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The probability of finding the ortho, L,=1, (ppp) system in an s= 2 state at the time of p capture, was
calculated using the techniques developed by Weinberg. A wave function correct to first order in the muon-
to-proton mass ratio was used in the calculation, giving a probability lying between 0.99933 and 0.99952.
This result was due to the fact that the contact term in the spin-orbit Hamiltonian masked the eRects of
the other terms. The errors due to the use of the approximate wave function in this calculation were analyzed
qualitatively and found to be small.

E have studied the relative probability for p,

capture by a proton in an s= ~ state in the bound
state (ppp)+ system (ortho, 1.= 1). Weinberg' has
shown that the probability of the (ppp)+ being in a
spin —,'state at the time of capture is
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where

l lp„)=actual wave function of (ppp)+ with J» ls= —',,J )= spin -', eigenstate of (ppp)+ when spin interactions
are neglectedj, and $„are given in terms of the following
expectation values taken over the internal coordinates:

values must be obtained. The L=1 bound state wave
function of the (ppp)+ can be written, to first order, in
the form Xo(r)iso(r, rr„,r»), where its is the normalized

p mesic wave function for the adiabatic case, i.e., a @-
moving in the field of two infinitely heavy protons a
distance r apart. Xo(r) is the proton wave function for
protons moving in the "potential well" set up by the p,

meson. The lto used here is the exact ground state
"1so-g" mesic solution evaluated by Bates, Ledsham,
and Stewart. ' Xo(r) including the self-energy correction
term has been evaluated by both Ger shtein and
Zel'dovich, ' and by Cohen, Judd, and Riddell. ' The
Xo(r) used here is one evaluated by the author, based
essentially on the Morse function method of Gershtein
and Zel'dovich. The CJR wave function, done numeri-

cally, is no doubt more accurate but does not seem to be
available presently. The present calculation couM easily
be adapted to the CJR wave function if required.

There are essentially four expectation values to be
evaluated, two of which can be performed directly:
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The other two expectation values are
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where =2 7g r=interproton distance and r r are The prime on this last one indicates that the limiting

the distances from the to protons ]. and 2 Process to be used is that of excluding a sPhere about the
ri„origin, and letting it shrink to zero (see, e.g., Bethe
and ~al eter'~The actual capture rate in (pyp)+, ~o»„, is then

given by These last two expectation values are evaluated in..=~ (!)+(1—~) (l), 'D. R. Bates, K. Ledsham, and A. L. Stewart, Phil. Trans.
Roy. Soc. (London) A246, 215 (1953—1954).

where &o(—',) and oo(—', ) are the capture rates in an s=-', s S. S. Gershtein and Ia. B. Zei'dovich, Zh. Eksperun. i Teor.
Fiz. 35, 649 (1958) )English transl. : Soviet Phys. —JETP 35, 451
(1959)].To get a numerical value for $ the E„e xepetiaton 4S c' h D 1. Judd and R J R&ddel phys Rev 1]9 3$4
(1960).
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spheroidal mesonic coordinates, the natural coordinates
for the problem, and the ones in which $0 is found. F can
be broken up into three parts. One is an integral from
a sphere of radius "n" about proton 1 out to a small "e"
shell determined by the natural spheroidal coordinates,
(n«e). After integrating, we let n —&0 and then let
e —+0. The second part of F can be done by partial
integration in spheroidal coordinates. The last part
of Ii, which is the nonsingular contribution, was
calculated numerically on the IBM 7090 computer
at Columbia. The G integral was done the same way as
the last part of the Ii integral. In all cases the results
were obtained in such a way that the 6nal integration
over "r" remained to be done by hand. Thus, any
"nuclear" wave function Xo can be readily adapted to
the calculation. The numerical integrals are correct to
within better than 1% of the exact integrals.

The results are tabulated below.
Letting E„'= (m„/e')a„' E„, where a„=p mesic Bohr

radius in terms of m„', the reduced mesic mass relative
to two protons, and everything is measured in units of
m„=k=c=1, we have

Ei' ———0.015+15%
Eg' ——+0.0955&2%%

E3' +3.76&2%——
E4' ———0.102&6%
Eg' =+0.025+ 10%.

Now'

$ =1—$ =—'(1+$1+2A'] '~') .
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where —4E,+4Eg 5E4+10E, —
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(In Weinberg's paper the coefficient of Eq in the
denominator of A is 13.) We have

Since A and 8 are both &1/25, we have
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to 1 part in 10'. Neglecting correlations in the errors
in numerator and denominator we get an upper and
lower limit for $:

5, =0.99952; (;„=0.99933.

The errors shown in E2' and E3' are due only to
numerical integration. The larger error in E4 is due to
subtraction of nearly equal integrals. The errors in E&'

and Eq' take account of the fact that J'(X'/r)dr
diverges in the Morse function approximation, and
therefore some adjustment was made near the origin.
This error could be eliminated with the CJR wave
function.

An entirely different set of errors, not considered in
the calculation, arise due to the limitations of the adia-
batic approximation itself. The exact wave function
for the (ppp)+ can be written in the form4

where X; are functions of r only and P; are the complete
set of adiabatic mesic orbitals of even symmetry. It
can be further shown that only "0-"and "m" orbitals can
contribute to the L=1 (ppp)+ state. X, differs from
the Xo used above, by order e' (where e= 2m„/mi, ). The
other X,'s are down from Xo by at least order e. For the
case of the P,„the effect on the E; expectation values
is essentially the same as for $0. Thus the "relative"
changes in the E, s will be very small, in addition to the
absolute changes being small. For the case of P, we
have considerably different effects. Since P states
vanish along the interproton axis, they do not a8ect E3,
the contact term; however, they might give rise to small
new 0.—~ mixing terms from the Hamiltonian, as well
as small relative shifts in E2 and E4. By noting the size
of the contribution of E3' to the denominators of 3
and 8 relative to the other terms, one notes that very
large "relative" changes in the E,'s must occur if t is to
be made to go below 0.9985, for example. Thus the
values of $ given above may be shifted due to the effects
of higher orbitals, but this shift will be of the order of
the width between the $,„and $;„already shown.
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