th——is c.ase Eqs. (2.11)
and (2.16a) show that rr ——0. It is convenient to treat
the synchronous (tt=1) and the oscillatory cases (rtA1)
separately.

A. Synchronous Case

For st = 1, Eqs. (2.10) and (2.11) show that dr ——d& ——0.
In this case Eq. (2.15) becomes

V...(X)= tp'Xo'(2r p (X—p/X)

+( '—2 )(X/X)'} (3 1)
7 P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals

for Engineers and Physecists (Springer-verlag, Berlin, 1954).

As described in Sec. I, Eq. (2.14) is just the differential
equation which describes motion in the one-dimensional
potential well given by V(x). Since V(X) is a sum of
powers of X, Eq. (2.14) admits a general solution in
terms of elliptic integrals. ' Several features of the
motion, however, can be deduced without recourse to
this rather formidable solution. We first note that
V(X)(0 when X=Xp and that V(X))0 as X~ & ~,
except when r~=d2=0 which corresponds to the special
synchronous case. Thus, except in the synchronous
case, V(X) must have at least two real zeros, and since
(dX/dt)' in Eq. (2.14) must be positive, X must
oscillate in the "potential well" between two of the
zeros of V(X). The maximum and minimum value
acquired by 3'. can therefore be found simply by finding
the roots of a fourth-degree polynomial. Finally, we
note that since the coeS.cients in this polynomial depend
on 00 only through sinoo and cos'00, the limits of the
energy oscillation for initial angles 00 and x—80 are
identical.

w= L2rp(X/Xp)+r4' —2rpj"'. (3.2b)

X=XoL1+(9r /2)"'ceti'ts

is valid for all time.

(3.3b)

B. Oscillatory Case

When e/1, d2/0, it is more convenient to rewrite
Eq. (2.14) in terms of a dimensionless variable

u= (X—Xp)/Xp.

Equation (2.14) now becomes

(du/dt)'+ V„,(u) =0,
where

(3.4)

(3.5)

V-.(u) = e L~'/(1+u)'3
X (dp'u'+4dprpu' —Srpu —4r4'} . (3.6)

Equation (3.5) must be solved subject to the boundary.
condition I=0 at 1=0. It is possible to write down a
general solution to Eqs. (3.5) and (3.6) which expresses
t as a function of I in terms of elliptic integrals of the
first and third kind. ~ This general solution is quite
involved and, more importantly, it is impossible to
invert the expression and obtain I as a function of t
in terms of known functions. From a computational
point of view, it is generally simpler to forget about
elliptic integrals and use a standard numerical inte-
gration procedure to solve the differential Eq. (3.5).

There is an important set of conditions, however,
when solution in terms of elliptic functions is quite
profitable. First consider the limits between which u
oscillates; these can be found by finding the zeros of
the function V(u) given in Eq. (3.6), that is, finding
the roots of the fourth-degree polynomial

P(u) =-',u'+ (rp/dp)u' —2 (rp/dp')u —(r4'/dP) (3.7).

Equation (3.2) expresses time as a function of energy;
in order to invert it and express energy as a function of
time, a cubic equation must be solved. While it is
possible to do this in closed form, the resulting expres-
sion is quite involved and will not be given here. The
asymptotic form of the solution as t —+ ~ is quite
simple, however, and can be obtained directly from
Eq. (3.1).

X(t)-Xp(krp) '"(~t)'to
$~00

=«(9/2)'ts(Qo/~)L(EIBp)~G'" (3 3a)

The validity of Eq. (3.3a) is limited to large times such
that (~t)) (2/9r, )'t'L(r4'/2rp) —1)st'. For special initial
conditions, such that r4' —2rp ——0, i.e., (prp/c) cos8p
=2Q/rp, the last term in Eq. (3.1) is zero and the
relation
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Since N=O at 3=0, n must oscillate between the two
roots of Eq. (3.7) which Rank the point u=0; we call
the larger of these roots n, the smaller P, so that P&u&n.
If now [n[(&1 and [P[((1, as will be the case if the
index of refraction e is not in the neighborhood of unity,
and if the electromagnetic wave is not too strong, then
to good approximation Eq. (3.6) may be replaced by

The constant to is again chosen so that I=0 at 3 =0, and

snMt = [p(n —y)/y(n —p) j'". (3.19)

Since the period of sn'x is 2', IC being the complete
elliptic integral of the 6rst kind whose modulus is
given by Eq. (3.18), the period of the energy oscillation
in this case is

V„,(u) =dpoco'I'(u).

Equation (3.5) may then be written

(doe&) dt =du/[ —I'(u) j't'

(3 8)

(3.9a)

T=2K/M= 8K[[do~ [ (n —&)'"(P—b)"'j—'. (3.20)

For the other possible ordering of the roots, b&y&o.
)0)P, equations analogous to (3.16)—(3.20) can be
written. lo

y=m+iii, b=m —in (3.10)

= 2du/[(n —u) (u —p) (u —7) (u —b) y' (3.9b)

where y and b are the other two roots of I'(u) =0. The
solution to Eq. (3.9) depends upon whether y and b

are both real or are complex conjugates.
Case of two real roots If y a. nd b are complex, then'

Low Initial Energy-A pproximation

Khen the wave is sufficiently weak and the initial
kinetic energy of the particle is low enough to make
(v,p/c) small, there is a useful approximation to the
exact solution of Eqs. (3.5) and (3.6).

More precisely, under the conditions

and

where

(PR+nS)+ (PR nS)—cni) (t—tp)
u(t) = (3.11)

(R+S)+(R—S) cnrt (t—to)

[E/8, [(&1,

[ (1—n')E'/Il '['tp(&1

(vlo/c)«2 [Qo/co [ [E/(1 n')&0 ['—t',

(3.21a)

(3.21b)

(3.21c)
R'= (n —m)'+no S'= (P—m)'+n' (3.12a)

it = —,'dp(a (RS)'". (3.12b)

The function cn(x) is a Jacobi elliptic function'; the
modulus of the elliptic function is given by

~' = [(n—P)'—(R S)']/4RS . —(3.13)

The constant to is chosen so that at t=0, I=0, i.e.,

cnitto ——(nS+PR)/(nS PR) . —(3.14)

T= 4K/rt= SK[[d co
[
(RS)"'j '. (3.15)

Case offour real roots If y and b .are real, the solution
has a different form depending upon whether n and P
are larger or smaller than y and b. When the roots are
ordered so that n) 0&P)y& b the solution is given by"

Pn q —qn——P snoMt —t,)
u(t) = ( ) ( ) (

(3.16)
(n y) (n —p) s—n'M—(t—to)

where
M = ,'d pop(n y)"(-P b)'t—', —(3.17)

and the modulus of the Jacobi elliptic sine function is

(3.18)"=( —P)(y —~)/( —~)(P—b).
8 Reference 7, Eq. (259.00), p. 133.' Reference 7, p. 18.
'P Reference 7, Eq. (256.00), p. 120 and Eq. (252.00), p. 103.

The period T for the energy oscillation may now be
found from the knowledge that the period of cnx is
4E, E being the complete elliptic integral of the 6rst
kind whose modulus is given by Eq. (3.13).

P= ——',( /fto) ("./ )', (3.22b)

', n( 1-+iV—3), b= ', n( 1-iv—3). (3.22c)

Now if ri is not very close to unity and if (Qp/~) is not
excessively large, then [P[«[n[«1, and we can there-
fore use the approximate solution (3.11).While it may
seem that there are a prohibitively large number of
conditions stated above, they can all be satis6ed with
quite reasonable values for the parameters. Kith the
roots of Eq. (3.22), the modulus for the elliptic functions
as given by Eq. (3.13) is ~'= (2—K3)/4=0.0670. The
corresponding complete elliptic integral of the first
kind is K=1.598 so that the period as given by Eq.
(3.15) is simply

T= SK/[ (3)'t'ndpco
[

=4.86[[n,[[1—n ['I (E/a, )'t j-'. (3.23)

High Initial Energy A pproxim-ation

Under the conditions

[E/so[«1, (3.24a)

eo not near&ir/2, (3.24b)

(v o/c)))2[flo/~[ [E/(1—n')&o["', (3 24c)

the four zeros of Eq. (3.6) are given to good approxi-
mation by

&[2 (Qp/co) (v&p/c) (E/8 p) (sint) p+ 1)/(n' —1)1't'. (3.25)

the zeros of Eq. (3.6) are given to good approximation
by

n = 2 (Qp/oo) [E/(1—n') Bo]'t', (3.22a)
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FIG. 2. Synchronous case for electron. cd =Qp=2vX2. 80 Gc/sec,
n=i.0, Bp ——1000 G, 8=0.1 esu. The solid curve is the exact
solution given by Eq. (3.2); the dashed curve represents Eq. (1.4),
the solution in the linear approximation.
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FIG. 4. Oscillatory case for electron. a) =Qp =2x')& 2.74 Gc/sec,
n=V2, Bp ——1000 G, 8=0.1 esu.

Two of the above roots are real and two are pure
imaginary, and since by conditions (3.24) the magnitude
of the real roots is much less than unity, we can use the
approximate solution of Eq. (3.11). From Eq. (3.12a)
we find

8=S= 2L(Qp/oi) (rtip/c) (E/Bp)/ I

n' 1
I

@Is, (3.26)—

and the modulus for the elliptic functions is given by

s'= -', (1&sinep), (3.27)
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FIG. 3. Oscillatory case for electron. Low-energy approximation.
~=Op ——2s X2.80 Gc/sec, e=V2, Bp=1000 G, E=0.1 esu. The
solid curve is the exact solution given by Kq. (3.5); the dashed
curve represents Eq. (1.4), the solution in the linear approxi-
mation.

where the choice of sign in Eq. (3.27) corresponds to
that choice in Eq. (3.25) which gives the pair of real
roots. In this case, the period for the energy oscillation
is given by

(3.28a)

= 4KLppQp(sip/c) (E/Bp)
I

ts' 1
I j—'~'. —(3.2gb)

IV. EXAMPLE

In order to illustrate more concretely the motion
described by the preceding equations we have com-
puted the results for an electron moving in a constant
magnetic field of 1000 6 illuminated with microwaves.
We take the 8 field of the microwaves to be O. i esu.
We take the velocity of the electron in the s direction
to be zero at t=0, and the microwave frequency to
equal the initial electron cyclotron frequency so that
the electron starts from exact resonance. We have
computed the energy as a function of time by numeri-
cally integrating the differential Eq. (3.5) for several
initial k,inetic energies and angles 80. With each graph of
energy versus time we show the corresponding pseudo-
potential energy function V„,(N)/cp'dps defined. in Eq.
(3.6).

When m=1, we have the synchronous case and the
results are shown in Fig. 2 for an initial electron energy
less than 10 eV. For this low an initial energy, the results
are nearly independent of the initial angle 00. In the
synchronous case the shape of the pseudopotential is
always qualitatively similar to that shown in Fig. 2;
the curve always passes through the point (0,0), goes
through a minim, um, and then approaches zero asymp-
totically as I~ ~, Also shown in Fig. 2 as a dashed
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curve is Eq. (1.4), the energy as a function of time as
obtained from the linearized equation of motion. It
can be seen that the linearized equation ceases to be
adequate for times greater than about 0.5 @sec, in the
example chosen.

To study an oscillatory case we take n =V2. The
time variation of the energy for an initial kinetic
energy less than about 10 eV is shown in Fig. 3. In
this case the electron's energy periodically increases to
2.2 keV every 0.13 psec. This oscillatory behavior should
be contrasted with the dashed curve, which again gives
the results of the linear theory, Eq. (1.4). For such a low
initial energy the approximate formulas, Eqs. (3.22)
and (3.13) apply and yield results nearly identical with
those shown in Fig. 3.

When the initial kinetic energy is 10 keV, the initial
angle 80 between E and v&0 is important, and the results
are shown for Hp

——0(7r), —,'m-, and —s~ in Figs. 4, 5, and
6. Note that when 00= &-', m the electron only gains
energy from the wave since e never goes negative. The
conditions of Figs. 4—6 are such that neither the low nor
the high initial-energy approximation holds. In Fig. 7

we show the range of the energy oscillations versus
initial kinetic energy for the case where v&0 is either
parallel or antiparallel to E. As can be seen, as the
initial kinetic energy increases, the amplitude of the
energy oscillation becomes a decreasing fraction of the
total energy of the particle. In Figs. 8 and 9 we show
the maximum increase in kinetic energy during one
period of oscillation and the period of oscillation as a
function of initial kinetic energy. The large increase in
period for Eo)0.5 MeV is due to the fact that the
particle is becoming quite a bit heavier in this region
due to the relativistic mass increase.
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V. CONCLUSION

We have shown that the solution to Eq. (1.1) can
be reduced to finding the solution of a simple ordinary
differential Eq. (2.23). The solution of this differential
equation directly gives particle energy as a function
of time; after this is known, any other parameter of
the motion which may be of interest is reduced to
quadratures. Using this formalism it should be possible
to obtain a qualitatively and quantitatively better
understanding of processes which depend upon the
interaction between an electromagnetic wave and a free
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FIG. 6. Oscillatory case for electron. &o Op=2m. X2.74 Gc/sec,
n=V2, Bp= 1000 G, E=0.1 esu.
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surrounding the earth. Our theory relates to both these
phenomena. It should also be possible to obtain an
idea of how close to cyclotron resonance the linear
theory of waves in a plasma is valid, since our solution
enables one to get a handle on the nonlinear effects
involved in the particle's motion. Work is currently
underway on the use of the preceding solution in the
investigation of the effects on the Van Allen particles
of cyclotron-resonant VLF radio waves. Naturally
occurring VLF energy in the form of whistlers may be
an important loss mechanism in certain regions of the
Van Allen belts, as already indicated by Dungey. "
Finally, work. is under way to determine if the syn-
chronous acceleration of a particle, as described. by
Eq. (3.5), might be a possible mechanism for the acceler-
ation of cosmic rays to their extremely high energies.
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APPENDIX

In order to solve the coupled set of differential Eqs.
(2.13) we define

(A1)

and note that Eqs. (2.13a) and (2.13b) are equivalent
to the integral equations

0.6—

0.4— p.=p„cosI o(t)+n]+ (eE/&u) dr/~ ks(r)]—
O
tU
or)

0.2—
O0
K
UJ
Q.

0.1—
0.08—

0.06—

&(sinLo (t) —o.(r)+cor —ks(7 )], (A2a)

p„=p, sin/a. (t)+n]—(eE/~) dr/co kz(r)]—
)& cosLo (t) a(r)+oir ks(—r)] (A2b—).
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"K.K. Chow and R. H. Pantell, Proc. IRF, 48, 1865 (1960).
"N. Brice, J. Geophys. Res. 68, 4626 (1963); S. F. Hansen,st 68, 5925 (1963). .

This equivalence may easily be demonstrated by
differentiating Eqs. (A2a) and (A2b). The quantities

p, e and n are constants determined so that at t=0,
p,e'+ p„e'= p&s and p„e/p, s= tann We ma. y now

substitute Eqs. (A2a) and (A2b) for p, and p„ in Eq.

"J.W. Dungey, Planet. Space Sci. 11, 591 (1963).
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p.= —Q(B/Bp) p, p sin[(ot —ks(t) —o.(t) —n)
dy/Q+ d~/2QP

(2.13c) to obtain a nonlinear integrodifferential equa- an ordinary differential equation by noting that
tion in s and. p,. multiplication by d&Q(t)+dpru makes Eq. (A6) an exact

differential. Integrating this differential from 0 to t
gives the equation

+ (eE/pp) dr[op kz—(r)j cosset —ks(t) —o (t)
= (EP~p/eBpP) sin[de (t)+dpPPt —8pf

a)r+—ks(r)+o (r)j . (A3)

We now use Eq. (2.9) to rewrite Eq. (A3) as an equation
in Q. Integrating Eq. (2.9) from 0 to t gives

+ (E'/cvBp') dr[(dg+1)Q(r)+d, (u$

XslI1[d&o.(t)+dpppt —d&o.(r) djtpr)—

+dy/Qp+dg(a)/2Qp'+EP, p sin8p/eBpP. (AS)

(ot—ks(t)+kzp ——(dg+1)o (t)+dp~t.

From Eqs. (1.2), (1.3b), and (2.3), we have

1,=~eB,(Q/Q') .

(A4)

(A5)

If we now differentiate Eq. (A6) with respect to time
and subtract the resulting equation from (d~Q+dpco)

times Eq. (AS), the terms involving trigonometric
functions vanish leaving the ordinary

differential

equation
After appropriate substitution in Eq. (A3) we obtain

(Q/Q') = —(E/eBp') p, p cos[dgo (t)+d,o)t—8pj

t

+(eE/ ) d, [(d,+1)Q(.)+d., ]

Xcos[d,o (t)+ d opt do (r) d—pMr j,—(A6)

d ( 1 ) dp'vP 3dqdp&u

I+ +
dt' (2Q'J 2Q' 2Q

hd fd d 4 dg Zp 0Sll180 E d

)+I d'—
l e' 8'Qo

/dp dydpM dyEpJ p smep—i:—+ + + (dg+1) iQ=0.
EQp 2QpP 4JBp 3

(A9)

where 00 is the initial angle between v&0 and E of the
wave

gp ks p+n+ (~/2——) . (A7)

The integrodifferential Eq. (A6) may be converted to

Using Eq. (1.3b), Eq. (A9) may be converted to an
equivalent equation for 3C. The resulting equation
becomes an exact differential when multiplied by
BC(dR/dh), and if we integrate this differential between
0 and t we arrive at Eq. (2.14) of Sec. II.


