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The question of the stability of Wigner s electron lattice, which is the ground state of a dilute electron gas,
is considered. To determine the density range in which the electron lattice becomes unstable (coming from
lower densities) a simple stability criterion is formulated. It is based on the notion that, in order for a solid
structure to exist, the single particle potential should exhibit a localized well with at least one bound state.
The disappearance of bound states with increasing density, marking the onset of melting in the model, is re-
lated to the possibility of defect formation. In this fashion an upper and a lower limit for the melting density
can be established, which are found to occur at densities corresponding to r, = 47 and r, = 100, respectively
(r. is the radius of the unit sphere in Bohr units). Consequently, melting of the electron lattice is expected to
take place at densities much lower than estimated previously.

I. INTRODUCTION

l
'HK hypothetical electron gas consists of a large

number X of electrons moving in a compensating
uniform background of charge in a volume Q. The
electron density is usually expressed in terms of the
dimensionless parameter r, which is the radius (in
Bohr units as) of the sphere representing the volume per
particle, i.e., s7r(r, as)'=0/1V.

Wigner' ' has argued that as the density tends to
zero (r, —+ ~) the Coulomb interactions will dominate
the kinetic energy of the electrons, as a result of which
these will arrange themselves in the con6guration of
lowest potential energy. This is a body-centered cubic
(bcc) lattice.

In recent years there has been a renewed interest in
the electron lattice and a number of authors' ' have
given a detailed evaluation of the ground-state energy.

A question which has received little attention so far
and which is the subject of this note is that of the range
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of densities for which the electron lattice represents the
ground state of the electron gas. So far, two estimates
have been given for the "melting density" at absolute
zero, i.e., the density above which the lattice cannot
exist and below which it forms the ground state. Both
estimates lead to a melting density corresponding to
r,—20. Nozieres and Pines' arrive at this result by
applying Lindemann's melting formula to the electron
gas. Mott~ finds the same number from a comparison
of the energies of the lattice state and the metallic state.
On the other hand, Carr' estimates the low-density
region to extend up to densities corresponding to
r,—5. The latter, however, is not claimed to be the
melting density, but rather the density below which
Carr's expression for the ground-state energy converges.

In this paper we introduce a simple stability criterion
for the electron lattice. This stability criterion is related
to the full problem of lattice stability and melting in
somewhat the same fashion as the Einstein approxima-
tion is related to the full theory of lattice dynamics. The
neglect of correlations is, of course, drastic if one wants
to describe a phenomenon like melting, which can, in
general, be characterized as the breaking down of
long-range correlations. However, the situation in the
electron lattice is peculiar in the following sense. As
Wigner has pointed out, the fact that the lattice is the
ground-state configuration at low densities is the result

s P. Nozieres and D. Pines, Phys. Rev. 111,442 (1958).
r N. F. Mott, Phil. Mag. 6, 287 (1961).
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of the long-range Coulomb interactions, which keep
the electrons as far apart from each other as possible.
But once the system is in the lattice configuration, the
main part of the binding energy as well as of the force
governing the electron motion, arise from the interaction
of the electron with the background in its immediate
vicinity. It can be shown (see the Appendix) that the
spherical approximation, in which each electron is
considered to reside in a spherical cell and in which all
interactions between the cells are neglected, accounts
for 99.5% of the electrostatic binding energy, while its
result for the vibrational energy is too large by only
13jq I viz. 3r +' (Wigner) as compared to 2.65 r
(Carr)). It thus appears that an Einstein-type approxi-
mation, in which an electron moves in the average field
of all the other electrons, as if these were at rest in their
equilibrium positions, and of the background, is not at
all a bad approximation at low densities. In the follow-

ing it will be shown how such a model can be used to
derive lie&its between which the real melting density
should be expected to lie.

The stability criterion which is used for obtaining
these limits relates melting to the disappearance of
bound states for the individual electrons. A criterion
which is in some repects similar has first been proposed
by Mott~ in connection with the transition between
nonconducting and conducting states in metals and
semiconductors.

The present stability criterion is based on the
property of a solid, that the particles remain confined
to small regions around fixed points in space. Thus, a
solid arrangement may be characterized by the fact
that the single-particle potential has a spatially localized
well in which there exists at least one stable bound state.
At densities where this condition is no longer fulfilled,
i.e., when bound states disappear, no solid arrangement
can exist.

The potential V which we have to consider for the
stability of the electron lattice is, strictly speaking, not
a single-particle potential. Although V depends explic-
itly on the position coordinate r of only one electron, it
takes account of the formation of an interstitial-
vacancy pair (crowdion-anticrowdion pair) for values
of r outside the central cell (r) r,). That is, through r,
V implicitly depends on the coordinates of a number of
other electrons.

In the present considerations, the defect formation for
values of r&r, is shown to determine the bound states
in the central well of the potential, i.e., for r values
smaller than r, . It is shown that a determination of the
bound states in this way leads to a melting density
somewhere in the range r, =47 to r, =100. Such a
melting density is considerably lower than the estimates
quoted above.

II. DEFECTS IN THE ELECTRON LATTICE

The volume 0, occupied by the electron lattice, can
be divided into X unit cells (Wigner-Seitz cells),

centered around the S lattice points. Each electron
carries out vibrations around the center of its individual
cell. In the lowest approximation (Wigner') the cells
are considered as spherical (Wigner cells) and the
dipolar interaction between the cells is neglected.

At extremely low densities, for r, ~&1000 say, all
electrons are well localized inside their Wigner cells. As
the density is increased (r. decreased) the extension of
the wave function outside the cell increases and so does
the probability for an electron to escape from its cell.
If an electron can escape and settle elsewhere without
breaking up the surrounding lattice, the electron density
in the region around the interstitial electron is increased
and that in the region around the vacancy is decreased.
We can get an idea about the distance over which the
inhuence of such a defect is felt, by evaluating the
static dielectric constant of the electron lattice. An
elementary calculation gives that the polarizability of
an isolated Wigner cell is equal to E.', where 8 is the
radius of the sphere. It then follows from the Clausius-
Mossotti relation that e,t,~,,= —~.' This means that
the inQuence of a static electric disturbance is shielded
over a very short distance. As a consequence, the
regions affected by the defects, which result when an
electron is displaced from its lattice site, will be quite
small and they will not interact.

To avoid going into the details of the deformation of
the lattice around such defects, we assume, for the
calculation of the defect formation energy, that these
regions are spherical and that the electron density in
each of them is constant. Such a pair of defects will be
called a crowdion-anticrowdion pair' (c—ac pair). We
further assume that, as a result of the strong shielding,
only the immediate neighbors of the interstitial and the
vacancy are included in the crowdion and the anti-
crowdion. In the bcc lattice, which is the structure with
the lowest electrostatic binding energy, an interstitial
site has six immediate neighbors and so we assume that
seven electrons participate in the crowdion, namely the
intruder plus its six neighbors: n, =7. In the anti-
crowdion the eight neighbors of the empty cell divide
the extra volume, i.e., e,=8.'

' The same result is obtained by taking the limit w ~ 0 of the
frequency dependent dielectric constant e(co). One Gnds for a
cubic arrangement of Wigner spheres with dipolar interaction

e(M) = 1—3 (~o'/~')

where coo'= (e'/mR') (=-',co~&~~,') is the frequency of oscillation of
an electron in an isolated Wigner sphere. The fact that e is negative
for co QG)pl is a result of the large polarizability of the Wigner
sphere.

The word "crowdion" has a well-defined meaning in the theory
of lattice defects, indicating an interstitial, located in a closest
packed row of a lattice LH. Paneth, Phys. Rev. SO, 708 (1950)g.
Here we mean a small region of the crystal in which the density
is higher than average. An anticrowdion is the opposite.

'0 This simplified model for lattice defects has also been applied
to solid o.-He3 to account for the anomalous specific heat and the
self-diffusion. PF. W. de Wette, Phys. Rev. 129, 1160 (1963).J
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III. THE ENERGIES OF CROWDION
AND ANTICROWDION

The formation energy of the crowdion-anticrowdion
pair can be evaluated from e(r,), the energy per electron
in the undisturbed lattice. The main contributions to
e(r, ) are the electrostatic binding energy and zero-point
energy (cf. Ref. 3)

e(r,) = —(1.792/r, )+ (2.65/r ~~') (1)
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We first evaluate the crowdion energy. Inside the
crowdion the electron density is higher than the average
electron density, but the background density p& is
unchanged. Since the r, dependence of the zero-point
energy [second term in (1)] is due to the background
density, this term remains unchanged. In other words,
the crowdion energy is purely electrostatic. There are
two contributions to this energy, the first one is due
to the electrostatic interactions inside the crowdion, and
the second one is due to the interactions with the rest of
the lattice. As a result of the strong shielding, the latter
contribution may be evaluated as arising from a positive
surface charge 60. on the crowdion surface, which shields
the net negative charge of the crowdion (one electron
charge) from the outside. " The electrostatic energy
arising inside the crowdion is obtained as follows. Let
the electron density in the crowdion correspond to
r,+Dr, (hr, &0), then

—1.792/(r, +ar, ) (2)

is the electrostatic energy per electron in a crowdion
with compensating background. But this takes into
account too much background and we have to add the
energy resulting from a negative charge density Ap,
which reduces the background density again to pb,
i.e., Ap=pq pq" (pq—" is the background density which
neutralizes the electron density inside the crowdion).
The total crowdion energy can thus be found by using

(2) and adding the total effect of the extra background
density Ao+Ap (see Fig. 1). Hence, there are three
terms to be added to (2), namely, the interaction energy
of ho+Dp with [1] the crowdion electrons, [2] the
neutralizing ba, ckground pp, and [3]itself. A straight-
forward calculation, assuming spherical Wigner cells,
leads to:

3 j.
contributions [1]+[2]=— Ry,

5 r,+dr,
(3)

contribution [3]= Ry,
Se,'"(r.+Ar, )

"This positive surface charge represents the eAect of the slight
outward shift of the lattice electrons surrounding the crowdion,
which is caused by the negative crowdion charge.

where e, is the number of crowdion electrons. dr, is
determined by e„namely

r,+Ar,~(1 1/3'„)r, =0.952r, —for n, =7. (5).

FIG. 1. Charge densities used in the calculation of the crowdion
energy, plotted along a line through the center of the crowdion.
The symbols are de6ned in the text.

Ry. (6)

The energy of the anticrowdion is found by similar
arguments. d p is then positive inside and Ao- represents
the surface density equal to one smeared-out electron
charge. The formulas (2) and (4) remain unchanged
but (3) has the opposite sign, due to the changed sign
of Ap. Instead of (5) we have

r,+Dr, [1+(1/3rI,„)]r,= 1.042r, for e„=8. (7)

Using e,=8, we find

AE„=0 094/r, Ry. .

Since there is no interaction between crowdion and
anticrowdion, the formation energy of the pair is simply
the sum of the separate formation energies, i.e.,

DE=DE,+DE„02/r, Ry. —.

IV. THE STABILITY CRITERION

As mentioned in the Introduction, we will introduce
a simple stability criterion, which will enable us to
indicate an upper and a lower limit, between which the
real melting density of the electron lattice should lie.
This criterion relates the stability of the electron lattice
to the existence of bound states for an electron in a
single-particle potential V(r), which is thought to be
centered around a lattice point. A logical choice is to
take for U(r) the potential energy of the static lattice,
expressed as a function of the position coordinate r of
one electron. For r&r, (electron inside its cell) V(r)
coincides, for all practical purposes, with the potential
energy of an electron in its isolated Wigner cell [i.e.,
V(r) quadratic in r], while for r)r, (electron outside
its cell) V(r) contains the effect of the crowdion-
anticrowdion formation. This means that through r,
V(r) implicitly depends on the rest-positions of those

The total crowdion energy E, is the sum of e, times (2),
and (3)+(4). Finally, the crowdion formation energy
5E, is the difference between E, and the energy of e,
electrons in the undisturbed lattice (whi'ch is —1.792
e,r, '). Using e,= 7, we And

0.108
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FIG. 2. Solid line: potential
energy function Vr (r) for the
determination of the absolute
upper limit to the melting
density. Dashed line: Vrr(r) for
the determination of the lower
limit to the melting density.

other electrons, which are involved in the crowdion and
the anticrowdion. Thus, V(r) exhibits a central well,
which is responsible for localizing the electron, and it
has as yet an unspecifmd form for r&r, . Obviously, the
form of V for r&r, is of crucial importance for the
lattice stability, because it is this form that determines
the existence and the energies of the bound states
inside the central part of V(r). The estimates for the
upper and lower limits for the melting density are now
obtained by successively making two extreme assump-
tions for the shape of V(r) in the range r) r, .

Up'~& ~~m-'. (10)

The quantity Up' is proportional to the volume of the
cylinder with radius p and depth U. In a similar fashion,
the criterion for the existence of a bound state in a
truncated parabolic well can be expressed as

Volume paraboloid ~& ~m'C, (»)
where the constant C is nearly one.

The zero-point energy of 2.65 r, @' per particle,
given by (1),corresponds to an oscillatory well described
by

V(r) =0.780r'r, '. (12)

The radius at the top of the truncated paraboloid is r, .
Using these numbers in (11) (taking C= 1) we find that
the Wigner cell exhibits a bound state for

We notice that this limiting r, is about the same as the
one Carr estimates to limit the range of validity of his
expression for the ground-state energy.

Upper Limit

The upper limit, i.e., the density above which the
electron lattice will certainly not exist, is obtained when
we estimate the density above which a bound state for
an electron in its Wigner cell cannot exist, disregarding
the crowdion-anticrowdion formation for r&r, . For
this estimate we use a potential Vz(r), which is the
one-electron parabolic potential inside the cell (r(r,),
and which is cut off Qat outside, i.e., Vz(r) = Vz(r, ) for
r)r, (see Fig. 2, solid line).

For a crude estimate of the condition for the existence
of a bound state in this potential, we make a comparison
with the square-well potential. A spherical well with
radius p (in Bohr units as) and depth U (in Ry) has at
least one bound state if

Lower Limit

A lower limit for the melting density may be es-
timated by making another extreme assumption about
the form V(r) for r) r, . Let us suppose that the electron
gives up all of its vibrational energy and moves freely
through the lattice after is has left its cell and created a
crowdion-anticrowdion pair. Then the potential V(r)
approaches the constant value U(0)+DE for values of
r larger than the sum of the crowdion and the anti-
crowdion radii (r,+r„). V(0) is the value of V in the
origin of the central well, and DE=0.2r, ' is the defect
formation energy. The shape of V(r) in the intermediate
region r,(r(r,+r„ is not known. However, we will

certainly obtain a loner limit to the melting density,
if we evaluate the density at which a bound state ceases
to exist, for a potential Vzz(r), which consists of a
parabolic well given by (12), which is cut off Rat at
the height DE=0.2r, ' (see Fig. 2, dashed line). The
radius at the top of the well so obtained is 0.506r, .
Using these numbers in (11), we find that the well
will have a bound state if

r, ~&96.5.

A More Detailed Estimate of the
Upper Limit

The upper and lower limits for the melting density
which we have just estimated, are quite far apart. In
particular, the high-density limit seems rather high,
although the low-density expression for the ground-state
energy seems to be valid up to such a density. ' However,
we will show that a more detailed consideration of the
form of the effective single-particle potential V(r) in
the region r)r, +r„ leads to a considerably lower
estimate for the high-density limit.

The form of U(r) for r)r,+r, is, of course, represen-
tative of the motion of the electron outside its cell, or
rather, of the crowdion motion, since r is a configura-
tional coordinate. In this connection there are two
kinds of crowdion motion that have to be mentioned.
First, the interstitial motion in which one and the same
electron moves from one interstitial position to the
other, and second, theAsterstiti alcy motion, in which an
interstitial electron occupies a lattice site while pushing
the electron residing there into a different interstitial
position. A mechanism similar to the latter is also
responsible for the motion of the anticrowdion.

Since we are considering an effective single-particle
potential, only the first kind of motion, the interstitial
motion, can be treated. However, this limitation does
not invalidate the ensuing estimate, because, since the
activation energy for the interstitialcy motion is bound
to be smaller than that for the interstitial motion, the
eGect of taking the former mechanism into account
would be to further lower the upper limit. On the same
grounds the anticrowdion motion can be left out of
account.
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In order to make a reasonable choice for V (r) in the
region r) r,+r„,we notice that in contrast to what we

assumed for deriving the lower limit, an electron does
not give up all of its zero-point energy when it moves
out of its cell. This is a result of the fact that even in an
interstitial position, the electron has a certain amount
of background to its own, which causes it to vibrate
around the interstitial equilibrium position. In other
words, the interstitial electron finds itself again in a
parabolic potential, giving rise to the same vibration
frequency (because the background density is un-

changed), the minimum of which lies an amount hE
higher than the minimum V(0) of the central well.

Next we have to consider the interstitial motion. The
interstitial electron may move, with more or less ease, to
neighboring interstitial positions. As a result, the inter-
stitial electron "sees" a periodic potential of parabolic
wells in the directions of the neighboring interstitial
positions (see Fig. 5). This causes the zero-point energy
of the interstitial electron to be broadened into a band,
the width of which will be density dependent: the higher
the density, the broader the band. I et us express the
owest energy in this band as 2.65r, 3I'y(r, ).At a certain
density the bottom of this band will become lower than
the zero-point energy of the electron in the central well.
At this density the localized state of the electron around
its lattice position ceases to be a stable state. Thus, we

may formulate our stability criterion as follows: the
electron lattice is only stable for densities such that

2.65 2.65
~(')+&&(").

~ 3/2 ~ 3/2
(13)

At densities for which this condition is not fulfilled, the
electron will eventually escape from its cell and diffuse
through the lattice, moving from one interstitial
position to another. Since this is true for all electrons in
the system, the lattice will obviously not exist at such
densities.

In order to determine the function y(r,), we have to
examine in some detail the interstitial potential field.
An interstitial position in a bcc lattice has four first-
neighbor interstitial positions located at a distance / in
two mutually perpendicular directions, and eight
second-neighbor interstitial positions at a distance v21
in four directions which are perpendicular in pairs
(directions in different pairs are at 60' angles), and
which are at 45 angles with the 6rst-neighbor directions
(see Fig. 3). For the present estimate it is a reasonable
approximation to assume that the three-dimensional
interstitial fmld is additive in x, y, and z, and that as a
function of each of these coordinates it is a periodic
function of parabolic wells. If we take the x and y
directions to point to the first-neighbor interstitial sites,
then the positive z direction points to an occupied
lattice site, but one that is surrounded by four second-
neighbor interstitial sites. The approximation thus
@mounts &o replacing these four interstitial sites at

U4I

(o)

(o)
= Y

distance V2/ by a single one at distance f. This model,
therefore, underestimates the mobility of the interstitial
electron, which in turn leads to a calculated melting
density which is higher than the real one. Consequently,
we are again led to an Npper limit for the melting
density.

Another question is whether the lattice electrons,
surrounding the interstitial will move out of the way and
thereby increase its mobility. Such displacements can be
evaluated by direct computation of the polarization of
the lattice around the interstitial. The result is that the
two first lattice neighbors of the interstitial (in the s
direction; cf. Fig. 3) will move out over a distance of
about 0.4IT, , while the four second lattice neighbors (in
the x—y plane) will move out over a distance of about"
0.044a (a is the nearest neighbor distance in the bcc
lattice). The outward displacement of the first lattice
neighbors indicates that the lattice opens up around the
interstitial as it moves along. Since this enhances its
mobility, it further lowers the melting density of the
real lattice. Therefore, neglecting this effect does not
affect the upper limit derived from our model.

We can now proceed to determine the function y(r, )
appearing in (13).The assumption of additivity for the
three-dimensional interstitial potential field reduces the
problem to three one-dimensional ones. This enables
us to use McColl and Simpson's" result for the one-
dimensional periodic parabolic potential, to evaluate

'~This rapid decrease in the outward displacement from erst
to second neighbors is a result of the very effective shielding in
the electron lattice, or, in other words, of its high dielectric
constant. This is a direct justi6cation for the assumption that the
crowdion only extends to the six direct neighbors of the interstitial
(cf. Sec. II)."D.McColl and O. C. Simpson, Argonne National Laboratory
Report ANL-6647 {unpublished).

OCCUPIEO INTERSTITIAL SITE
I at NE IGHBOR INTERSTITIAL SITE

O4 2 +d NE I GHBOR INT ERST IT I AL SITE

O I at NE I GHBOR LATTICE S I TE

O0 End NEIGHBOR LATTICE SITE

FIG. 3. Interstitial sites and lattice sites surrounding an occupied
interstitial site in the bcc lattice.
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require a full-Qedged many-body approach. That one
can actually indicate these limits is a result of the fact
that, whatever the real mechanism that is responsible
for the melting, the criteria used here do pose a real
limitation on the actual melting density. For instance,
the states corresponding to single particles traveling
through the lattice, which were used here for finding
the upper limit, should be very close to possible states
of the real system and as a result pose a limitation on the
range of densities in which the real lattice is stable.

0
0 y

Fro. 4. Plot of the function 7(yo) for the periodic parabolic
potential (lower solid line). For comparison, we have indicated
the width of the zero-point band (shaded area), and the bottom
of the zero-point band for the sinusoidal potential (dashed line).
The symbols are dined in the text.

~4 J. C. Sister, Phys. Rev. 87, 807 (1952). The curve for the
sinusoidal potential lies below that for the periodic parabolic
potential because in the latter potential the walls, separating
neighboring wells, are higher.

the lowest energy of the zero-point band as a function
of the periodicity distance I. In Fig. 4 we have plotted
y=E/zftco, i.e., the lowest energy in the zero-point
band of an electron in the additive three-dimensional
parabolic potential, divided by the unperturbed oscil-
lator energy ~Ace, as a function of the quantity yo
= z (m~/5)"'l (lower solid line in Fig. 4). For comparison
we have also plotted the same quantity (dashed line)
for the periodic sinusoidal potential (Mathieu problem)
which has the same curvature in the bottom of the well

(i.e., the same co). This problem was treated by Slater. '4

The r, dependence of p(ys) follows from that of ys.
The vibration energy of 2.65r, '~' per electron leads to:
ra=0 883am U'(usr, ) 'I' (e and m are the electron charge
and mass). Further, for the distance between the inter-
stitial positions in the bcc lattice one finds 1=1.02apr, .

All quantities in (13) can now be evaluated as func-
tions of r, We the. n find that the inequality (13) is
fulfilled for r, &~47. This should be, as we have argued,
on upper limit for the melting density. Combining this
with our result for the lower limit, our conclusion is
that the electron lattice will not exist for densities for
which r, 47, and that it will certainly exist for densities
corresponding to r, &97.

In Figs. 5(a) and (b) we have indicated how the
zero-point band in the interstitial periodic parabolic
potential is located with respect to the zero-point energy
in the central well, for r, =25 and r, = 75, respectively.
We see that, according to our criterion, the lattice is
not stable for r,,=25, but that it can be stable for r, =75.

At this point we would like to re-emphasize the main
point of this paper. Thanks to the fact that we used
a simplified model for the solid, it has been possible to
indicate limits for the real melting density. Of course, a
reliable determination of this quantity itself would

V. DISCUSSION

The electron gas has the rather peculiar property that
at absolute zero it can occur in both the Quid and the
solid phase, depending on the density. " In this paper,
we have been concerned with determining the density
range in which the solid phase is the ground state, i.e.,
the density range in which the electron lattice is stable.
This we call the low-density region of the electron gas.
As mentioned before this is not the same as the density
region in which the expression for the energy of the
lattice configuration (Carr') converges and is a good
approximation to the actual ground-state energy. While
we find the low-density region to start for an r, value
somewhere between 47 and 100, the lattice expression

2.65
r,

I gE
A

(a)

r/ao

2.65
r SrP,

FPXÃEPEPXYE8YYEYXPXPp

r/oo

Fro. 5. Potential energy V(r) for one electron in the static
electron lattice (r is directed along the axis of one of the coor-
dinates in which the potential is assumed to be separable). For
r(r„V(r) represents the central well {in this region r is strictly
a one-electron coordinate). For r&)r„V (r) represents the periodic
potential in the interstitial positions (in this region r is a conhgura-
tion coordinate). The potential has not been drawn in the region
immediately outside the central cell. Its form there is uncertain
because of the overlap of the crowdion and the anticrowdion in
that region. (a) Situation for r, =25. The bottom of the zero-point
band lies below the zero-point level in the central well. The lattice
is not stable. (b) Situation for r, =75. The bottom of the zero-
point band lies above the zero-point level in the central well. The
lattice can be stable LThe scales along the abscissa and the ordinate
are different in (a) and (b)j.

"The only real substance showing this property is helium. In
contrast to the electron gas, helium is solid at high densities and
liquid at low densities.
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for the ground-state energy is probably an excellent
approximation for r, values from 10 up. The reason for
this is that the existence of long-range order, which is
characteristic for a lattice configuration, does not
affect the energy too much. This can easily be shown to
be the case for the electrostatic binding energy, which
gives the largest contribution to the ground-state
energy. The exact value of this quantity in the bcc
lattice is —1.792r, ' Ry per particle. In the Appendix
we show that by taking an isolated spherical cell, thus
completely neglecting long-range order, one finds
—1.800r, ' for this quantity. It should be emphasized
that the difference between these numbers represents
the inhuence of the long-range order only. The use of a
spherical cell is justified only when the irronediate
surrounding of the actual cell is highly symmetric, and
this is only the case when there is complete local order.
The fact that both numbers differ so little shows how
insensitive the electrostatic binding energy is to long-
range order. In a similar fashion it may be possible to
show that local coupling of the vibrational motions
(thus again neglecting long-range order) will lead to a
value for the vibrational energy per particle, which is
closer to 2.65r, 3(' Lcf. (1)]than the value 3r, '(', which
is obtained by Wigner's method in which all dipole
coupling between the cells is neglected.

One conclusion to be drawn here, which is already
implied in the foregoing, is that it will be very dificult
to make any prediction about the density at which the
electron lattice becomes the ground-state configuration,
from a consideration of the ground-state energy. A
second, closely related conclusion is, that it will be
impossible to derive the lattice ground state from first
principles by using a variation procedure in which the
density is varied.

At this point the method and the results of the present
work should be compared with the two other estimates
of the melting density of the electron lattice, which are
available in the literature. With regards to Nozieres and
Pines' estimate, it has been pointed out (Ref. 3) that
the applicability of the empirical Lindemann melting
formula to the electron lattice remains something to be
established, and that an estimate based on it is subject
to rather large uncertainties. On the other hand, Mott's
estimate is based on a comparison of the lattice energy
with the Hartree energy, in a range of densities (r,—20)
in which the Hartree approximation is not at all valid.
Moreover, as we have argued, the ground-state energy
is not a good quantity to consider, for the purpose of
determining the melting density.

The main assumption underlying the present con-
siderations is that a meaningful limitation of the actual
melting density can be obtained from a model in which
melting is pictured as a single-particle process, whereas
the real melting process is, of course, probably a cooper-
ative eGect. We believe that the single-particle picture
is in this particular case justified by the fact that in
the lattice configuration at low densities, the main force

on an electron arises, not from the other electrons, but
from the positive background in its immediate vicinity.

Finally, it should be remarked that the neglect of
particle statistics implies that these considerations are
equally valid for a system of charged bosons (see
Foldy"). The question arises whether the inclusion of
statistics would invalidate the present results. Carr' has
shown that the effects of statistics enter the energy
expression in overlap terms proportional to exp (er, '),
which are found to be completely negligible for r.&10.
This suggests that at r, =50 the effects of overlap and
exchange are much too small to alter the effective
single-particle potential in such a way as to invalidate
the results obtained from it.

The total potential energy of the static electron
lattice is

e2
~()—

2 ' ~'[R;—R[
—e'p P

g2p 2

)r—R;[

(A1)

e is the electronic charge, p is the number density and
R; and R; are electron coordinates. The first term is the
electron-electron interaction, the second term is the
electron-background interaction, and the third term is
the background-background interaction. For an infinite

system, the background-background interaction cancels
half of the electron-background interaction, so that '0

may also be written as

e2 1
g (2)—

2 ';~, lR,—R;I

8 p

2
(A2)

ir —R;i

The energy which is gained by adding the last electron
to the lattice is

1 dr 2~(2)
e' P —e'p

~' [R;—R;) fr —R, )

' L. L. Foldy, Phys. Rev. 124. 649 (1961).

(A3)
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APPENDIX

The Binding Energy of the Static
Electron Lattice



A294 F. W. DE WETTE

This is the expression that is summed over the lattice
(bcc) to obtain an accurate value for 'U/1V, the electro-
static binding energy per electron.

Wigner's Ayproximation for Obtaining 'UgN

Improved Spherical Approximation for
Obtaining Vy N

The starting point for this approximation is (A1)
instead of (A2). Again we write the integrals in (A1) as
sums of integrals over the cells. We have as in (A4)

~ (2) =Q 'U, (2) =+~,(2) (A4)

Wigner' uses the expression (A2) as a starting point
for his approximation. The entire volume 0 is divided
into X unit cells, which are centered around the E

where now
lattice points. The integral in (A2) can then be written
as a sum of integrals over the cells j.We have

g(i) =Q g.(&) =Qg (i)

dr, drj

elli cellj ri rj

where

e' ) 1
'U,.(2)—

P
2 &~' (~R;—R~

e'p

dfj—2p —g p
cellj rj

g2p2

(A9)
r —r'

cell i

'U ")(spher. cells) = —1.5r, ' Ry. (A6)

The exact result, obtained by direct summation of
(A5) over a bcc lattice, is

'U, = —1.79186r, ' Ry. (A7)

The first term in (AS) is small. It is the difference
between the interaction of the central electron i with
the other electrons j and the interaction of electron i
with the positive background in the cells j. If the cells
were spherical, this contribution would vanish. For
nonspherical cells the held at electron i due to the
background -in cell j can be considered to result from
an infinite series of higher multipoles in the center of
cell j.The net background charge of cell j is cancelled
by the charge of the electron j. The first term of (A5)
thus represents one-half of the binding energy of
electron i in a lattice which has at each site a series of
higher multipoles. In a cubic lattice like the bcc lattice,
the lowest multipoles that are compatible with the
cubic symirietry are the hexadecapoles. Hence, in the
first approximation going beyond the spherical approxi-
mation, the first term of (A5) is half the energy of an
electron in a lattice of hexadecapoles.

In signer's approximation of spherical cells, the
first term of (A5) is neglected and the second term is a
simple integral over a sphere. The result is

The first term in (A9) is small. By arguments similar
to those above, it can be shown that in a cubic crystal
this term represents, in the first approximation beyond
the spherical approximation, half the binding energy
of a hexadecapole in a hexadecapole lattice. For
spherical cells this contribution vanishes. The second
and third term in (A9) give for spherical cells the
contribution

'U (') (spher. cells) = —1.8r ' Ry (A10)

Although this result is also obtained with a spherical
approximation, as was (A6), it comes surprisingly close
(within 0.45%) to the exact result (A7). Wigner's
result (A6) is off by 17%. The reason for this improve-
ment is, that the term that is neglected in the spherical
approximation, namely the first term in the expression
for 'U;, is much smaller in (A9) than in (AS).

Summarizing this result, we can say that the electro-
static binding energy is mainly the result of the fact
that the electrons are localized, which makes that each
electron is bound by the positive background in its
individual cell. The existence of long range order in the
lattice is seen to have only a very minute inQuence on
this binding energy. One therefore expects the contribu-
tion —1.792r, ' to be a very good approximation to the
electrostatic binding energy, also at those densities
for which the ground state is no longer a lattice but a
Quid in which the electrons are still localized and in
which local order is still present.


