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Density Matrix Formulation of Small-Polaron Motion*
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A density-matrix treatment of small-polaron motion is presented for the case in which the electronic over-
lap term of the total Hamiltonian is a small perturbation. The principal result of the density matrix formalism
is that total small-polaron mobility can be expressed as the sum of a band part (s, r), characteristic of the
low-temperature regime (T(Tq), plus a part (Wra') describing the hopping motion dominant at high
temperatures (T)T&). This verifies the separation of the above two types of motion made on the basis of
physical arguments. In addition, the present treatment avoids certain formal divergences in the integrals
for the jump probabilities. Furthermore, the hopping contribution does not require localization of the
polaron at a particular site, but follows from a translationally invariant formulation. These results are ob-
tained, in part, from lowest order Boltzmann equations which are derived both in the local-site and polaron-
band representations. The principal contributions to the scattering terms of the Boltzmann equations are
determined by interference e8ects between the matrix elements, which are examined in some detail.

INTRODUCTION

~)URING the past several years, there has been con-
siderable theoretical interest in the basic mecha-

nisms of small-polaron transport. The small-polaron
concept applies to semiconductors of suKciently narrow
electronic-conduction bandwidth (or valence band-
widths, in the case of hole conduction) for which the
interaction of the charge carrier with the lattice vibra-
tions is particularly strong. In such a situation, the
charge carrier gets essentially self-trapped in the im-
mediate neighborhood of one of a large number of
crystallographically equivalent atomic sites. The exist-
ence of a nonvanishing electronic overlap then gives
rise to occasional transfers among these sites. The unit
consisting of the charge carrier and surrounding induced.
lattice defoimation —the latter serving as a potential
well in which the carrier is self-trapped —is designated as
the small polaron.

Conventional (large) polaron theories' ' are based on
a continuum model in which: (a) the ionic dipole mo-
ments arising from the displacements of the discrete
lattice particles are replaced by a continuous polariza-
tion field, and (b) the motion of the charge carrier is
formulated in terms of an effective mass approximation.
Such a model is clearly inadequate in describing the
small polaron, whose dimensions are of the order of the
lattice spacing. Rather, the periodicity of the dj.screte
lattice structure must be taken into account explicitly.

This distinction was first recognized and treated by
Tyablikov. Employing a tight-binding approach in
which the electronic overlap part of the total Hamil-

*The initial stages of this work were begun at the University of
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S. I. Pekar, Issledovaniya po Klectronnoi Teorii Kristallov,
Gosudarstvennoe Izdatel'stvo Tekhniko-Teoreticheskoi Literatury,
Moskva, 1951 LEnglish transl. : AEC-tr-5575, Feb. (1963), OfEce
of Technical Services, Department of Commerce, Washington,
D. C.g.' H. Froh]ich, Advan. Phys. 3, 325 (1954).' S. V. Tyablikov, Zh. Eksperim. i Teor. Fiz. 23, 381 (1952).

tonian was treated as a small perturbation, 4 he showed
that band spectrum of the small polaron is character-
ized by a width which is exponentially smaller than the
purely electronic bandwidth by a factor depending on
the overlap of neighboring vibrational wavefunctions.
His treatment of the "polaron-band" is limited to the
absolute zero of temperature, however, thereby pre-
cluding any consideration of the hopping-type conduc-
tion prevalent at high temperatures.

The 6nite temperature case was next investigated by
Yamashita and Kurosawa. 5 6 Using a discrete descrip-
tion of the crystal lattice, but treating the electron-
lattice interaction by a continuum approximation,
these authors were the first to note that the polaron
bandwidth, already very small at T=O, decreases even
further (in particular, exponentially) with increasing
temperature. As a consequence, they point out that the
corresponding small-polaron mass (which varies in-
versely with bandwidth) is exponentially large. They
therefore argue that a localized description is more
appropriate than polaron-band motion, and then go
on to calculate the lowest-order elementary jump rate
between local sites. They do not, however, make clear
the criteria which distinguish the two regimes. The
polaron-band motion and its temperature dependence
was also carefully formulated and studied by Sewell~;

4 It should be pointed out that all of the references to be dis-
cussed, as well as the treatment of the present paper, are largely
confined to the case in which the electronic overlap term of the
total Hamiltonian can be treated as a small perturbation. How-
ever, it should be noted that there is a remaining (adiabatic)
regime in which the polaron is small, but perturbation theory does
not apply (see Refs. 6, 8, and footnote 22).

6 J. Yamashita and T. Kurosawa, Phys. Chem. Solids 5, 34
(1958).These authors employ an Einstein spectrum and an arbi-
trary cutoff t(2s/coo of the type discussed in footnote 11.

4 J. Yamashita and T. Kurosawa, J. Phys. Soc. Japan 15, 802
(1960). This paper considers the practical consequences of in-
cluding a small, Quctuating potential (due to a random distribu-
tion of impurities) on small-polaron motion, and, in particular, on
the "washing out" of the polaron-band motion. In the present
paper, it is shown that the dominance of the hopping motion for
T& T& is an automatic consequence of the theory, even for the
ideal, periodic case.

7 G. L. Sewell, Phil. Mag. 3, 1361 (1958).
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however, he gave no consideration to the hopping-type
motion prevalent at high temperatures.

A more satisfactory resolution of the above two types
of small-polaron motion was given by Holstein. ' It
was here pointed out that the basic distinction between
the two regimes is determined by two basic classes of
matrix elements which describe site-jump transitions.
As will be made explicit later in the paper, the low-

temperature polaron mobility is dominated by the so-
called "diagonal" matrix elements, in which the totality
of vibrational quantum numbers accompanying a site-

jump transition remains precisely unchanged. ' These
matrix elements give rise to the previously described
temperature-dependent polaron bandwidth. In this-

regime, the role of the "nondiagonal" matrix elements,
defined as those in which some of the vibrational quan-
tum numbers change by ~1, is to provide scattering
between polaron-band states, and therefore to deter-
mine their lifetimes in the absence of other scattering
mechanisms (which is the condition we shall assume to
apply). It was then argued that above a certain transi-
tion temperature" T~ the energy broadening of the
polaron-band states exceeds the (exponentially de-

creasing) polaron bandwidth, the band approach clearly
breaks down, and a localized basis becomes the more
appropriate starting point. In this high-temperature
regime, the nondiagonal matrix elements now play the
dominant role, giving rise to a diffusion-type motion of
the charge carrier, in which the basic steps are random
jumps between local sites.

Recent investigators have essentially confirmed the
above picture of small-polaron motion. "Klinger, "by a
resolvent technique which introduces collision damping
of the polaron-band motion, finds that the criteria for
surruning certain term sequences of diagonal transitions
[cf. later text and footnote 20j are essentially the
same as those cited above, with some differences in

s T, Holstein, Ann. Phys. (N.Y.), 8, 343 (1959).
9 These matrix elements therefore provide exact energy

conservation.
'0 In practice, Tg turns out to be & O~, where O~ is the optical,

Debye theta.
» R.. R. Dogonadze and Yu. A. Chizmadzhev, Fiz. Tverd. Tela

3, 3712 (1961) [English transl. : Soviet Phys. —Solid State 3, 2693
(1962)g; R. R. Dogonadze, A. A. Chernenko, and Yu. A.
Chizmadzhev, Fiz. Tverd. Tela 3, 3720 (1961) English transl. :
Soviet Phys. —Solid State 3, 2698 (1962)g. These authors also ob-
tain the dual aspect of small-polaron motion found in Ref. 8 and
the present paper (viz. , the scattering probabilities between band
states, and the site-jump transition rates), with some differences
in detail. These differences appear to be due to the fact that account
is not taken of dispersion of the vibrational spectrum which,
in the opinion of the present author, is essential in obtaining con-
vergent expressions for the transition probabilities. These authors
apparently obviate this difliculty by arbitrarily restricting the limits
on the time integrations to t&~2v/ceo, where u&0 is the Einstein
frequency."M. J.Klinger, in Proceedings of the International Conference on
the Physics of Semiconductors, Exeter 106Z (The Institute of Physics
and the Physical Society, London, 1962), p. 205; Fiz. Tverd. Tela
4, 3074 and 3086 (1962) [English transl. : Soviet Phys. —Solid
State 4, 2252 and 2260 (1963)).

detail. Lang and Firsov" have provided a systematic
perturbation development of small-polaron mobility, in
which the smallness parameter |rts, defined in footnote
22j is just that obtained in Ref. (8). In the high-
temperature regime, the leading term for the mobility
is gain the same as that given in Ref. (8). In addition,
two alternating and rapidly decreasing sequences of
terms for the mobility are obtained in increasing powers
of the smallness parameter. However, in the low-tem-
perature polaro'n-band regime, using an alternate Boltz-
mann equation treatment derived by diagrammatic
techniques, these authors point out that a higher order
contribution" to the scattering between polaron band
states, not considered in Ref. (8), can compete with or
dominate the lowest-order contribution, and therefore
serve to limit the band contribution to polaron mobility.
Nagaev" has adopted an alternate approach which is
basically different from those of the previous authors.
He constructs his basic wave functions from plane-wave
combinations of states which, in turn, are superpositions
of localized states with varying distributions of the vi-
brational quantum numbers, but with a fixed number of
total excitations. From such a basis, the mean-square
dispersion of the polaron bandwidth is found to increase
with increasing temperature. Thus, he concludes that
the increase in small-polaron mobility with tempera-
ture follows from the band motion alone, and is not
associated with site-jump transitions (in this connec-
tion, see the discussion of Sec. VI). While plausible for
the case of an Einstein spectrum, where all states in the
above linear combination are strictly degenerate, such
a recipe becomes ambiguous for a finite vibrational dis-
persion which lifts this degeneracy. For this case, the
above states are chosen to lie within some energy inter-
vale L of arbitrary width. Indeed, it is pointed out that
in the limit L —+ 0, the mean-square dispersion now de-
creases with temperature as predicted in Ref. 8 and in
the present paper. Moreover, the density-matrix treat-
ment of the present paper, which is invariant to the
choice of representation, gives no evidence for any in-
crease of bandwidth with temperature $c.f. (4.5), (4.9),
(4.11), and Sec. VI].
"I.G. Lang and Y. A. Firsov, Zh. Eksperim. i Teor. Fiz. 43,

1843 (1962) [English transl. : Soviet Phys. —JETP 16, 1301
(1963)7.

'4 As pointed out by T. Holstein (private communication), this
additional contribution corresponds to processes of the type p,
Ny, I N&2 +p~1, Nq, ~1, NI, p, NI„&1,NI„&1, in which the
polaron eventually remains on site p, but the vibrational state
changes. These processes are therefore scattering events between
polaron-band states which do not constitute site-jump transitions
(p ++ p&1). That they make an important contribution is princi-
pally due to the fact that, though smaller than the 6rst-order non-
diagonal process by a factor J', they do not contain an
activation-type factor, since the above intermediate state is vir-
tual. Processes of this type can, in principal, be treated as higher
order sects within the density-matrix formalism of the present
paper. Although a proper accounting of such terms will acct the
transition temperature T&, it is felt that this will not alter the
essential features of the present paper, in particular the additivity
of our 6nal result (4.17)."E.L.Nagaev, Fiz. Tverd. Tela 4, 2201 (1962) [English transl. :
Soviet Phys. —Solid State 4, 1611 (1963)j.
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Reik" has recently shown that the high-temperature
drift mobility formula of Ref. 8 also follows directly
from the Kubo formula. He does not consider the low-
temperature mobility due to polaron-band motion. His
approach has the advantage of being translationally in-

variant, as is the density-matrix treatment of the pres-
ent paper. However, in the opinion of the present author,
Reik's final result, given by Eq. (10) of his paper, is not
correct in detail. Speci6cally, it is correctly pointed out
that this result is essentially equivalent to Eq. (57) of
Ref. 8. However, in the text following Eq. (57) of Ref.
8, it is established in some detail that (57) diverges
linearly with t, and therefore cannot represent a con-
ventional transition rate. LThis can be seen qualitatively
from the argument of the exponential appearing in the
integrand. For large v and some dispersion of the vibra-
tional spectrum co~, the sum over k of the terms pro-
portional to cos(~sr) tends to oscillate about a mean
value of zero. It is not surprising, therefore, that this
sum turns out to vary as an inverse power of 7 for large
r (specifically, as r '~') The i.ntegral therefore exhibits
a linear divergence in the limit of infinite interaction
time t. It might also be remarked that the adiabatic
factor exp(e7) is not sufficient to provide convergence
in the limit that e ~0.$ This difficulty is due to the tacit
inclusion of the diagonal matrix elements in the treat-
ment, and is recti6ed in Ref. 8 by a suitable subtraction
recipe (see footnote 20). In the present paper, the con-
tributions of the diagonal elements are rigorously ex-
cluded from the jump probabilities, thereby avoiding
this difhculty.

In a research note, Frohlich and Sewell" have dis-
cussed the breakdown of conventional band theory in
narrow-band semiconductors, and the alternate applica-
bility of small-polaron theory. They discuss a number of
scattering mechanisms in the polaron-band regime, in
addition to the nondiagonal processes operative in the
ideal case. They also note the site-jump transitions
operative at high temperatures, and calculate the mo-

bility appropriate to a two-phonon hopping process;
however, they note the larger weight which must be
given to multiphonon' transitions when the electron-
phonon coupling is strong. Frohlich, Machlup, and
Mitra" have recently called attention to an additional
aspect of the small-polaron problem which has thus far
not been taken into account: namely, the dependence
of the electronic overlap integrals on the vibrational dis-
placement coordinates (via their dependence on the
local electronic wave functions appropriate to the
irsstatstatseoscs ion positions). While this is a real physical
effect which would tend to broaden the electronic over-
lap with increasing temperature, a question remains as
to whether its temperature dependence would be su%-

"H. G. Reih, Phys. Letters 5, 236 (1963).
'r H. Frohlich and G. L. Sewell, Proc. Phys. Soc. (London) 74,

643 (i959).
ASH. Frohlich, S. Machlup, and T. K. Mitra, Phys. Kondens

Materie 1, 359 (1963).

ciently rapid to appreciably affect the strong exponen-
tial decrease of the polaron bandwidth arising from the
vibrutiomat overlap factor. As far as the effect of this de-
pendence on the hopping motion is concerned, it should
be pointed out that, as has been shown by a classical
treatment of the lattice motions, ' the site jumps occur
for a more or less particular value of the overlap:
namely, that appropriate to a vibrational con6guration
corresponding to a momentary coincidence of the elec-
tronic energies of neighboring sites. Thus, from this
point of view, variations in overlap with relative dis-
placement would not be expected to basically alter the
form of the hopping mobility obtained on the basis of
a constant overlap evaluated for the above coincidence
configuration.

The purpose of the present study is to present an
alternate formulation of small-polaron motion which
serves to treat both the band motion and the hopping
motion in a more uni6ed fashion, and also serves to re-
move some of the formal objections to the theory. This
approach is a density-matrix formulation of small-polaron
motion, analogous to (but differing in important ways
from) the well-known density-matrix treatment of Kohn
and Luttinger. "The use of such an approach is strongly
suggested by the previously described distinction be-
tween the diagonal and nondiagonal matrix elements of
the perturbation: the density matrix approach provides
such a separation in a natural and straightforward
fashion. By the general procedures of Ref. 19, a
"Boltzmann" equation is obtained to lowest order in the
overlap J' (which plays the role of the dimensionless
parameter h in the work of Kohn and Luttinger). The
time rate of change of the density matrix is essentially
given by a part which wholly describes the band motion,
plus a scattering term which provides damping of the
band propagation. In this connection, a formal difhculty
of the theory is avoided: namely, that the diagonal
matrix elements of the perturbation are rigorously
absent from the expression for the jump rate, and do not
have to be subtracted out by physical arguments. "The
principal result of the present paper, given by Kq.
(4.17), is that, to lowest order in J, the expectation value
of velocity is given by a band part (s 'r, ), p/Ns a con-
tribution due the hopping motion i4'su'. (Here, v, is
the polaron velocity in Bloch state 0-, r, is its lifetime,
( ) indicates a statistical average over the polaron
band, 8'& is the thermal average jump rate between
nearest neighbor sites, and "a" is the lattice constant. )
The density-matrix treatment therefore confirms the

"W. Kohn and J. M. Luttinger, Phys. Rev. 108, 59p (&937).
'0 As pointed out in Ref. 8, the diagonal matrix elements provide

exact energy conservation and therefore lead to a transition
probability which increases quadratically (rather than linearly)
with time. However, the time over which the diagonal transitions
can occur is limited by the lifetime of the localized states, and by
the very definition of the site-jump regime, the probability of such
a transition in such a time turns out to be much less than unity,
Hence, this is a purely formal, rather than a basic physical
diQiculty.
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separation of the two types of small-polaron mobility
according to the criteria given in Ref, 8. The present
approach also overcomes another objection to the
theory: namely, that localization of the carrier at a
given site (which is made in order to compute the jump
probability) is inconsistent with the translational in-
variance of the system. In the density-matrix approach,
the site-jump term is obtained on the basis of a zeroth-
order density matrix tcf. (4.6)j (which applies for
zero electric 6eld and zero overlap) which represent a
uniform probability distribution of the carrier over the
lattice "

In deriving the lowest-order Boltzmann equation, we
also exhibit certain interference effects among the matrix
elements which determine the scattering processes of
importance, and the form of the Bol.tzmann equation.
Although the final expectation value of velocity is in-
dependent of the choice of basis functions, the above
described program is also carried out in the polaron-
band representation, since this emphasizes characteris-
tic differences between the Boltzmann equations in the
two representations. Finally, we note that only the
lowest-order Boltzmann equation is obtained. We do
not carry out the iterative procedure by which higher
order corrections to the current can be obtained from
the density-matrix equations of motion. A systematic
treatment of this type should agree with the perturba-
tion development" given in Ref. 13.

tions centered at the various lattice sites e,r is the elec-
tronic coordinate, and the x; are the vibrational dis-
placement coordinates. In going from (2.2) to (2.1), the
x, have been transformed to the normal mode coordi-
nates, qI„of the host crystal.

The quantities H~'"& are displaced oscillator Hamil-
tonians, given by

Hb&"& = —(A'/2M) (8'/Bqb')+ 'M-ops'(qb q—b&
"&)' (2.3)

where M is the (reduced) mass of the lattice particles,
»s ——opss+o&ts cosk gives the dispersion of the vibrational
spectrum, and the q~&"' represent the displacements of
the normal mode coordinates which occurs as a result
of incorporating the linear electron-lattice interaction
in zeroth order. Finally, Eb((0) is the corresponding
small-polaron binding energy, Ii is the applied electric
field strength, and (—J) is the standard electronic over-
lap integral of tight-binding theory (assumed to be a
constant" for all pairs of nearest-neighbor sites).

The present treatment is based on the so-called jump-
perturbation approximation, in which the J-proportional
term of (2.1) can be treated as a small perturbation. "
In the absence of this term (and also for zero electric
field), the electron is confined to a particular site, say
n= P. The corresponding eigenstates of (2.1) are given
by

II. BASIC HANILTONIAN AND DENSITY-MATRIX
EQUATIONS OF MOTION

The starting point of the density-matrix formulation
is the Hamiltonian appropriate to a single excess elec-
tron in a one-dimensional molecular crystal in the
presence of a weak, externally applied, electric 6eld.
This model has been described in detail in Ref. 8 and
elsewhere, "and so will not be reiterated here. We shall
simply write down the basic Hamiltonian, attempting
to make clear the physical significance of its various
parts. The basic equation of motion reads:

i 5(Ba(n, qI, )/Bf) = (Q Hb&"&+Eb+eFn}

Xa(n, qb ) J(a(n+—1 ~ qb )

+a(n 1, qb
—)}. (2.1)

In this equation, the a(n, qb ) are the amplitudes
of the total wave function of the system in a tight-
binding expansion of the form

%(r, x," )=g a(n, x; )g(r na, x„),—(2.2)
n

in which the p are the set of local electronic wavefunc-

"L. Friedman and T. Holstein, Ann. Phys. (N. Y.) 21, 494
(1963).This reference contains the generalization for the case of
an applied magnetic Geld. The present density-matrix method can
also be generalized to treat the correlation effects discussed in this
reference xvhich are responsible for the existence of the Hall
effect in the multiphonon site-jump regime.

Eiv=Z &»(&b+k)+Eb. (2.5)

The perturbation development proceeds according to
standard time-dependent perturbation theory: The
total wave function of (2.1) is expanded in the inter-

"As pointed out in Ref. 8, the small-polaron condition J&Eb
is not sufhcient for the applicability of the jump-perturbation
approximation. Rather, the more stringent condition

qp =—J'/(Appp)'"(kTZ )"((I
where E, is the activation energy, is required (for the case T) I'p
of principal interest). The adiabatic regime referred to in footnote
4 is de6ned by J&Bb, p2&1.

where the C~, (s) are normalized harmonic oscillator
eigenfunctions of vibrational quantum number SI,.

To keep clear the later treatment, it is important to
point out that the a's should be though of as "wave-
functions" satisfying (2.1); they are functions of the
dynamical variables n and ( qb

.), and are specified
(in zeroth order) by the quantum numbers p and
( 1Vb ).Also, since the latter notation will occur fre-
quently in the remainder of the paper, the to/ality of vi-
brational quantum numbers will henceforth be abbrevi-
ated by 7: thus, 7—= ( cVb ), cV'—= ( Sb'. .),
etc. The total number of sites will be distinguished by a
capital script X.

The eigenvalues corresponding to (2.4) are
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action picture in the basis provided by (2.4):

a(/s, qs, t)= P C(p', N', t)
y/ Nl

XayN (I, qa . .)e """' ' (26)

The C's are then found to obey the equations

i fs(BC (p, N; t)/Bt) = eFpC (p,N; t)

+ g (pNI vl p'N')c(p'N'; t)e&'""&&NN I' ' -. (2.7)
y/ +/

The (pN I
V

I
p'N'& are the basic matrix elements of the

perturbation I i.e., of the J-proportional term of (2.1)].
They are different from zero only if p and p' are nearest-
neighbor sites. Their explicit form is given in Ref. 8
and is written down here for future reference:

(p'N'IVI pN)= —I g //y. , y~ig {L1—(4/K)

X (N/+s)YI cos'(k(P+-,'e)+assr)]8N~, Ns

~L(g/01)i/sep ~ 1/s((N +.1~x))i/2

(2.9), and making use of (2.7) and its complex con-
jugate. We get

/s(c/( ), /c/t)= F(p —p)( )

+ (FN F—N) (pr);N, ,N

+ 2 Dp'N'I V
I
p"N"&(pr); N-, „N

(»)—'N .y-N-(p"N"
I
V

I pN&j, (2.1o)

where the (p'N'I Vl pN) are given by (2.8). This result
can also be straightforwardly obtained by taking
matrix elements of the equation of motion of the
density operator

i'(Bpr/ctt) = DHo+ V+Hy), prg

in the local site representation,
I pN). Here Hs is the

zeroth order (J=F=O) Hamiltonian, V is the overlap
part of the Hamiltonian, and IIp=eFn is the electric-
field part.

As usual, we are interested in the linear response of
the system, and therefore set

Xcos(&(p+ s e)+~sr) $4r', Ns+i} (2 g) Pr =P+Prp y (2.11)

where p~ ——&1 according to whether k is positive or
negative, and the yI, 's are the characteristic coupling
constants of the theory, given essentially by the ratio
of the polaron binding energy to the vibrational quan-
tum @col,.

From the above form, it is furthermore clear that the
nondiagonal matrix elements are smaller than the
diagonal ones (which are K') by the factor X
where 5 is the number of quantum numbers in the set
E' which differ from the corresponding ones in 1V by
~1. As discussed in the Introduction, this distinction
is of fundamental importance.

Having completed the discussion of the Hamil-
tonian, we now consider a statistical ensemble of non-
interacting small polarons, each moving under the action
of the identical Harniltonian (2.1). In terms of the C's
defined by (2.6), the total density matrix in the local-
site representation is defined by

(pr);N, ,N= (C(p N')Ce(PN)e-- '" N-' "'& (2 9)-
where the brackets denote an average over the sta-
tistical ensemble" of small polarons. It is rather im-
portant to make clear that the distinction between the
diagonal and nondiagonal elements of the density
matrix is made only with respect to Ã and not with
respect to p (or other additional quantum numbers),
unless specifically so stated. '4

The equation of motion for the total density matrix
is readily obtained by taking the time derivative of

» R. C. Tolman, Pr&gcip/es of Statistica/ Mechanics (Ox'ford
University Press, New York, 1930), p. 327.

"The reason, as will be shown later, is that the velocity opera-
tor is nondiagonal in p, so that the only elements of the density
matrix which contribute to the current are those for which p'&p.

where p represents the equilibrium density matrix, and
pp is a small additional part linearly proportional to F.
(Here and in what follows, we follow the notation of
Kohn and Luttinger, Ref. 19, as much as possible. )
Substituting (2.11) into (2.10), one gets

&~(~py'N', yN/Bt) = (FN —EN)py'N', yN

+ Z L(pNIVlp N)..- -..

(Py)y'N', y"
¹

(p"N"
I
V

I pN& j, (2.13)

describing the linearized response.
In accordance with the adiabatic hypothesis, the

system is taken to be in thermal equilibrium at t
It is then isolated from the heat bath, and the electric
Geld is turned on adiabatically according to

F=Foe", — &t&0. (2.14)

One seeks solutions of (2.13) for which the induced
currents are at all times proportional to the applied
Geld, that is,

p y ——fe". (2.15)

"This equation will in practice be solved at t= —~ under
equilibrium conditions (8/et =0) (see footnote 34).

py N, y-N—-(P"N"
I
V

I PN& j (2 12)

as the equation of motion" obeyed by p, and

i&(~(P/);N, yN/@) =eF (P' P)Py N,»—
+ (+iNI +N) (PF)yiNi, yN

y 2 L(pN Ivlp'N &(P')' -,.
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Equations (2.14) and (2.15) are now substituted
into (2.13). With respect to the sum over N" in (2.13),
those terms involving diagonal elements of V and f
are specifically separated out from the sum. The
diagonal elements of p and f are designated by

p ~, ~=pre(N) f ~.»= fu—~(N).

In addition, we define the frequency differences

&iV'N= (FN' FN)/~ ~

Incorporating the above de6nitions, the nondiagonal
(N'NN) and diagonal (N'=N) forms of (2.13) are
given by

A(MN'N zs)fp'N'»=, UFO(p p)pp'N', »
+2 Dp'N'I V

I
p"N)f"(N')

diagonal elements of p which will be shown later to be of
the order J' or higher. In the iterative procedure, the
last two terms of (2.16) are proportional to JXf~ ~ »,
and can therefore be neglected in lowest order. The
lowest order diagonal elements f» (N) will be later
shown to be of the order'~ J ' and, thus, the second
term on the right-hand side of (2.16) dominates. We
thus obtain

f, ~,» —(——1/5) L1/(a)~ ~—zs)]

xp Hp'N'I v
I
p"N)f"(N)

—fn n" ( N')(p" N'I v(pN) j (3 1)

With respect to the second term on the right-hand side
of (2.17), it is shown in Ref. 8 that the diagonal matrix
elements of V can be put into the form

—f" (N')(p"N'I VI pN)3

+2 Hp'N'I vl p"N')f„~. ,» where

(p'N
I VI pN) = —Js-""' 2 ~y, ~., (3.2)

and

f„pp, ~—"v(p"Nl Vl pN)7

+ 2 L(p'N'I v
I
p"N")f,-~-,»

y",¹'QN, ¹

-f.-;--(p"N"
I
V

I pN)3,
(N'4 N), (2.16)

z»f'. (N) = eFO(p' p)p'n(N )— '

2 I:(p'N
I
v

I
p"N)f"(N)

IIL BOLTZMANN EQUATION IN THE LOCAL-
SITE REPRESENTATION

In the present section, we present the derivation of
the lowest order Boltzmann equation obeyed by the
diagonal density-matrix elements, f» (N). The formal
procedure is the usual one of developing the non-
diagonal elements f„~,» of (2.16) in a power series
in J, and then eliminating these in (2.17) in favor of the
diagonal elements.

Let us 6rst consider (2.16). The first (driving) term
on the right-hand side" is proportional to the non-

'8 This term gas well as the corresponding term in (2.17)g is
perhaps more familiar as the matrix element of the commutator of
the Geld Hamiltonian, Hz=eFn, and the equilibrium density
matrix, p.

f" (N)—(p"NI vl pN)3

+ 2 Dp'NI vl p"~"')f' ",.
g)11 g /I g+

f'~, ' ~-—(p"N"
I vl pN)j,

(N'= N) (2.17-).
Equations (2.16) and (2.17) provide the starting

point for the derivation of the lowest-order (in J)
Boltzmann equation, presented in the following section.

S(N) =P (1+2Ns)yt/X. (3.3)

ylr ytfl Q/I
(p Nl vl p"N")

X(p N
I
V

I pN)(1/A)[(1/av~" zs)—
—(1/ -+ )jf' '-(N"), (3.3)

where the prime denotes that the diagonal contri-
butions (N"= N) are strictly absent from the sum.

The remaining two terms, D, are the depopulation

~7 In the treatment of Kohn and Luttinger, Ref. 19, the cor-
responding lowest order diagonal elements fq~'A ', where X is the
strength of the scattering interaction and plays a role analogous
to J of the present treatment. The reason for this difference is that
in their treatment, the lowest order "driving term" C7,q(')~)P,
whereas, in the present case, it ~J', as we shall later show.

Substituting (3.1) and (3.2) into (2.17), we obtain
the equation

itsf;,(N) =eFo(p' p)p;„(N)—
—J& " '(Lf'+r..(N)+f'-t, .(N)j

ff', .+i(N—)+f',. i('N) j)+F-D(3 4—)

The first term on the right-hand side plays the role
of a driving term, while P and D, as discussed below,
will ultimately become the scattering terms. The second
term on the right-hand side is proportional to the
diagonal matrix elements, and will be later shown to
entirely characterize the polaron-band motion. The
term P is a population-like contribution which, after
introducing irreversibility at a later stage in the calcu-
lation, will ultimately become the population term in
the Boltzmann equation for certain of the elements

f~ „. It consists of two of the terms gotten by sub-
stituting (3.1) into (2.17) which, after some minor
algebra and interchange of summation indices, can be
written in the form:
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terms, and are given by

where

Di=
27// ~/// +//

and

Q)N» g —ZS

Xf " (N) (3 6)

D= Dr+De,

1(p'NI VI p"N")(p"N"
I VI p"'N)

frequencies of (3.8), while the remaining N dependence
factors out, and is just the equilibrium function
Z 'e PEN. The latter then cancels the corresponding
factors which multiply the remaining terms of (3.4)
I the diagonal elements of p are also written in product
form]. Following the general methods of Ref. 8, and
replacing the XI,'s by their thermal average values, we
obtain

y// p/// +//

1(p"'N
I
v

I
p"N")(p"N"

I
V

I
p'N)

(d~g// —ZS

J2
f'-",.+"-

fg e" &1

Xf;.-(N). (3.7)

Let us first focus on the population term, (3.5). Our
general procedure will be to manipulate this term for
fixed s, and then let s become small with respect to the
characteristic frequencies of the problem in order to
obtain irreversible behavior. '

It proves convenient to replace the difference of
energy denominators by their integral representation

2 pro&g
Xexp P —~&, coth

2

oo—ipse&t2

dT~
—sI rI~isPA&t'2

—oo—iPfg/2

2
X exp —QIp'"(p' —p, e", e"')

K

Eo&¹v"—zs caÃ&v" +zsJ
tft &koxx t'& s[&'[ , —

(3 8) pro&p
Xye csch cosa&I,r —1 . (3.11)

2
which can be readily verified.

To make further progress with (3.5), it is clear that
the N" dependence of f~ „"(N")must be specified.
It is first assumed that the diagonal elements are
factorable"

fabri&sar(N )= f&ri&isiXg(N ). (3.9)

In addition, we make the "Stosszahlansatz" that
g(N") is given by its equilibrium formss

g(N") =Z 'a t&~~" P=-(1—/kT), (3.10)
where

g & &
—pE~

is the vibrational partition function. These assumptions
will be discussed in Sec. VI.

We now substitute the expressions for the matrix
elements, (2.8), into (3.5). Also using (3.8)—(3.10), the
sum over E" becomes a product of sums, one for each
allowable value of k, and can be readily carried out.
In this connection, the assumption (3.10) works out
rather simply: namely, it is found to simply add an
imaginary part —sp5 to the times multiplying the

'8 It has been pointed out that this limiting process, in addition
to the usual "Stosszahlansatz", is an essential feature of irreversi-
ble behavior. See E. N. Adams, Phys. Rev. 120, 675 (1960).

"This, of course, does not mean that the entire matrix f is
diagonal.

'0 This stosszahlansatz is analogous to that made in the kinetic
theory of gases, in which the distribution of particles about to
collide with a given center is characterized by the equilibrium dis-
tribution function. Classically, this corresponds to the neglect of
position-velocity correlation. See D. Ter Haar, Elements of Sta-
tistical Mechanics (Rinehart and Company, New York, 1954),
p. 13. In addition, such an assumption implies that the density
matrix is suKciently slowly varying in 1P' space so as to permit,
in eBect, the replacement of energy denominators by Dirac delta
functions.

The (—1) appearing in the square brackets represents
the elimination of the diagonal elements (N"=N),
which are rigorously excluded from the sum over E".
Its presence removes the linear divergence of the
integrand for large v discussed in Ref. 8.

The quantity

Ip&'&(p —p, c", e"')=—e"e"' cosLk(p —p
——',(e"+e"'))] (3.12)

represents spatial interference effects in the population
(I') term arising from the matrix elements, and is of
crucial importance. In particular, it is found that

Ip&"&(+1, a1, a1)= —1,

Ip&s'(&1, %1, %1)= —cos2k,

Ip' (&1, &1, Ti)=cosk,
Ip&s&(0, &1, &1)= —cosk,

Ip&'&(0, a1, W1)=+1.
Now, (3.11) can be considered in the two cases that

Ps F(k) = (2/K) Ps ys csch(P&rto&s/2), (3.13)

is much less than or much greater than unity. The
latter case is the one of principal interest. "In this case,
the integrand is an oscillatory and rapidly damped
function of r, and the method of steepest descents is
applicable. For the case Ip +1, the principal con-——

"This latter case, in fact, de6nes the multiphonon site-jump
regime which takes the form of a classical, thermally activated,
diGusion process at sufficiently high temperatures (kT))&lkco).
The former case de6nes the regime in which a small number of
phonons are emitted and absorbed in a site jump. The density-
matrix treatment has not been examined in detail for this regime.
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where
// ///

ID&"& (e",e"')= —e"e'" cos ki i
. (3.17)

)
One sees that IDisl(&1, &1)=—cosk, and hence

gives a negligible contribution as discussed previously.
Physically, this choice corresponds to the process
(P'111~p"1tP'~ p'&2, X), and represents a higher
order contribution to the band motion, since E is
exactly conserved. The principal contribution occurs
for the choice ID(&1, W1)=+1, and corresponds to
the process P~ ~ (p''AT ~P"1P'), that is, a simple
scattering-out or depopulation contribution.

A basic difiiculty with regard to (3.16) is that the
r-integration extends from (—~ iP—/i/2) to only
(0—spk/2), rather than to (+ po ip—k/2) Th. is is
traceable to the appearance of only a single energy
denominator in (3.6). If this were the final result, one
would rot get the usual integral for t/t/z, but would
instead have an addition contribution from the segment
along the imaginary axis (0—iPfi/2) to (0,0). However,
if one now considers the term Ds, given by (3.7), one
can cast the result in the form

s«(kT/fi), pip, Wr '.
The integral over r can then be carried out in the

complex plane by the methods given in Ref. 8. The
final result is that

co—ipse/2(3.14) Ds=s— P f&i
fg

II

I'= sfr+t, r+t&Wr
d ge 7g 'bepk/2

where
ipily/2

tribution occurs in the neighborhood of v =0, and gives
just the standard expression for the two-site jump rate.
However, for the case II = —1, the saddle points occurs
at r= s/ top where the contribution can be shown to be
very small because of dispersion of the vibrational
spectrum. Finally, for the cases Ir (&——cosk, cos2k),
the sum appearing in the exponential would vanish for
an Einstein spectrum, and otherwise gives a very small
contribution depending on ~~, the vibrational band-
width. It is clear that the contributions for

~

P' —p~ )1
are likewise negligibly small. The final conclusion is
that only the case p'=p, e"=&1, e"'=%1 gives the
usual integral for the jump probability. Thus, the
population term contributes for P'=P, but is absent
for p'Wp. The absence of a term for P'N p insures the
existence of a relaxation time which will later be
identified as the reciprocal jump rate, H/'~ '.
Finally, s is taken to be small with respect to the
characteristic frequencies of the problem, specifically, "

J2
8'z =—

A2 pkcp~,
2'yjt, o)It; csch dk

X/2

2 p &co 1~

Xexp ——P y~ coth
K 2

Xexp m. ' pkcpjq

2y~ tanh dk (3.15)

2
X exp -P IDt'i(.",e'")~&

ZTg 67~i 6pI1/2

x—iP&~/2

2 p/iQ&y

Xexp —g yl, coth-
It; 2

2
exp —p yI,In tel (e",c"')

k

p Appian

Xcsch cosoil, r —1, (3.16)
2

"In addition, s must be small compared to the reciprocal in-
terval over which the dominant contribution to the integral (3.11)
occurs. This implies the condition s«s&p(e 'Jp~ dkF(k))'", where
F(k) is given by (3.13). However, since the square root factor is
&&1, this inequality is automatically obeyed if s((co0. It might also
be remarked that (3.5) would seem to imply the more stringent
condition s«pu, since (ca~N") co~. However, this condition does
not appear to be required by (3.11).

is the thermal average (T) jump rate (cf. Ref. 8, Eq.
(77)3

Having treated the population term in some detail,
the depopulation terms of (3.4) will now be described
in a more cursory fashion. For Di, defined by (3.6),
we get

J2 0—iPkz/2

Di ——t—P f„

pAMs
Xcsch cos(u(, r —1 . (3.18)

Again, In(+1, &1)gives a negligibly small propagation
contribution, while In(&1„%1) makes the principal
contribution. One now sees that the principal contri-
butions of Dj and D2 add, after taking the limit of
small s, to give the integral (—~ —iPS/2) to (+~—iPk/2), and

D= Di+Ds=if„„SWAN. (3.19)

Combining the results (3.4), (3.14), and (3.19), the
steady-state Boltzmann equation" in the local-site
representation reads

o=~I'p(P' P)p'u Is "(Lf'—+i,.+f—u i,.7-
—Lfn, n+i+fn .. tj)+sf.+t,~+»W~4 n-

—if„~SWr, (3.20)

where Sr pp (7s/K) coth(pkcpi/2) ——is the thermal
average of S(IV), given by (3.3).

The usefulness of a Boltzmann equation for the nondiagonal
(in P, for this case) elements of the density matrix occurs in other
areas of quantum transport. See P. N. Argyres, Phys. Rev. 117,
31S t,'1960).
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In the next section, (3.20) will be solved in order to
evaluate the expectational value of small-polar on
mobility.

'D = &a &nd)

where the diagonal (d) part is given by

().= r. (p~ I', lp'»&f;, (»),
y, y/, N

(4 2)

and the nondiagonal (nd) part by

(n&-s=- 2 (p~l ~" I
p'»'&f, N, .~

pN
p', N'gN

«3)

The matrix elements of the velocity operator are
straightforwardly gotten from the Heisenberg operator
equation of motion

v, =dn/dt= (i/A)/Hr, n5= (i/A)PH, n5,

where the last equality follows from the fact that the
commutator of IIp = eIie and e vanishes. Taking matrix
elements between localized states, one gets

(p'»'I'.
I
p»&= (i/A)(p'»'I v

I
p»'&(p' p), (4 4)—

and is therefore entirely nondiagonal in p, as one would
intuitively expect. Making use of (3.2), the diagonal
elements of ~,~ are given by

(p'»I "!p») = —(J/A) ""'(p'—p)

X Z o', n+' (43)

We next must solve (3.20) for f~ ~. In order to do
this, however, one must know the elements p„~ of the
equilibrium density matrix. Now, p is the appropriate
stationary density matrix at t= —~ when F=0. How-
ever, since JQ0 at t= —, it will depend on V, and
may be developed in a power series in J.This expansion

IV. CALCULATION OF THE CURRENT IN THE
LOCAL-SITE REPRESENTATION

As described in the introduction, the principal
motivation of the present paper is to show that the
expectation value of small-polaron mobility (in lowest
order) is just the sttnt of a band part, in which the role
of the nondiagonal matrix elements is to limit the
lifetimes of the band states, plus a thermally assisted
dift'usion contribution due to hopping between local
sites.

The expectation value of the velocity, to first order
in the electric field. strength, is given by

(r& =«(~.,f) = & (p» I ~., I
p'»'&fu ~,n~, l.4.1)

p/N/

where (p»~v, n~p'»') is the matrix element of the
velocity operator in the local-site representation, and
will be calculated shortly. Equation (4.1) is more
conveniently written

is most unambiguously carried out by the method of
Karplus and Schwinger. '4 Thus, with the density oper-
ator given by p= Z ' exp) —p(Hs+ V)5 (these symbols
are defined in the text following (2.10)5, one has

(p»l exp' p(-H. +V)5 I
p'» &=Z "-t"--~» ~ i~.-;

PEN e
—PEN/

g—1 x-(p»i vi p'»')
h&KN/

(p»~v~p, y &&p» ~v~p»&+Q x-'
AM~//~/

Pl/ N/ —PI/N —P&N// —P&Ne —e e —eXz'—
L7~~//

Of particular interest is the leading term of the
expansion

, (oi (») =Z 'e t'z~8s(s(, K—8, (4 6)

which is diagonal both in» and in p. This form reflects
the translational invariance of the problem in that it
gives an equal (t priori probability for the polaron being
at any site on the linear chain. Thus, in this respect,
the random-phase approximation is made at the initial
time (t= —eo ), but is not repeated at later times. Since
p "1 is diagonal in p, it clearly will not contribute to the
driving term of (3.20). The first such nonvanishing
contribution is made by the second term of the above
expansion, which is written

p~t/. „//"= —X '(p'»'~ V~p//&Z 'e t'x//

X (1—e—~""»'/A(u// //) . (4.7)

Thus, the first nonvanishing driving term of (3.20) is a
mixed field-scattering term ( JXFs).

The corresponding diagonal elements are obtained
by taking the limit as (u» ~ 0 smoothly. Using (3.2),
the result is

ti, (i)(»)=PJe s(//)Z ie Psr/ g— g, — — (4 g)

These results suffice for our present purposes. Al-

though we will not consider higher-order approxima-
tions, it is of interest to note from the products of
matrix elements appearing in the expansion, that only
for the odd terms of the series will p'= p&1. (For the
second-order term, for example, it is clear that p'=p,
p&2.) Hence, only these can "drive" the f~ „~t which
alone contribute to the net current, as will be later
shown.

We are now in a position to solve (3.20) for f~.~ and
obtain. (s)s. The homogeneous solution of (3.20) is gotten
by setting the driving (Fs-proportional) term equal to

'4R. Karplus and J. Schwinger, Phys. Rev. 73, 1020 (1949),
Appendix I; also see Ref. 19, Appendix C. The expansion of the
density operator can alternately be gotten by direct iteration of
(2.12) under the equilibrium conditions (8/st=0) applicable at
t = —00.
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~po Jg—Sz'

f~~= i (P' P) —Z ~',~'
kT ART a=+1

(4 9)

zero, and is shown in Appendix A to entirely charac-
terize the polaron-band motion, and not to contribution
to the net current. The homogeneous solution can be
shown to be orthogonal to the driving term, insuring
the existence of the inhomogeneous solution given by

The above quantity" J', and leads to (v)„z&'i

which dimensionally is of the order of 8'T, as desired.
We now substitute (4.7) for p'"„~,„~ into (4.12),
and then, in turn, substitute (4.12) and (4.4) into (4.3).
In addition, it proves convenient to symmetrize the
resulting expression by adding the trace gotten by
interchanging (p,E) and (p', X') in (4.3), and then
dividing by two. The result reads

1—g P""NN

Igp

that (4.5) and (4.9) are both properly odd in p space,
in analogy with the properties of vi and fi, in the usual
transport integral expression for the current of con- 1 1

ventional band theory. Substituting (4.9) and ( .5) ~~ ~+i~&
into (4.2), and recalling that f~ „(N)=f~ + 'e i'~",
one obtains the first half of our result, namely, that

(4.13)
&i»a= —~ops, (4.10)

In principal, there is some difficulty in carrying out the
where the band contribution to the mobility, p~, is

sum over Ã' due to the presence of the last factor in
given by the Einstein relation

square brackets, which cannot be expressed as a product
-2J2g—2ST over the individual vibrational modes. However,

pg= (4.11) noticing that
kT f22

and where rT=8"T '. The quantity in square brackets
is just the band-diffusivity, and is identical with
equation (100) of Ref. 8.

Next, let us consider (v& d, defined by (4.3). The
lowest order j~~,„~ which could contribute to the
sum is gotten by substituting (4.9) into (3.1). Dimen-
sionally, one sees that this f~.& „v J'. and since
v„J', this would lead to (n) d J'. However, it is
shown immediately below that this contribution in
fact vanishes, and that one must go to the next order
in f~~,„~ to obtain a finite contribution. To show
this, we substitute (4.9), (3.1), and (4.4) into (4.3).
Interchanging summation indices here and there, the
result can be written:

1

ZS " +IJ)

dl'e'"~'~'e "'—~ i2m-b((ug; v), (4.14)
s~O+

one sees that energy conservation applies (in the sense
of time-dependent perturbation theory), and that the
square bracket can be replaced by its limit as co» ~ 0,
i.e.,

1—e
—Phiz

hm
Ace~ y

Using the first equality of (4.14), Eq. (4.13) can be
written

(~&.a"'= ——
$2 +tg +rs~lr +III

x(p'&I v
I
p"&"&&&"&"

I
v

I
p'"»

1 1
xl

(&de"N zs co%"%+as)

Sy the previous arguments, the only choice giving a
finite result is p"'=p'. In any case, however, some
addition manipulation shows that the two choices
P"—P'= &1 exactly cancel, with the result that
(v&„q~'i —=0. The first nonvanishing contribution to
&n&„s occurs if we use the j„~,„~ which is "driven"
directly by the field term, namely fcf. (2.16)j,

1 1
f x v= —— eI"o(p' p)p"';~ ~~ (412—)

5 coyly —ZS

e
—ia&NINt'

g
—sl t'Id]1

The factor in curly brackets is precisely 8'T as defined
by Eqs. (47)—(49), and (51) of Ref. 8. Since this is
independent of p, the summation over p just cancels
the (1/K) factor, while the two cases p'= p&1 cancel
the factor of 2'. The final result can be put in the form

(i».a"' = —&op+, (4.15)
"There is an additional contribution to f„N,» also of orderJ which is gotten by once iterating (2.16): specifically, by resub-

stituting (3.1) into (2.16),where f„.„is given by (4.9).Some exami-
nation shows that this term makes a negligibly small contribution
to the net current because of incoherence of the matrix elements of
the type discussed in the text.
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where the "hopping" mobility is given by

pE= (e/kT)WTa', (4.16)

EN is given by (2.5), and

AErf, ~= —2JC ( ) COS0 . (5.4)

where a (lal =1) is the lattice constant of the linear
chain.

To summarize the principal results of this section:
Total small-polaron mobility, within the jump-per-
turbation approximation, takes the form of a sum

PT= PE+@XII (4.17)

where the band part, (4.11), arises from the diagonal
part of the trace for the expectation value of velocity,
while the hopping contribution (4.16) arises from the
nondiagonal part. Thus, the present treatment verifies
the separation of the two types of small-polaron motion
made in Ref. 8 on the basis of physically reasonable
considerations. In particular, the concept of the tran-
sition temperature, T&, as approximately de6ning the
domain of validity of the two regimes, follows im-
mediately. In addition, the result (4.16) reflects the
translational invariance of the problem as expressed
by (4.6). Further discussion of (4.17) is given in Sec. VI.

V. POLARON MOBILITY IN THE POLARON-
BAND REPRESENTATION

Some additional insight can be gained by reformu-
lating the density-matrix treatment in the polaron-band
representation of small-polaron motion. Since this
development is in many ways similar to that given for
the local-site representation, the results will be stated
more brieQy, with particular emphasis given to the
differences" between the two cases.

Just as the local-site representation is the appro-
priate choice at high temperatures (T)Tt), the
polaron-band representation is more appropriate in
the low-temperature regime (0(T(T,). In the latter
case, as discussed in Ref. 8, the diagonal matrix elements
play the dominant role. If these alone are taken into
account in (2.7), it is found that the stationary solutions
to the latter equation are of the form

c„=e'r' expLi(f/A)72Je 8&N) coso. , (5.1)

where 0-, the polaron wave vector, takes on the usual
values imposed by periodic boundary conditions. The
corresponding eigenstates and eigenvalues are then
given by

a N(N qt, )

=e'"' g 4'N l (Mo)t/It)'t'(qt —qt t &)7, (5.2)

and
+tt, N @%+~+a,

¹
(5.3)

respectively, where as before, S stands for ( E„),
"These differences will not, of course, acct the final expectation

value of velocity which is independent of representation.

Thus, in incorporating the diagonal matrix elements
in zeroth order, the basic states (5.2) are Bloch-type
plane-wave combinations of localized states, while the
energy spectrum (5.3) is manifestly of a band-type
character.

The residual interaction due to the nondiagonal
matrix elements is taken into account by expanding the
total "wave function" a(n, . q), ) in the basis pro-
vided by the polaron-band states

a(rt, q„)=Q C(o'E, t)a;N e '&"")E"N' (55)

and then substituting this into the full Hamiltonian
(2.1). In analogy with (2.7), the equations obeyed by
the C(trX) are"

BC(trÃ) c&C(oÃ)
t'fi =t',eF + Q (trial Vltr'1V')

rr'N'

gC(tr jP)e (tlat)(EaN Eg~Ni) (5 6)—

where the (trial Vl tr'1P) are the matrix elements of the
perturbation in the polaron-band representation, and
are given as plane-wave combinations of those in the
local-site representation, i.e.,

(~el Vl~'x')=(1/x) g e '"-"(pal Vl p'x'). (5.7)

As a consequence of writing (5.5) in the interaction
picture, the sum (5.6) excludes the term for which
o.'=o and N'=E. Hence, (5.6) describes only non-
diagonal transitions between polaron-band states. Using
(3.2), the above neglected diagonal matrix elements
can in fact be shown to be of the form

(trial Vltr'1V)= 2Je E&N) costrB;—, ,

that is, the diagonal (in S) matrix elements are diagonal
in 0 as well, a result which will be of needed in connec-
tion with the evaluation of the velocity operator in the
polaron-band representation.

With the replacements

p ~ Ir

(pj&/I v
I

p'&')

+N ~ ~o'Ny NN' ~ +a%,o' N'

(PT) rtiV, rt'Ã' ~ (PT) aÃ, r'N'

«(P' P) (p)'N—nÃ ~ eF, ,+ l(p) "N,.N
a~' a~)

37 The form of the electric field term follows from the standard
procedure of replacing tte*~by i (8/Bt'r)e'", integrating over —tr
by parts, and applying the periodic boundary conditions.
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Of particular interest will be the case 0-'= a. Here,

F..= (2/X)Wr Q f.+a...+a. . (5.10)

Now, it can be easily shown that the density matrices
in the two representations are related by

From this, one can easily show that

and, in particular,

However, summing (2.17) over (plV), and interchanging

(plV) with (p"S") in the last terms of the sum, one
sees that for any finite s&0,

the equations of motion for the density matrix are
closely analogous to (2.16) and (2.17) in the p repre-
sentation. The only diBerence is the absence of diagonal
elements of V in the sums over intermediate states
(o"1P'), this being compensated for in the analog of
(2.17) by the appearance of an additional term
(&F.N hF-;—N)X f;.(X) in the zeroth-order energies.

Consider first the analog of the population term (3.5).
One substitutes (5.7) expressing the matrix elements in
terms of those in the local-site regions. The summations
are again restricted to those for which the interference
factor L'cf. (3.12)$ gives a finite contribution. After
some considerable algebra, one gets"

F.;= (2 cos(o' —o)/X)lVr P f.+a...+a, . (5.9)

With respect to the depopulation terms, one again
finds that the two analogs of D~ and D2 add to give a
conventional depopulation term of the form

D;.= —t'f. ,AWE (5.13)

cj 8
(o.'S'

i
v.v i

o 1V) =— +—(o 'iP
i
V

i

o.S),
(30 l90

1PW X, (5.15)

while
(o'Ejv, v~oE)= (2Je i i/fi) sinob, ,„(5.16)

i.e., that the diagonal elements of v,~ are diagonal in 0-

as well, this being a consequence of (5.8).
One can also show that

p
(i) (PJe sv/07)2 coso. —

(5 17)

It will be seen immediately below that the case of
interest is a'=o. In this case, using (5.12) and (5.13),
one gets the Boltzmann equation

(5.14)

This equation is quite analogous to the Boltzmann
equation of conventional band theory, the first term
representing a standard acceleration term, and the
second a depopulation term characterized by a re-
laxation time rr= Wr ' Lthe population term is absent
by virtue of (5.12)j. In particular, a term analogous
to the second term on the right-hand side of (3.4) is
missing in (5.14). This term is shown in Appendix A
to describe the polaron-band motion, and its absence
in (5.14) simply reflects the fact that the latter is already
accounted for in the basic states (for a'=o).

The reason for the particular interest in the case
0-'=0- can be seen from the form of the matrix elements
of the velocity operator. Using (5.2) for the polaron-
band states, one straightforwardly finds that

and therefore,

Substituting (5.17) into (5.14), solving for f'„, and
taking into account (5.16), one finds that

(5.11)
(v)d=Q v„f„=—(eFs/kT) (2Je sr/5)'rr(1/K)

This simply expresses particle conservation given by
the invariance of the trace of p. namely, that the
electron must be somewhere in the crystal and that
this is unchanged by the application of an electric field.
The final result of these arguments is that

I'„=0. (5.12)

This result corresponds to the vanishing of the popu-
lation term in the local-site representation for p'Np.
Lcf. (3.20) and text following (3.13).j Both results are
consequences of the independence of 8'~ on the initial
and final states (this being characteristic of multi-
phonon processes).

In getting this expression, we neglect the time-dependent ex-
ponentials of the type exp((st'/A)(AB, ,N riZ„N)}, in view of-
the smallness of E„zwith respect to MI, .

XP sin'o.

(eF&/~T)P(2J'e 'sv/h')r j (5 18)

a result identical with (4.11).
Finally, from the nondiagonal density-matrix equa-

tion, one has that

1 1 8 t9

fa'N', sN= eFo +—
5 GO~~~i, 0~—ZS 190 t9(T

XP. N, .N"', (5.19)
where

X(o'1P
i V |oÃ). (5.20)
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From (5.19), and (5.15), one can establish that

(& nd &o'N, o' N/ o'¹,4rN &yN, y'N' p'¹,yN p

o'N, o'N' PN. u/N/

and is, therefore, identical with the result

eFO
(s) s——— %ra',

kT
(5.21)

obtained in the local-site regime. This establishes the
equivalence of our 6nal result in the two representations.

VI. SUMMARY AND DISCUSSION OF RESULTS

In this section, we present some discussion of the
physical significance of our results. Our 6nal result
(4.17) states that, to lowest order in the density-matrix
treatment, the two contributions to the mobility are
additive. Thus, both mechanisms are operative at any
given temperature, although one of the two dominates
at temperatures far from the transition region (which,
to lowest order, is now entirely characterized by the
above additivity of our result). In particular, the theory
predicts no discontinuous change from band-like
behavior to a localized description of the mobility. It
might (hopefully) serve to clarify this point by con-
trasting our result with the well-known predictions of
Mott."Mott considered the conductivity of a crystal-
line array of atoms as a function of their interatomic
spacing. He presented arguments to the effect that, at
some critical value of the interatomic spacing, there
should be an abrupt transition from a localized, real
(and therefore nonconducting) state, to nonlocalized
current-carrying state. For an array of monovalent
atoms, ~ he emphasizes that these are not alternate
zeroth order descriptions of the ground-state wave
function, but rather correspond to physically different
states, the one assumed by the system being the one
of lower energy. In the present paper we are not, of
course, comparing coneeetioeal band theory with a
localized treatment of the charge carrier. The parame-
ters of the theory are assumed to be such as to favor
localization and small-polaron formation (J(Eb, tls«1).
Rather, we are studying the question of whether small-
polaron motion occurs predominantly by polaron-band
motion, or via site-jump transitions. The thesis of the
present paper is that this question is decided by the
simultaneous action of the two basic classes of matrix
elements, and their relative importance as a function
of temperature. In particular, the effects of the diagonal
and nondiagonal matrix elements, essentially contained
in the polaron bandwidth and site-jump rates, respec-
tively, are continuous (albeit exponential) functions
of the temperature; there is therefore no reason to

's
¹ F. Mott, Can. J. Phys. 34, 1356 (1936).

4s For divalent atoms, the two representations (i.e., Heitler-
London and Bloch) are equivalent; however, Mott gives additional
arguments for the abrupt transition. Thus, in this respect, this
contrast is not entirely appropriate.

expect any discontinuity. Thus, the persistence of some
small residual amount of band motion for T&T&, in
the opinion of the present author, is simply a mani-
festation of the fact that band motion will always exist
and contribute to the conductivity whenever one has
periodicity, as indeed one has in the present case. The
fact that its contribution is small, simply means that,
from one point of view, the time for the polaron to
move a lattice spacing via band motion ( 5/AE, , i+i)
is much larger than the time between multiphonon
site-jump transitions (Ws '). The latter therefore
dominate the charge transport in this regime (2') Ti).
For T&T~, the diagonal matrix elements dominate,
and polaron-band motion, described by the alternate
Boltzmann Eqs. (3.20) and (5.14), is the principal
conduction mechanism. Here, the nondiagonal tran-
sitions provide scattering between polaron-band states,
and, as shown by (4.17), also make a small contribution
of their own to the hopping mobility. The particular
choice" of band states appropriate to this regime, it
should be emphasized, plays no essential role, since (tt)
is independent of representation.

In conclusion, the following additional points should
be noted with respect to the speci6c treatment of the
present paper. First, the iteration procedures employed
on Eqs. (2.16) and (2.17) are essentially the same as
those of other more conventional treatments of quantum
transport. ""In this connection, the use of perturbation
theory is strictly valid, since it has been assumed that
mls(&1 (cf. footnote 22). Turning next to the separability
assumption (3.9), this simply expresses the fact that
the thermal excitation of the many degrees of freedom
of the lattice is insensitive to the location of the single
excess electron (or hole). With regard to the stoss-
zahlansatz (3.10), it should be pointed out that such
an assumption is a necessary ingredient of any theory
which obtains irreversible behavior from entirely time-
reversible density-matrix equations of motion, as far
as is known to the present author t in this connection,
see the discussion following Eq. (42) of Ref. 19j. This
assumption should not basically affect the structure of
the 6nal results, speci6cally, the additivity of the two
contributions to small polaron mobility which, as em-

phasized earlier, depends basically on the decomposition
of (s) into parts depending on the diagonal and non-
diagonal matrix elements of the perturbation.
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APPENDIX A

In this Appendix, we discuss the physical signi6cance
of the homogeneous solution of the difference Eq. (3.20)
(which obtains for zero driving term, i.e., Fs——0). It is
instructive to first consider the solution of (3.20) which

applies in the absence of damping, that is for 5'z =0
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(i.e., to order J ). For this case, a possible solution is of
the form4'

where, for reasons which will be evident shortly, cr„

denotes the rea/ part of the wave vector, o. For f to
be Hermitian,

it follows that r,'=O.„and
= g&(u' —u) &~u'n (A1)

y'yN

satisfies (3.4) (for Wr=0) identically. "
This is a propagating type solution describing the

polaron-band motion in the absence of damping. The
contribution made by (A1) to the expectation value of
the velocity is

Letting o., -+ —o., in (A3) and again using the Her-
meticity condition f~ „*=f», one 6nds that

(A4)

Hence, the net current due to the homogeneous solution
in the absence of damping is

2Je S~ 1—P f.„sino„=0, (A5)

because of (A4). This simply verif'tes that the un-
perturbed polaron-band motion (in the absence of both
scattering and the electric field) carries no net current.

A somewhat more interesting case occurs for non-
vanishing damping (Wr/0). Since the coefficients of
(3.20) are constants, a representative solution is again
of the form (A1); however, it is clear that (3.20)
cannot be satisfied by 0. pure real. Rather, one must
have

where
o= o,—io.;/2, o'= rr„' io/2. — .

f ~ (X)=Z—'e-s~&f ~

where f„„is given by (A1), and t~ „(N) by (4.5). One
straightforwardly finds that

=(2Je sr/fi) sino„, (A2)

that is, the expectation value of velocity in polaron-
band state o-,.

However, instead of (A1), one should really have
the superposition4'

Again from the Hermiticity condition, one gets that

and

(A6)

Thus, in addition to the propagating part depending
on the difference (p' —p), there is an additional part
depending on the centroid L(p'+ p)/2j, which describes
damping of the polaron-band motion due to the non-
diagonal transitions. IThe relation between o-; and the
amount of damping may be obtained by substituting
(A6) into (3.20); one finds that

(A3) f'o., AWr
sinh~—

2 4Je—Br s,n
(A7)

4'This form also follows directly from the definition (2.9) to-
gether with (5.1)."Substituting (A1) into (3.20) (for Fo 0, Wr =0) gives-—
—2Je sr(cosa —coso) —=0.

4' This is, of course, nothing more than the transformation of the
density matrix from the local-site (p) to the polaron-band (e)
representation.

It may be noted that the damping becomes infinite
for sina-„=0, i.e., for zero velocity of propagation;
however, this causes no formal difhculties. Finally, one
can show that the expectation value of velocity (e) is
identically zero for the state (A6), as it must be.


