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small r, Hr(ms*) goes to zero, the self-energy of the
vacancy being canceled, while as r —+~ the only
energy is the vacancy-lattice self-energy.

To continue in the spirit of Haken we fit Hr(ms*)
to an exponential such that it behaves properly for
large and small r, the result being

Hl(ms*) = (es/2e*r)L1 —e s"t'j—(e'/eeet) . (A7)

The exponential fit is not too good for r&a but in the
region of interest is sufficiently accurate.

The last terms in Eqs. (A4) and (A7) are the self-
energies of the electron and vacancy due to the polariza-

tion of the lattice. These negative terms outside the
potential well are equivalent to a change in the zero
of energy inside, and in fact these terms derived from
polaron theory are analogous to the last term in 8',
Eq. (5). Thus to be perfectly consistent one should,
when using the Haken dielectric constant, replace the
last term in W by the quantity (e'/e*)L(m/2)+ (1/a) j.
This we have not done. For the large-orbit state the
terms in question are approximately equal, since tt/2

((1/a and e'/ ea =e'/e*R However, in treating a
smaller-radius excited state one should use the Haken
self-energy.
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The independent-oscillator model fails to predict the dielectric behavior of the high-dielectric-constant
materials BaTi03, SrTi03, and KTa03 in certain infrared-frequency regions near the three infrared-active
modes. A more general classical model is proposed with mode coupling. The model has one additional param-
eter for each pair of modes that are coupled, and gives decreased (or increased) dielectric loss in certain
regions between the modes, compared with the independent oscillator model. Very satisfactory fits to re-
Qectivity data for the above materials are obtained using the coupled-mode theory. In a mechanical analog
of the model, the coupling element may be either a spring or a dashpot, since the two cases are shown to be
equivalent. For the above materials, however, there is a physically interesting simplification in the spring-
coupling form, since two of the otherwise arbitrary parameters are zero. The result suggests that the damp-
ing is best viewed as applying to the total polarization rather than to the individual normal modes.

INTRODUCTION

' 'N an insulating crystal with more than one infrared
~ - active mode, the reactivity in the restrahlee region
is often quite well reproduced by a formula involving
the sum of contributions from independent classical
oscillators. ' There are notable exceptions, however.
The high dielectric constant materials BaTi03, SrTi03,
and KTa03 provide a striking example. In 6tting
independent classical oscillator expressions one is
immediately faced with compromises when choosing
the darn. ping constants for some modes. For example,
near 21-p, wavelength in the case of SrTi03, the reQectiv-
ity shows a dip to a value of less than 1% The low
damping indicated by this dip is inconsistent with the
large damping nearby. ' Figure 1 shows SrTi03 reRectiv-

*Work supported in part by the National Science Foundation.
'W. G. Spitzer and D. A. Kleinman, Phys. Rev. 121, 1324

(&96j.).' In general, such dips occur at the frequency where e', the real
part of the dielectric constant, is passing through the value e'=1

ity data and the best over-all classical oscillator ht. '
The fit can be improved near 21 p by decreasing the
damping constant of the highest frequency mode. This
eGect is shown in the figure

—there is an improved fit
near the minimum but a poorer fit elsewhere. The 6.t
can also be improved by decreasing the damping
constant of the lowest frequency mode. Again there is
improvement only over a small wavelength interva1.
Similarly, the rather square reRectivity shoulder extend-
ing from 22 to 26 p, cannot be reproduced at all by the
classical oscillator formula without choices of damping
constants which spoil the 6t elsewhere.

There are two separate di%culties involved in
attempting to go beyond the classical independent
oscillator model. One problem is to correctly describe

on the high-frequency side of a mode. If e", the imaginary part
of the dielectric constant, is zero here, the reactivity will dip to
zero. The dip then provides a sensitive measure of c" which, in
turn, depends directly on y, the damping constant.

3W. G. Spitzer, R. C. Miller, D. A. Kleinman, and L. E.
Howsrth, Phys. Rev. 126, 1710 (1962).
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FIG. 1. ReQectivity of SrTi03. The curves were calculated using
three independent classical oscillators. For the dashed curve the
damping of the oscillator at 18.4 p, was reduced approximately a
factor of 3 to improve the 6t near the reQectivity minimum.

If H~; is the matrix element for converting a photon into
an optical phonon of type i, and H;& is the matrix
element for converting an optical phonon i into the
final state f, then the transition amplitude for creating
several other phonons f via intermediate phonon i is
given by

where E; is the energy of an optical phonon of type z,

and E& is the energy of the photon. This expression
would have to be modified slightly for Eg very near E;.
The net transition probability for getting from a photon
to state f is, of course, proportional to the square of the
absolute value of the sum of the transition amplitudes
via all intermediate states i; that is, to

the frequency dependences of the damping "constant. "
The calculation of this frequency dependence' ' involves
the knowledge of the phonon spectrum of the crystal
and the nature of the anharmonic interactions, and is
beyond the scope of the present paper.

The second difficulty concerns the independence of
modes. In crystals having more than one k=0 trans-
verse optical mode which interacts with light, a quan-
tum mechanical calculation shows that the damping of
the different modes is not necessarily independent.
The interaction of the damping of diBerent modes can
be represented by a classical model. This classical
model is developed for the case of two k=0 transverse
phonon-optical modes in the present paper. The use of
this model to fit the reQectivities of BaTi03, SrTi03,
and KTa03 produces a major improvement in the
agreement between experiment and theory. In addition,
it provides insight into the relation between the normal
Inodes and the damping process.

Interaction Damping —The Quantum
Mechanical Cause

The usual damping of optical modes is due to the
process

optical phonon ~ several other phonons,

induced by anharrnonic terms in the lattice potential-
energy expansion. Similarly, optical absorption assoc-
iated with an optical-phonon transition is due to the
process

photon l —+ optical phonon z ~ several other phonons f
(and similar processes involving other orders of events).

4 M. Born and K. Huang, Dynamical Theory of Crysta/ Lattices
(Clarendon Press, Oxford, 1954), Sec. 46.

~ V. S. Vinogradov, Fiz. Tverd. Tela 3, 1726 (1961) LKnglish
transl. : Soviet Phys. —Solid State 3, 1249 (1961)j; R. F. Wallis
and A. A. Maradudin, Phys. Rev. 125, 1277 (1962); M. Lax,
Phys. Chem. Solids 25, 487 (1964).

If the contributions of different intermediate state
phononsi were independent, this sum would necessarily
reduce to

Under certain special cases, this reduction occurs; for
example, if one term completely dominates the sum for
a given Ei, or if H;~ couples one state s to states f, and

other states i' only to f', i" to f", etc. In general,
however, (1) not (2) is the appropriate expression. ' ' In
this general case, the optical absorption due to the wings

of different phonon lines are not additive. It is to be

expected that such interference will manifest itself in

the vicinity of Ei=E;, although simple formula, s like (1)
are then not sufhcient.

g +I lg1+klpl —81+ (3)

with I'=e&y&, is the most general one mode equation

possible for the polarization I' as a function of electric
field E, if by "one mode" we mean a dielectric response

function having only one pair of simple poles. For
positive I'~, the system is of course dissipative.

I et us define a two-mode dielectric response function

as a response function having two pairs of poles. The
most general such dielectric response function which can

be generated from a set of equations of motion of two

variables (consistent with all motions of the variables

6 J. J. Hopheld, Phys. Chem. Solids 22, 63 (1961).
r G. 13aym and V. Ambegaokar, Phys. Chem. Solids (to be

published).

Interaction Damping —The Classical Approach

The fundamental reason that a simple classical one-

level resonance expression for the dielectric constant
performs as well as it does for a crystal having but one
k=0 optical branch is that the region of primary
importance is relatively narrow in frequency. The
simple classical equation of motion
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being dissipative) can be writtens

gl+pltt'1+ (kl+k12)$1 k12$2 el@

tF2+I 2@2+(k2+kls)$2 —k12$1= 82K

P= /%1+$2~2

(4)

(71+712 Y12 (P 1

! =n/ 2e
—',

$12 72+712 1 0 P2

(Ml 0 ) kl+k12 k12

k 0 M22I kls k2+k12

Such a unitary transformation which diagonalizes the

Here, y1 and y2 are the displacements of particles 1 and
2. The F and k coeKcients represent damping and
restoring forces and the e coeKcients, effective charge.
The only restrictions on the real constants I'&, I'2, k&, k2,

kls, el, es are that I'1, I'2, (kl+ks+2kls), and pklks
+k12(kl+k2) j be positive. The usual dielectric model
for two independent oscillators is identical to the above
model with k12=0.

The above equations of motion can be written in the
following equivalent way:

at+ (71+712)at 712+2+Mt at st+I

+2+ (72+712)+2 712at+M2 &2 22+
y (5)

P= $1$1+S2X2

with the equivalence given by

~

~

cosg sin0
7—sino cos0

force constant matrix can always be found. 8 is given by

cot'0+ Dks —kt)/klsfcot8 —I =0.
The mechanical model corresponding to Eq. (5) is

shown in Fig. 2. We can quickly see the importance of
such a model in the present work. For a driving field
of nearly any frequency, the three dashpots p&, 72, and
y~2 shown in Fig. 2 contribute to the losses. If the two
particles are oppositely charged there will be some
frequency intermediate to the two resonant frequencies,
however, where the particles move together causing the
y12 dashpot to be inactive. At this frequency the losses
will be reduced. This is the situation we anticipate near
21 p in SrTi03. The model originally was conceived in
this latter form $Eq. (5)) where the mode coupling is a
dashpot, and it has been found much easier to fit data
with this form. Equation (4) with only harmonic-force
coupling was found useful in checking the over-all
dissipative nature of the solution when the negative
y's were encountered. Of course, an arbitrary number of
equivalent intermediate forms could be written involv-
ing both kinds of coupling by using unitary transforma-
tions u which diagonalize neither the force-constant
matrix nor the damping matrix. We return to the sig-
nificance of the transformation between the equivalent
forms after obtaining the explicit solutions to Eq. (5).

We shall search for the harmonic solutions

E) $1, $2 8

Inserting these dependences into Eq. (5) and solving,
we obtain

ZCO+12S2E

M2 M +2M (Y2+712)

+122

Ml M +2M(71+ Y12)+
M +2M(72+712)

$~2)
@2= Same with 2~ I)

~+1)

~12

We compute the dielectric constant by adding the
currents arising from the driven motion of each oscil-
lator plus the usual background term e arising from
any much higher frequency modes such as excitons,
and from the vacuum.

where

e= e„+42rP/E= e„+el+e2,

el =4&s1$1/8 q e2 =4&s2$2/E.

4&sl +242rs1$2M712//M2 M +2M(72+712)j' To simplify notation we have included the reduced mass (nz)
of the mode in the definition of the mode amplitudes, force
constants, and charges. In these and following equations force
constants have dimensions of (frequency)~; damping factors and
effective charges have dimensions of {frequency). The effective
charges here are equal to e*/(m Vl'", where e* is the usual eFFective
charge defined when the local electric field is taken to be the
macroscopic field and V is the volume of the unit cell.

Ml M +ZM(71+712)+M Y12 /LM2 M +2M(72+712)]

(7)

for the dielectric constant. Interchange of subscripts
giVeS e2.

FIG. 2. Mechanical model of two optic mode oscillators with
interaction damping. The dashpots yi, y2, and yi2 provide damping Subst&tut&ng~ we obtain
forces proportional to velocity.
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Fro. 3. Interaction model lit (sohd curve) to
SrTi03 reflectivity data.
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Fro. 4. Independent mode (dashed curve) and interacting
mode Gts to BaTiOII.

DISCUSSION

Examining Eq. (7), we note that when p»=0 we have
the usual noninteracting classical oscillator. If y~2/0
and ss ——0 (an infrared active mode interacting with an
infrared inactive mode) there can still be interaction
effects on e~ via the last term in the denominator. A

third point is that the sign of the second term in the
numerator depends on the signs of the effective charges
of the two interacting modes. The independent mode
formula is insensitive to the sign of the effective charges
since only s~' and s2' appear. We thus have a new method
of analyzing ion motions for comparison with a theoret-
ical normal mode analysis if fits are carried out using
the interacting-mode theory. Both possibilities for the
net sign of s~s2 are encountered in the fits described
below.

Figures 3, 4, 5, and 6 show the fits obtained for
SrTi03, BaTi03, and KTa03 using interaction damping.
There is a great improvement in the region that could
not be fitted by any choice of parameters using un-

coupled oscillators. In computing the curves only two
modes were taken to interact because of the very
cumbersome equations for the 3 interacting mode
case. A third classical mode was added in each case,
however, as these perovskite structure materials all
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I'IG. 6. Independent mode (dashed curve) and interacting
mode its to KTaO3.

have three optically active modes. To compute the
reflectivity E we use e= et+es+es+e where er and es

are given by Eq. (7),

es=4rrss'((~sr ~'+is&ys) (independent mode),

Table I gives the mode parameters used in each figure.
SrTi03 does not have an anomalous refiectivity near
178 cm ' so there seems no need to invoke the additional
coupling of the two lowest frequency modes to explain
the data. In KTa03, however, there is considerable
deviation from independent oscillator behavior at low
frequencies. The two lowest frequency modes have been
coupled to produce the excellent fit shown on the right-
hand side of Fig. 6. In BaTios (Fig. 5) the departure
at low frequencies from independent mode behavior is
small, though Ikegami et aL. do show a larger effect in
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TABLE I. Oscillator parameters used in calculations.

Fig. No. Material

47rz1

Interacting modes'

+1++12 47rz2

GP1 C02

(cm ') co1 co2' (cm ')

P2++12 +12

C02 (GP1(02)

Third independent mode
47rZ32 Y3

N3
ca3s (cm ') a&3

1 solid
1 dashed
3 solid
4 dashed
4 solid
Sb solid
6 dashed
6 solid (4—34')
6 solid (40—80p,)
7

SrTi03
SrTiOg
SrTi03
BaTiO3
BaTiO3
BaTi03
KTa03
KTa03
KTa03
BaTi03

311 88 0.4 1.56
311 88 0.4 1.56
311 88 0.4 1.56

2000 34 2.5 1.0
2000 34 1.7 1.0
2000 34 1.8 2.0
209 85.1 0,6 2.2
209 85.1 0.5 2.3
209 85.1 0.45 5.0

same as Fig. 4—solid curve

544 0.05 0
544 0.015 0
544 0.02 0.09
510 0.06 0
5io 0.025 0.21
183 0.01 0.08
549 0.043 0
549 0.040 0.12
199 0.020 0.07

3.6
3.6
3.6
2.0
2.0
1.0
5.
5.
2.3

178 0.04
178 0.04
178 0.04
183 0.03
183 0.03
510 0.06
199 0.012
199 0.012
549 0.043

5.2
5.2
5.2
5.3
5.3
5.3
4.3
4.3
4.3

a In CaSeS Where y12 =0, all mOdeS are independent. The mOde Strength 47rZ12/CO12 iS the Same aS 4n-p1 in the nOtatiOn Of Ref. 3.
b The s1gn of z& z2 must be taken as negative in all interaction calculations except for Fig. 5. For this case the interacting charges have the same sign.

their far infrared results. ' We have not attempted to
fit their data but only note that the damping interaction
is capable of giving the required dispersion effect near
180 cm ' if s~s~ is taken to be positive.

Miller and Spitzer have shown that the reQectivity
of KTa03 can be fit exactly with the independent
oscillator model by allowing the damping constant of
the lowest frequency mode to change with frequency. "
The changes they require vary over two orders of
magnitude. Our results cannot be directly compared
with the Miller and Spitzer results because our Eq. (7)
cannot be rewritten as the sum of independent oscilla-
tors with frequency-dependent damping constants.
There is substantial agreement on the experiment
problem. To fit the KTa03 reQectivity data, the over-all
damping must be reduced in certain regions. Our thesis
is that such reduction can be characterized by the
simple model presented here and is due to an inter-
ference or competition during decay of the two (or
more) optic phonons. It is not primarily due to details
of the phonos spectrum. "

In each case shown in the figures, it is the strong,
lowest frequency mode which interacts with one of the
other modes. The reason for this is that when the
infrared signal has a frequency near one of the higher
modes, the lowest frequency mode still vibrates with a
very large amplitude even though it is far from res-
onance. If we consider the frequency to pass slowly
through the higher mode resonance we have the ions

S. Ikegami, I. Ueda, S. Kisaka, A. Mitsuishi, and H. Yoshi-
naga, J. Phys. Soc. Japan 17, 1210 (1962).

"R. C. Miller and W. G. Spitzer, Phys. Rev. 129, 94 (1963).
In this work the authors have neglected resonant-frequency
shifts which are associated with the frequency-dependent damping.
These shifts arise in a natural way in the theory (Ref. 5) and must
be inserted in any phenomenological expression to satisfy the
Kramers-Kronig relations.

"The transition probability expression given by Kq. (1) must
be multiplied by a density of final states and summed over the
final-state phonon spectrum. Deviations from the independent
oscillator model can arise from the phonon spectrum therefore in
addition to the deviations which arise from the coupling being
considered here.
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Fro. 7. Lossy part of the dielectric constant (e") for the interac-
tion model fitted to BaTi03. The lower part of the figure shows c"
for modes 1 and 2 separately. e" due to mode 3 (at 183 cm ')
is too small to show,

participating in each mode undergoing large displace-
ments first in phase then a little later, 180' out of phase.
Thus, there will be a great difference in the losses below
and above resonance, if there is some anharmonicity in
bonds connecting these ions.

The most striking feature of Eq. (7) for e is the
behavior of e~", the lossy part of the dielectric constant
associated with the lowest frequency mode. Near co2,

E] goes through a dispersion and has a negative going
spike over a small-frequency region (see Fig. 7). Thus,
this mode by itself is giving power to the field. The
over-all e" is, of course, positive, but 'the'spike 'does
cause the reduction in losses which is 'a feature of the
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titanate spectrum. This effect is shown in Fig. 7 for
BaTi03. In the lower part of the figure the contributions
of the two interacting modes are shown separately. The
dispersion in er" (which arises from the interaction
damping) is seen to cause a reduction in the total e"
on the low-frequency side of the mode. The effect is
the same in SrTi03 and KTa03. The appearance of a
negative e~" does not violate any theorem on passive
devices. The modes cannot be coupled to individually,
so only the total 6eld, total polarization, and total
dielectric constant concern us. The total e" does remain
positive.

Different models like those corresponding to Eqs. (4)
and (5) will of course provide the same fit to data
since they are equivalent wi.thin a unitary transforma-
tion. These models can be of use, however, in providing
insights into the physical system of lattice vibrations.
In this regard, it is particularly striking to note the
results of transforming the parameters appropriate to
the fits in Figs. 3, 4, and 6 (solid curves) using Eq. (5),
to the parameters for Eq. (4) where the coupling is

represented by a spring. Table II shows the force
constant and damping matrices and the effective charge
vectors for both models. We find that the equivalent
two-mode system described by Eq. (4) (lower half of
Table II) ha, s one mode with all the damping (I'r) and
nearly all the charge (e&),

"but coupled by a spring to
an undamped mode. Viewed from this representation
not only is it possible to fit the experimental curves
better than with the independent oscillator model, but
two of the otherwise arbitrary parameters are in fact
approximately zero. Said in another fashion, we find

using this viewpoint that it is the total polarization of
the two modes which is heavily damped.

SUMMARY

Fits to the reAectivity of BaTi03, SrTiO3, and KTa03
have been considerably improved by considering the
interaction of optic modes in a crystal during the

"The squares of the eftective charges should be compared
since these determine the dielectric constant.

Force NI
602

Diagonal force model
BaTip3 SrTiO3

1156 7744
260 000 296 000

KTa03

7242
301 000

Damping +1++12
+2++12

+12

57.8
12.7
27.6

35.2
10.9
19.7

42.5
22.0
25.9

Charge (4m-)'~2SI 1520
(4~)1/2ss —510

1552—679
1230—833

Diagonal damping model
BaTi03 SrTiO3 KTao,

Force kI+kI2
k2+kI2

kI2

48 860 76 130
212 400 227 000
100 400 122 600

100 000
208 600
136 700

Damping

Charge

I'y
F2

(4~)'"eg
(4~)'"es

70.9—0.4.

1592
192

46.2—0.1.

1686
162

60.2
4.3

1485
2.2

a The small negative values for F2 are the result of the original reflectivity
fit. Very small changes of the original parameters (Table I) can cause F2 to
be zero or slightly positive without causing noticeable changes in the
refiectivity. Theoretically, ra must, of course, be positive.

energy decay process. A simple classical model of the
interaction provides in a quite natural way the reduction
in damping at frequencies near certain optic modes. One
parameter specifies the strength of the interaction. This
parameter is the only additional quantity which must
be determined in the usual process of fitting an infrared
reAectivity spectrum. The interaction parameter may
be represented in a mechanical model by a spring or a
dashpot. Transformation to the spring-coupling rep-
resentation has shown that for certain modes in the
perovskites it is the total polarization which is heavily
damped. The interaction process is very important in
materials with one very strong mode and several weaker
modes such as those presented here. It may be important
in careful fits to any multimode crystal if variations of
damping constants with frequency are to be studied.

TAaLE II. Force constants, damping factors, and effective
charges for the best refiectivity fits. See Eqs. (4) and (5) for
notation.


