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lished de Haas-van Alphen data of Joseph and Gordon,
indicates that the two bands cross at a point about
0.04 A ' from the I'EM plane.

The transition region of magnetic breakdown across
the small energy gap between these two bands has
been studied in detail. The quantum oscillations which
are observed in the galvanomagnetic properties are
a transition region phenomena resulting from a per-
turbation of magnetic breakdown by the Landau levels
of the needle. The structure of the oscillations indicates
that these Landau levels are split into discrete spin
levels having a very large effective g factor. The data

are insufhcient at present to allow us to determine if the
quasiparticle states predicted by Pippard contribute
.significantly to 0-».
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Methods for treating boundary-value problems involving helicon waves (whistlers in solids) are developed
and used for infinite plates and cylinders. The magnetoplasma inside the solid is assumed to be "driven" by
means of external coils, which set up an oscillatory Geld with sinusoidal variation along the two coordinates
tangential to the surface of the sample. The results show that in surfaces parallel to the external magnetic
field an unusual surface mode is present; in this mode (for small resistivities) the power absorption due to
Joule heating fails to decrease as the resistivity is decreased, until the limit of anomalous skin effect is
reached, in which limit the lossy mode disappears. Several remarks are made concerning the various geometri-
cal and physical properties of helicons.

1. INTRODUCTION

' AGNETOPLASMA oscillations obeying the same
- ~ equations as atmospheric radio whistlers' were

first reported in solids (sodium) by Bowers, Legendy,
and Rose'; in the context of solid-state physics they are
known as heEcoes. The name is due to Aigrain, ' who
first proposed achievable experiments to detect them
in solids. 4

Sets of resonant frequencies in various materia1s, in
addition to Na, were observed by Cotti, ryder, and
Quattropani' ' (In, Al, and Cu); Chambers and Jonesr
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i L. R. O. Storey, Phil. Trans. Roy. Soc. (London) 246A, 113
(1953).' R. Bowers, C. R. Legendy, and F.E. Rose, Phys. Rev. Letters
7, 339 (1961).

'P. Aigrain, Proceedings of the Irtteruatiortal Couferertce ort
Semicouductor Physics, Prague, 1960 (Publishing House of the
Czechoslovak Academy of Sciences, Prague, 1961),p. 224.

4However, see also O. V. Konstantinov and V. I. Perel', Zh.
Eksperim. i Teor. Fiz. 38, 161 (1960) LEnglish transL: Soviet
Phys. —JETP ll, 117 (1960)j. This article deals with electro-
magnetic waves in a metal, in a magnetic Geld. The authors
apparently did not recognize the feasibility of experiments at
frequencies below the collision frequency.

5 P. Cotti, P. Wyder, and A. Quattropani, Phys. Letters 1, 50
(1962).

(Li, Na, K, Al, In, and InSb); Taylor, Merrill, and
Bowers (Cu, Ag, Au, Pb); Libchaber and Veilex
(InSb, at microwave frequencies); Kanai" (PbTe, at
radio frequencies); and Khaikin, Edelman, and Mina"
(Bi, at microwave frequencies). Detailed experimental
studies of the mode structure in rectangular parallel-
epipeds were made by Rose, Taylor, and Bowers" (Na),
and, with more refined detection techniques, by Merri11,
Taylor, and Goodman" (Na). Cotti, Wyder, and
Quattropani' ' attempted a theoretical justification for
the semiempirical rule" obeyed by the resonant fre-
quencies, however, the present author disagrees with
their formulation of the boundary-value problem.
Chambers and Jonesr exploited the helicon resonance

P. Cotti, A. Quattropani, and P. Wyder, Phys. Kondens.
Materie 1, 27 (1963).

'R. G. Chambers and B. K. Jones, Proc. Roy. Soc. (London)
A2?0, 417 (1962).' M. T. Taylor, J. R. Merrill, and R. Bowers, Phys. Rev. 129,
2525 (1963).' A. Libchaber and R. Veilex, Phys. Rev. 127, 774 (1962).

"Yasuo Kanai, Japan. J. AppL Phys. 1, 132 (1962).
"M.S.Khaikin, V. S. Edel'man, and R.T. Mina, Zh. Eksperim.

i Teor. Fiz. 44, 2190 (1963) /English transl. : Soviet Phys. —JETP
17, 1470 (1963)j."F.E. Rose, M. T. Taylor, and R. Bowers, Phys. Rev. 127,
1122 (1962).

» J. J. Merrill, M. T. Taylor, and J. M. Goodman, Phys. Rev.
131, 2499 (1963).
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phenomenon as a means of measuring Hall coefficients
with high precision. An abstract proof for the existence
of helicon modes (in samples with zero resistivity) was
given by I egendy i4

The macroscopic treatment of helicons may be
conveniently started from the equation

E+EjXB=pj,

where E, B, and j are the electric field, magnetic field,
and electric current; E. and p are the Hall coefficient
and resistivity, respectively (all in rationalized mks
units).

This article is concerned with the consequences
of (1.1). Equation (1.1) will be assumed to hold true
inside the sample carrying helicons; the 6eld outside
the sample will be approximated by the product of a
static field and the time-dependent factor exp(ioir).
Equation (1.1) was derived from the Boltzmann
equation by Cotti, Quattropani, and Wyder. s

Besides the standard assumptions ensuring that (1.1)
correctly relates steady currents and fields, we under-
line, for emphasis, the assumptions ensuring that it
correctly relates currents and fields depending on posi-
tion and time. These assumptions require the wave-
length and time period of helicons to be much larger
than the relevant parameters of the microscopic con-
duction mechanism. (The article of Chambers and
Jones' contains a thorough list of the assumptions
involved in (1.1).)

When the wavelength becomes small, the helicon
phenomenon becomes dependent on the microscopic
properties of the medium. This case is beyond the scope
of the present paper, it is treated in Refs. 15—26.

The dispersion law for short-wavelength helicons
propagating along the magnetic 6eld was derived by
Sheard, " starting from the results of Rodriguez" and
Kjeldaas'~ obtained for acoustic absorption. A thorough
treatment of the short-wavelength and high-frequency
limit was given by Kaner and Skobov. '8 Taylor,
Merrill, and Bowers" observed ao edge in the absorp-
tion of short-wavelength helicons in sodium and
explained it in terms of the Doppler-shifted cyclotron
resonance predicted by Stern" (similar to the Doppler-
shifted cyclotron resonance connected with ultrasonic
waves, discussed by Kjeldaas"). Kaner and Skobov, "
Miller, " and Quinn" predicted giant quantum oscilla-
tions in the absorption of helicons; Stern and Callen"
predicted interactions between helicons and magnons;

"C.R. Legendy, J. Math. Phys. (to be published)."F.W. Sheard, Phys. Rev. 129, 2563 (1963)."S. Rodriguez, Phys. Rev. 112, 80 (1958)."T.Kjeldaas, Jr., Phys. Rev. 113, 1473 (1959)."E.A. Kaner and V. G. Skobov, Zh. Eksperim. i Teor. Fiz. 45,
610 (1963) LEnglish transl. : Soviet Phys. —JETP 18, 419 (1964)g.

"M. T. Taylor, J. R. Merrill, and R. Bowers, Phys. Letters 6,
159 (1963).' E. A. Stern, Phys. Rev. Letters 10, 91 (1963)."P.B. Miller, Phys. Rev. Letters 11, 537 (1963).

Ps J. J. Quinn, Phys. Letters 7, 235 (1963)."E.A. Stern and E. R. Callen, Phys. Rev. 131, 512 (1963).

Kaner and Skobov, "Langenberg and Bok,s4 and Quinn
and Rodriguez" predicted interactions between helicons
and phonons. The latter interaction was observed by
Grimes" in potassium.

The present paper is organized as follows: Sec. 2
deals with helicons in an infinite medium; in Secs. 3—6
boundaries are introduced. In Sec. 5 the boundary-value
problem is solved for an infinite plate perpendicular to
the external magnetic field, an in6nite plate, and an
infinite cylinder parallel to the external magnetic field.
In each case an oscillatory "driving 6eld, " sinusoida)ly
varying along the two coordinates tangential to the
boundary, is assumed, and the response field is com-
puted as a function of the frequency and the tangential
wave vector. In Sec. 6 is it shown that, ignoring
anomalous skin effect, the Ohmic loss in the boundary
surfaces parallel to the external 6eld does not tend to
zero in the limit of zero resistivity. Under anomalous
skin-effect conditions the surface mode responsible for
the loss disappears.

I'or the sake of symmetry and simplicity in what
follows, we shall call all 6elds inside the sample helicon
fields, instead of restricting the term to the freely
propagating component.

E+EjX Bp= pj. (2.1)

Take the curl of both sides and combine with
Maxwell's equations, neglecting displacement current.
Letting the z axis point along the field Bp the result is:

po t)b Bb
+~V X +V X(VXb)—=0, —

p 8s
(2.2)

I= BpR/p :M T. —
Assuming plane-wave solutions of the form

b=b(0) exp[i(pit —k r)j,
k= (n,a,p),
r = (x,y,s),

Eq. (2.2) becomes:

(2.3)

(p p/p) ioib —uyk Xb+Pb =0,
k'=n'+P'+y' (2 4)

Written out in detail, (2.4) is a set of three coupled
homogeneous linear equations for the three components
of the constant vector b(0). The secular equation has

~ D. N. Langenberg and J. Bok, Phys. Rev. Letters 11, 549
(1963).

25 J. J. Quinn and S. Rodriguez, Phys. Rev. Letters 11, 552
(1963)."C.C. Grimes, Bull. Am. Phys. Soc. 9, 58 (1964).

2. HELICON WAVES IN AN INFINITE MEDIUM

Write B=Bp+b(r, t), where Bp is the (uniform and
constant) external magnetic field. Then, by assuming
Bp))b, linearize (1.1):
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(t o) *=~7+i(P/~7) [(po/p)~ iK—

(b) = —~'-&'
(2.6)

Factorizing (2.5), the dispersion relation may be re-
written in the following simpler form' ':

a&= (p/po) (uky+ik'), (2 7)

and the solution':

b= (ny+ikP, py ikn—, cP —P')—exp[i((ot —k. r)]. (2.8)

In the limit p~0 the product pl= BoR re—mains
unaltered and the second term in (2.7) tends to zero,
thus (2.7) becomes' 4

(o= —po 'BoRky. (2 9)

If k~, ko, kr are any orthogonal components of k, the
component y can be expressed in terms of these, and
so can k'. Thus (2.5) interrelates the four (complex)
quantities co, kg, k„kg, and if any three of these are
specified, it can be solved for the fourth. In the cases
to be treated below, co, kg, k, are given real numbers;
Eq. (2.5) is a quartic equation in kr, and therefore in
general it yields four di6erent complex roots. For each
of these, k' is well defined, but k has two values. The
one to be used in (2.8) is the one satisfying (2.7).
[Because each of the four kr satisfies (2.5), and (2.5) is
merely the square of (2.7), one and only one square
root of k' for each kr necessarily satis6es (2.7).g

The above discussion should replace the remarks
connected with a "+"alternative in Eq. (3) of Bowers,
Legendy, and Rose'; the discussion concerning this
point in Ref. 2 is confusing.

In the remainder of this section we shall make several
simple remarks pertaining to helicons.

Direct computation from (2.8) shows that for a plane
wave of helicons

VXb=kb,
j=tio 'VXb=tio 'kb (2.10)

Thus, when k is real, the current associated with a
single plane wave is everywhere parallel to the magnetic
field. Let us multiply Eq. (2.2) through by p/po, let
p —+0, replace the operator 8/8z by iy and —the
operator P' by the vector —ik. Then (2.2) becomes:

ab/Bt =ooX b, (2.11)

ca= —tio 'BoRyk= constant vector.

Equation (2.11) can be recognized as the precession
equation. There are two ways in which the vector ~ can
be real: If all components of k are purely real, or if all

one root leading to a physically unacceptable solution;
dividing out that root, the secular equation becomes:

[(po/, p) ~ i—k' J' —u'k'y' =0 (2 5)

From Eq. (2.4), aside from an arbitrary constant factor,

This is the standard form of a circularly polarized wave;
the screw sense of the instantaneous pattern is deter-
mined by the right- or left-handedness of the Cartesian
coordinate system GiG&k. Note that changing the sign
of k, changes the sign of Gi, but leaves G& unchanged.
One can see at once that when k is negative, the screw
sense is right-handed; when k is positive, the screw
sense is left-handed. [Note that, by Eq. (2.10), 3 and b
are antiparallel when the screw sense is right-handed
and parallel when it is left-handed. j

Of course, when the wave vector is made complex,
the geometrical clarity of the situation fades.

So far, no mention has been made of the electric field
patterns. If the current density is specified, (2.1) gives
the electric 6eld explicitly; when p —+0, this relation
takes the form

E= -RjXBo. (2.12)

As seen from (2.10), the currents in any given plane-
wave form a pattern identical to the magnetic 6eld
pattern, except for a multiplicative constant. Thus all
remarks made for magnetic 6elds can be repeated for
currents. However, they cannot be repeated for electric
fields. Equation (2.12) shows that when p —+ 0, E
cannot have a component along Bo. Thus, unless
n=P=0, the electric field has a longitudinal part, i.e.,
a part with Q EAO, as well as a transverse part. If the
reader has not encountered a similar situation before,
he may wonder if this is compatible with the assumption
of neglecting displacement currents. The latter assump-
tion brings one of Maxwell's equations to the form
V'XH= j; therefore, the electric current is represented
as the curl of a vector and it can have no divergence.
This means that space charges cannot periodically
build up and disappear, thus the electric field cannot
have a longitudinal component. The paradox disappears
in the light of the actual magnitudes of the quantities
involved. The current does have a longitudinal com-
ponent, but it is about 10' times smaller than the

components of k are purely imaginary. A glance at the
expression for ~ shows that when E(0, the scalar
product oi Bo is positive in the former case and negative
in the latter. This means that if the vectors rotate
around the field lines in a sense agreeing with the
cyclotron rotation of the carriers, the waves propagate
freely; if they rotate oppositely, the waves are exponen-
tially damped.

When k is real, the instantaneous spacial pattern of
6elds might form a right-handed screw, or a left-handed
screw; the screw sense is determined by the sign of k.
To show this, let a= (0,0,k'), k =k/k, Gi =k Xa
= (kP, —kn)0)) and Go=kX (kXa) = (uy Py n'—P'—)
Clearly, when k and the components of k are real, Gi
and Go are two real vectors of equal length, perpendic-
ular to each other and to k. Now, Eq. (2.8) can be
written as follows:

b= (G2+iGi) exp[i((ot —k r)].
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transverse component (the ratio between conduction
current and displacement current densities at 10 cps
is about 10"). Thus, space charges do periodically
appear and disappear, but they are very small. The
reason why the longitudinal component of electric field
is still of the same order of magnitude as the transverse
component is that E itself is very small; it is about 10'
times smaller than that which would correspond with
the same magnetic field in a freely propagating vacuum
wave. The number 10' is the ratio of the speed of light
to the helicon phase velocity at 10 cps.

The dispersion relation (2.7) does not contain the
assumption that the resistivity p is small. For one can
rearrange Eq. (2.7) to read as follows:

—(poR/p) V X (jXb) (2.13)

must be added to the left-hand side of (2.2). And yet,
a single plane wave of form (2.8), obeying the dispersion
relation (2.7), still satisfies the equation. For, by virtue
of (2.10) in such a wave j=po 'kb, and in the nonlinear
term (2.13)

jXb= (1/pp)kbXb—=0.

Thus, (2.13) identically vanishes. The sum of two
solutions is, as usual in nonlinear equations, not
necessarily a solution.

3. BOUNDARIES

The problem of dealing with boundaries has been
Grst considered by Cotti, Wyder, and Quattropani. '
They assumed that the boundary condition to be
satisfied is that all three components of E must be
continuous at the boundary, and no electric current
should cross the boundary. In their second paper' the
authors drop the former condition and retain only the
latter. (Indeed, the normal component of E is, in
general, discontinuous. ) Chambers and Jones, ' in their
treatment of driven oscillations (in an infinite slab) use
the condition that the tangential components of
magnetic field must be continuous across the boundary;
in calculating frequencies of free oscillation they use
the current condition (i.e., the requirement that
currents do not cross the boundary).

We wish to make a few comments on these boundary
conditions. Since all three articles deal with nonferro-
magnetic materials of Gnite conductivity, there can be
no surface currents in either, and all three components

sr E. F. Johnson (private communication).

1+iI(y/k)

In the limit n—~,v —+0 this reduces to the standard
skin-effect formula.

The following remark" concerns helicons whose
amplitude is not small. Suppose b is not negligible
compared to Bp. Then a nonlinear term

of the magnetic fields must be continuous across the
boundary. This boundary condition, together with the
assumption that the vacuum fields are static, implies
that the current condition is satisfied. (For, if a vector
is continuous across a boundary, the normal component
of its curl is also continuous, but inside the sample
&XH is the current; outside the sample &XH is
zero. ) However, the assumption that a field satisfies the
current condition clearly does not ensure the continuity
of H. Furthermore, in Sec. 5, we shall be able to con-
struct a solution satisfying the current condition in a
finite cylinder for any given frequency. The latter
construction dramatizes the criticism against identify-
ing a frequency as a frequency of resonance merely on
the ground that at that frequency there exists a helicon
6eld satisfying the current condition.

In the present article we shall use the boundary
condition that all components of the magnetic Geld are
continuous. Since the problem is quasistatic, this
implies that the boundary conditions on electric 6eld
are automatically satisfied. The latter statement may be
verified as follows:

Assume that the Geld b(r) exp(i&et) satisfies (2.2)
inside the sample, satisfies QXb=0 a,nd g b=0
outside the sample, and is continuous at the boundary.
Construct an electric field E~ defined outside the
sample such that AXE, = —ia&b(r). (This can always
be done by use of the Green's function for the curl
operator, i.e., in parallelism with the elementary
calculation of a static magnetic field from the current
distribution. ) The electric field inside the sample, E;„„
is uniquely determined from b through (2.10) and (2.1);
one can easily check that automatically, V XE;„,=so&b.

Write the electric field outside the sample as Ei+Es.
The boundary condition requires that the tangential
components of electric 6eld be continuous at the
boundary; thus, with Ei and E;„, given, (Es)«„s is

specified at the boundary: (E&),,s——(E;n.—Ei)«ns.
From the continuity of the normal component of b it
follows that the line integral of Es over any closed curve

lying on the surface vanishes. Thus a scalar potential p
can be defined on the surface in such a way that
(Es)«„s——(—gy)«~s. (The definition can be made
unique by taking into account the net charge on the
sample. ) The problem then reduces to extending p into
all space in such a way that Q'y=0 throughout and

y —+ 0 at infinity. This problem is a well-known case of
the Dirichlet problem, "and can always be solved.

The problem of driven oscillations will be formulated
in parallelism with the standard problem of "reAection
and refraction" in optics.

Imagine the vacuum field decomposed into an
"incident" component or "driving field" de6ned as the
Geld set up by the driving currents alone (i.e., as if the
sample were removed), and a reflected" component

' P. M. Morse and H. Feshbach, M'ethods of Theoreticu/Physics
(McGraw-Hill Book Company, Inc. , New York, 1953), Chap. 5.
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due to the currents and charges in the sample. (Note
that the former may be singular at infinity, the latter
may be singular inside the sample but not vice versa. )
The "transmitted wave" is the helicon 6eld in the
sample so chosen as to satisfy the boundary conditions
at the samples surface.

As indicated in the Introduction, in Sec. 5 we shall
consider three types of infinite samples: A plate perpen-
dicular to the magnetic field, a plate parallel to the
magnetic field, and a cylinder parallel to the magnetic
6eld. For all three of these the driving field will be
assumed to be a sinusoidal function of the two coordi-
nates parallel to the surface; the corresponding com-
ponents of the wave vector are the two given quantities
referred to in the previous section as kg and k„. With
these specified, the field equations restrict the third
component to a choice of two in the vacuum and a
choice of four in the conductor. Of the former two, one
leads to singular behavior at infinity —that must be
chosen as the incident wave; of the latter four, some
may lead to singular behavior inside the sampl" those
must be disregarded. The complex constants mu]tiply-
ing the allowed flelds (counting the reflected fleld too)
are the only unknowns of the problems, and for them
the boundary conditions provide the necessary and
sufhcient number of equations.

From the results it is then possible, if desired, to
obtain "resonance curves" by fixing kg and k, and
varying the frequency.

4. REFLECTION AND REFRACTION

The following two simple boundary-value problems
shall serve to illustrate the method outlined in Sec. 3.
The solutions in Sec. 5 consist of straightforward
synthesis of the observations made in 4A and 43 below.

A. Conducting Front in the x,y Plane;
o., g, pp Specified

Suppose the region s~0 is filled with conductor of
resistivity p, satisfying (2.1), and the rest of space is
vacuum. Assume the driving field has a frequency co and
its variation along x and y is wavelike; n, P, and &o are
specified by the problem. The component n is real;
without loss of generality we can set 8=0.

The dependence of the fields on x, y, and t is described
by the factor expi(p~t —nx). We remark that the tangen-
tial phase velocity ~/n is not the speed of light in vacuo,
but is many times smaller. (In a typical experiment in
sodium' it is of order 10' times smaller. ) The frequency
co is dictated solely by the oscillator connected to the
driving coils, and the wave number e by the geometrical
configuration of these coils. Since the problem has
translational symmetry along x, y, and t, and is governed
by linear equations, standard symmetry argument
shows that the rejected field and the helicon field must
have the same sinusoidal variation as the incident 6eld.

We shall denote the incident and reflected field by bp
and b„respectively.

Since bp cannot become infinite as s ~ —pp and b„
cannot become inflnite as s ~ po bp and b„must have
the form:

bp

b„
XP(—in, 0,a (n()e+~ ~',

r

~i(cot—nx)
)

(4.1)

where the upper line corresponds with the upper sign,
and the lower line with the lower sign. The scalar
quantities bp and b„are constants (possibly complex);
bp is given, b„ is unknown.

The components of wave vector called k~ and k, in
Secs. 2 and 3 are here n and P; and, as was said there,
for the third component kr (in the present case y) the
6eld equations allow four diGerent values which can be
found from (2.5). They are

72 74

1+i.u (pp/ppi) +-'pi' N&&y —Z

) g=
1jl'

coy= —Pp BpEQ

Im7i& 0, Im72~ 0. (4.2b)

To write down the helicon solutions (2.8) it is necessary
to evaluate the quantities k corresponding to each 7.
These are "defined" in (2.7), which can be rearranged
as follows:

With these and (2.8), the four helicon waves are

bi
X$(&7,&ik, —)e ' "

3

Xg(asap, aikp, —n)e '»*,
4

p
—&i(&ot aa)—

(4 4)

One can check, by going to the limit p —+ 0, that bi
and bp differ in their direction of circular polarization;
so do b3 and b4. By definition Lsee (4.2)j, y& and p& have
positive imaginary parts. (For the case p=0, when yi
and 73 are purely real, 7~ is chosen by means of a
limiting procedure p —+0+. Below, we shall assume
that p is never strictly zero )Therefore b. p and b4

k„= (1/Ny„)P(pp/p)pp ik 'g,—tt=1, 2, 3, 4. (4.3)

From (4.2) and (4.3) it is seen that the four values k„
are pairwise connected by the relations

k3 ———ki, k4= —kp.
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2e/ —bp 2n bp
I

12
I
A+A

b1= —,b2= b„=
ILIA+A' ki ILIA+A' k2 ILIA+A'

1 1
A= )

k1 k2

ZV 1 172A'= — +
k1 k2

B. Conducting Front in the y, z Plane;
Ii, y, pp Specified

Let the region x&0 be filled with conductor, and the
rest of space be vacuum. Assume that, similarly to the
case in 4A, the driving Geld imposes a sinusoidal
dependence of the Gelds on the tangential coordinates
and time; the variation is characterized by the three
real quantities, P, p, and 4p. Note that, because the s
direction is singled out by the vector Bp, neither 8 nor

y can be set equal to zero without loss of generality. By
the same arguments that lead to (4.1), the incident
and reQected wave are

bp

X$(RK,—iP, —iy)e+",
1

« —(p2+~2)1/2

(—e/(zz/ //2 yz)——

Equation (2.5) is most conveniently solved for k'; the
expression for k' only involves p and not P.

4 4p )1/2-2

k2= ——,'242y2 1~I 1+i——
I

24 p/2l

M2= —PP BP+P )

from this,

A2= —Q4

( 4 ~ 1/2-2 1/2

=, —«2 —igpy2 l~l 1+2——
I.

' ( N~,

diverge at s —& —~ and must be excluded. (In Sec. 5A,
where the sample is finite in the s direction, we shall
have need for all four solutions. ) The constants bi and
b2 together with b„ in (4.1) are the unknowns of the
problem. For the three unknowns the boundary condi-
tion that b is continuous at s=0 furnishes three
equations:

yibi+ypb2+i/2b„= —i42bp,

—ik1b1—ik2b2= 0,
nbi+e/b2+ Inl b„= Inlbp.

The solution is:

bi

bp

bl
Xf( K'—,+/21p+ikiy)anil ik—ip)e~*

b, b,
X$( K, +Q2p+2k2V +422'Y 2k2p)e

b4

(4 8)

Of these, bp and b4 diverge when 2: —+ —pp and must be
dropped. (In Sec. 53, where the sample has a finite
extension in the x direction, there will be need for all
four solutions. ) The coe%cients bi and b2 together with
b„are the unknowns of the problem; for them the
boundary conditions furnish the following three
equations:

(—K')bi+ (—K')b2 —( K)b„=«—bp,

(/21p+2kiy) bi+ (npp+ikpy) b2 (—ip—)b„= —ipbp,

(421& ZkiP)bi+ (a2"r zk2P)b2 ( zp)b„= zpbp.

The solutions are

—2 1
b1 —bp,

«A+A' ki

2 1
b2= —bP, b„=

«A+A' k2

—«A+A'

«A+A'

1
A=— )

k1 k2

1&1 ZQ!2

+—.
k1 k2

Finally, consider Eq. (4.6) in the limit N))4p&/4p2. At
the frequency &p=(K/y)&p2 the quantities n2 and 424

vanish, which means that the helicon wave vector is
tangential to the boundary. Above this frequency o.2

and o.4 are real, but below it they are imaginary. The
phenomenon is recognized as a phenomenon familiar
from geometrical optics: total reliection; below the
frequency (K/p)&d2 the tangential phase velocity of the
artificial vacuum wave becomes lower than can be
matched by helicons.

The same does not occur when the conducting surface
is parallel to the x,y plane. In the limit I~ ~, p —+ 0
the phase velocity is given by Eq. (2.9): p'/k
= —/ip 'BpRy. When y is fixed by the driving field, the
phase velocity is fixed, but if only n and P are fixed by
the driving field, the phase velocity can be made smaller
than any arbitrary quantity by choosing p smal]

enough.

For the purposes of the present arrangement it is
desirable to replace (2.8) by

( «2,n—P+ikg, ny ik8—) expLi(&u/ —k.r)], (4.7)

which differs from (2.8) only in a constant factor
«—2/(ny+ik8) T.he four helicon waves are:

Imn1~ 0 ) Imo. 2& 0. (4.6) S. THREE SIMPLE RESONANCE PROBLEMS

The corresponding four values of k are computed by
means of (4.3); they are pairwise related as follows:

k1= k3, k2= k4.

Sections 5A, SB, and SC contain the solutions of
three resonance problems that can be solved exactly.
The term "resonance problem" is intended to underline
the fundamental di6erence between these three problems
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and the two described in Sec. 4. It can be verified at once
that, in each of the problems below, for a axed wave
vector of the driving field there exist no@zero (com-
plex) frequencies for which the secular determinant
vanishes; the same is not true in 4A and 48,

b,= b„ig(—in, 0,—Iul)e
—

~ ~ &*—&

=b„o$(—in, O, lnl e~~~ &z+z&,

in region s& a,
in region s( —u,

(5 2)

where b, i and b„2 are constants, as yet undetermined.
Of the four helicon fields (4.4) all four will be needed;
their amplitudes bj, b2, b3, b4 are further unknowns of
the problem. For the six unknown constants the
boundary conditions furnish six linear equations; three
express the condition that at the surface s= a, all three
components of the magnetic Geld are continuous; the
other three express the same for the surface s= —u. For
the sake of illustration, the six equations are written
out below:

pie ' t"bi+yoe ' t"bo pie' ttzbo —yoe' t"b4-
in( b, i) =——in—(coshna)bp,

ik, e 'f't'zbi i—koe '&t'bo+ik—ie' t"bo

+okoe'»'b4= 0

b] —~g i&2 b2 —~pi&1 b3—OIgi&& $4

A. In6nite Plate Peryendicular to Bp

I et the region —u &s ~a be filled with conductor and
let the rest of space be vacuum. As in Sec. 4A, the two
specified components of the wave vector are n and P;
n is real; without loss of generality we set P=O. The
allowed values of y are those given in (4.2).

Suppose the incident field is of the form

bp ——bpP( —iu coshus, O,u sinhns),
I
s

I
~ a,

ei(zt az)— (5.1)

Arguments similar to those used in the previous section
show that the reflected Geld in the two vacuum regions
2'&a and s( —u is, respectively:

bit bH((A——'(s), iAp(z—),inA (s)), (5 4)

where )=et&"t zz'
)

siny~z sin y2s
A(s)=

ky COS+yg k2 COS+2C

A'(s) =—A (e),
L&

COS+yS COS+2S
Ao(s) =

cos+yc cos'jt'tgQ

The constants b~~ in (5.4) and b, i, b„o in (5.2) are

followed by reversal of the vector Bp, turns both the
sample and Bp into itself. The reason for including Bp
as a part of the system rather than the Geld is that in
the equations

I
namely in (2.1)g Bp appears merely as

a geometrical property of the system, rather than a
part of the magnetic GeM; however, the pseudovector
nature of Bp shows up in the vectorial product —hence
the reversal of sign upon reflection. %hen a problem
has reflection symmetry about some plane, it possesses
solutions symmetric and solutions antisymmetric under
reflection about that plane. Because all our solutions
relate to magnetic Gelds, we shall arbitrarily use the
terms "even" and "odd" to denote solutions in which
reflection leaves the magnetic fields b unchanged and
changes the signs of the magnetic fields b, respectively.
(The symmetry of the currents and electric fields is
opposite to the symmetry of the magnetic fields b.) The
problem of this section is clearly symmetric about the
plane s=0. (Note that it is not symmetric about the
plane x= 0, because the aforementioned transformation
reverses Bp instead of leaving it unchanged. ) Because
the driving field (5.1) is even, so must be all the other
fields, which explains the simplification of the set (5.3).

Solving the three equations is quite straightforward;
the solution is conveniently written in the following
form:

—lnl (—b„i)=n (sinhna)bo,

pie' t"bi+poet»zbo pie '~tzbo yoe —' t"b4-
—in( —b„o)= in (cosh—na) bo,

ikie' ttzbi ikoe—' t'zbo+ikie —4't"bo

+ikoe "» =0
ipl ab

&
Otei y2ab Ot&

—iy1ab &fa
—iy2ab 4

(5.3) n coshna+ In l sinhna
bH= Z bp,

lnl A(a)+A'(a)

—lnl A (a) co»ua+ (n/lnl)A'(a)»»na
b„g= b,.2= bp.

lnl A (a)+A'(a)

In the special case n=0, (4.2) and (4.3) yield
+ I.I (—b")= —(sinhna) bo.

It can be seen at once that the trial relationships
bl b3 b2 b4, b,&= b,2 split the set into two
identical sets of three equations. The physical explana-
tion of this is given in the following symmetry argument.

A boundary value problem involving helicons can be
said to possess reflection symmetry about a plane if
reflection of the sample and Bp about the plane,

yi —— go* ki —iko*—————(4ppp/p——t4)'"(1+i/44) '",
and if

bp ——(1,0,0)e'"'

the helicon field is

b = (~A'(s), (i/2)Ao(s), 0)e'"'.
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where
sinh«a+cosh«a

ba= —
& bp)

KA (a)+A'(a)

b.l —b 2=

sino. yx SiIlo, 2X
A(x)=

kg sinzga k2 sinn~a

—KA (a) cosh«a+A'(a) sinh«a
bp~

KA (a)+A'(a)

of k„, e, p, and the cylindrical components, the solutions
have the form

$R (k,.r) = $( R„,R„,R,),
—gi(a t+ny —yz)

7

where

R,= (k—y)J~i(k„r)+ (k+y) J„~i(k„r),
R„=i(k —y)J„ i(k„r)—i(k+y) 7~i(k,r),
R,= —2ikg„(k„r),

k'= k„'+y'.
A'(x) =—A (x),

dg

SllinyS SlnQ2X
Ap(x) =

Slllnya Sile, 2a

lt can be seen at a glance that the helicon field b~ is
a linear combination of the four helicon fields (4.8).

When the driving field is antisymmetric,

bp= bp((K cosh«x, —P sinh«x, —'r sinh«x), ( x[ ~ a.

A(s), A'(s), Ap(s), bIr, b„i, b,p, must be redefined as
follows:

slilhKa+coshKa
bII = —i bp,

KA (a)+A'(a)
—«A (a) sinh«a+A'(a) cosh«a

b.= bp,
KA (a)+A'(a)

independent solutions are obtained by replacing the
Bessel functions by Neumann functions; but these are
singular at r=0 and are of no interest to us.

Let the cylindrical region r~ a be Glled with conductor
and let the rest of space be vacuum. The driving Geld
fixes the quantities y and m; y is real, m=0, &1,+2
The allowed values of k' and k„are identical with the
allowed values of k' and n given in (4.5) and (4.6) with
the substitution p= 0 used in the latter equation
corresponding to the fact that k'=k, '+y'. Because of
the symmetry properties of Bessel functions, reversing
the sign of k„ leaves the whole solution unchanged
except at most for sign, thus, rather than four, there
are only two independent acceptable helicon solutions.
There is only one possible incident Geld and one
reQected field satisfying the usual requirements:

b =bob( I- ( ) ( / )I-( ) — I-( ))
b,= b,)(yK„'(yr), (e/r)K„(yr), iyK (yr)), —

COSO. iS COSo, 2X where
A(x) =

ky cosQya k2 cos(x2a

A'(x) =—A (x),
Zx

sinn qx sil10.2$
Ap(x) =

SlDQya SlnQga

Note that the reQected field possesses a symmetry
about the plane x=0 which corresponds with the
symmetry of the incident Geld, but the helicon Geld has
no such symmetry.

E„(s)=i-"J„(is), E„'(s)=—E (s).
ds

R„bi+R„pbp yK~'b, =7I„'bp,—

Thus the problem is reduced to three equations express-
ing that at r=a the magnetic held is continuous. Letting
bj and b2 denote the amplitudes of the two allowed
heIicons we have at r=a:

C. In6nite Cylinder Parallel to 80
[Given y, n(= A'. „)g

Adaptation of the formula (2.8) useful to problems
of cylindrical symmetry, can be obtained by formaIIy
summing solutions (2.8) over all /=tan '(P/n) with a
weighting factor exp(ie P). Through the formula

&i(np zsinp)ge —2~( $)zzJ' (s)—
this introduces Sessel functions. Expressed in terms

S
R„ibi+R,pb p

——K~b, = I~bp, —
a a

R,ibi+R, pbp+iyK b„=—jyI„bp.

Again the roots of the determinant of the set give the
conditions for oscillation or free propagation.

The problem of 5C has reflection symmetry (in the
sense of 5A) about all planes perpendicular to the s
axis; therefore, if, under re6ection about any such
plane the incident magnetic field is antisymmetric, all
of the magnetic Geld will be antisymmetric, and a11 the
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currents symmetric. ReQection symmetry of currents
about a plane means that the currents never cross that
plane. Choosing the incident field to be the sum of two
fields of form (5.5) differing in the sign of y, it is possible
to set up a standing wave pattern in the s direction;
such a pattern possesses a set of fixed planes about
which the said reaction symmetry exists at all times,
i.e., planes which are never crossed by currents. Thus,
as promised in Sec. 3, for any given frequency we can
construct a helicon field satisfying the "current condi-
tion" (i.e., the requirement that currents do not cross
the boundary) for a finite cylinder.

In a similar way, the infinite plate of 58 can be driven
so as to possess a similar set of planes perpendicular
to s. However, because no problem involving helicons
has symmetry about a plane parallel to the external
magnetic field, analogously chosen driving field cannot
achieve a similar set of planes parallel to s in the
problem of 5A or of 58. Thus, the current condition for
a finite rectangular box cannot be satisfied by applying
an appropriately chosen driving field to the plates
of 5A or 5B.

Cotti, Wyder, and Quattropani' obtained solutions
satisfying the current condition for an infinite rectan-
gular bar, finite along y and s, by adding four freely
propagating plane waves of helicons (or, more precisely,
four helicons of that mode which in the limit p ~ 0 is
undamped). Chambers and Jones' obtained solutions
approximately satisfying the current condition for a
finite rectangular box, thin in the s direction, by adding
eight such helicon waves. By using plane waves of both
polarizations (sixteen plane waves in all) one can
satisfy the current condition for a rectangular box
exactly. As we pointed out in Sec. 3, these solutions do
not, as a rule, correspond to proper modes of oscillation.

and
bi/ho= (1/D) (—2ooo/coo),

4/&o= (1/D) (2e),

b,/ho= (1/D) Pp co/ceo—i oj,—
e= y/ ly l, D—p —(oo/a)o)+ io. (6.2)

Recalling Eq. (2.10), we have for a single plane wave
of helicons

)=go-'&b.

The current; corresponding to bi is

(6.3)ji= (1/uo)( uy)bi(0, 1, ') ' "'- 'e" *

and the Joule loss (per unit area) in a surface layer of
unit thickness due to j~ is

0

W= -'p(ji* ji)dx- —',p(3 i* )i)dx=Cpu
&

(6 4)
27

bo

go 1+CP (~/~&) 7
where star denotes complex conjugate. This loss is
confined to a narrow region near the surface x=0

l see
(6.3) and note u —+ ~ j; it may therefore be termed
"surface loss." The surprising feature of (6.4) is that
if bp, co, and y are fixed, so is C; and, if then, the limit
p ~ 0 is approached (in such a way that pu remains
constant), W does not tend to zero. (Note that surface
loss does not occur if the "tangential wavelength"
2x/y is infinite. ) The other two terms in the expression
for the Joule loss (per unit area) in a surface layer of
unit thickness, J'i'-', p(jo* jo) and the "cross term"
1' i'-,'p(ji* jo+ji jo ), both tend to zero. ln the
approximation (6.1) the integrand of the former term
does not fall off toward the interior of the sample; in
the same approximation the "cross term" is always
negligible compared to the surface loss.

Suppose the direction of Bo is changed to make an
angle 8 with the conducting surface. It can be shown
that for small enough 8 the normal component of ki
becomes

6. SURFACE LOSSES

A closer look at the fields associated with the problems
of Secs. 4B, 53, and 5C reveals some unusual results.

In the problem of 4B, make the simplifying assump-
tion /= 0 and consider the limit of p ~ 0 (with u —+ oo,
pu=const). Since in (4.6) and (4.8), u))4~/coo, one can
write

(6.5)A)~
1—iN tan0ny~zNQ ) ky~zNQ )

~o-pV, &o- (~/~o)V, (6.1a)
where

Mg= Pp BpRQ

p= —L(oo/coo)' —1$'~' for ~/coo~ 1

=il 1—(cv/oo )'g'" for (u/o) ~1.
b,-b, (0,1,—i)e'&"~&*'e"&,

bo bo(i,cv/coo, ip)e""' &*'e '»— no iud/( 1 iu tan—8),—

and in all other respects, including amplitudes, bi, bo,
and b, remain unchanged. (Note the sensitive depen-
dence of n~ on the angle between the conducting surface
and the magnetic field, when u is large. ) Denote the

6.1b
solution reducing to n& when 8=0 by no (see—(4.6)j.
One can show that for 8WO the component no is not ni-
but becomes

bo

(~1,0, —i(7/lvl))e"' "e+"*,
r

thus furnishing an example in which the pairwise
"degeneracy except for sign" in the allowed values of
the wave vector's normal component is split up.
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In (6.4) the integral from (—~) to 0 remains un-

changed, as 8 is made to be different from zero, but its
contributions come from a layer of thickness
(1+I' tan'8)/2' rather than 1/2' and in the limit
u —+ ~ this thickness tends to infinity rather than
zero. The approximation equating the two integrals
in (6.4) becomes invalid and in fact W -+ 0 when p -+ 0.

However, for 8=0 Eq. (2.1) combined with Maxwell's
equations yields a finite loss per unit volume even in
the limit of perfect conduction. This unlikely result is
no longer obtained when the microscopic processes of
conduction are considered more carefully. When the
resistivity becomes so low that the thickness of the
surface layer becomes smaller than the cyclotron radius,
the finite surface loss disappears. It is easy to show that
the details of the surface loss mechanism are the
following. Right inside the surface there is an oscillating
dipole layer consisting of surface charges on the bound-
ary and space charge of opposite sign exponentially
falling off (with skin depth 1/uy) toward the interior of
the conductor. Between the two "charge layers" there
is a strong electric field (perpendicular to the surface),
which in turn gives rise (because of Bs) to a sheet of
strong current parallel to the surface. The electric field
as well as the current density are proportional to u, the
thickness of the current sheet to u—', the resistivity
to u '; and the current squared, times thickness, times
resistivity remains constant, as u —& ~. However, in
the extreme anomalous limit ~nr~r, =pl))0 (where
r,= cyclotron radius, /= mean free path) the only
electrons contributing to electrical conduction are those
moving parallel to the conductor's surface. ' The effect
of the electric field on these is expressed by a term
proportional to E v in the Boltzmann equation, which
is zero when E is perpendicular and v is parallel to the
conductor's surface. Then the strong electric field
between the two charge layers mentioned above can
have no first-order effect on the conduction thus it
cannot bring about the strong currents responsible for
surface loss, and the surface loss (or at least surface loss
through the previously described mechanism) dis-

appears. Deciding what actually does happen is beyond
the scope of this paper.

This does not mean that the above remarks on surface
loss can be disregarded. In the purest sodium samples
available (of residual resistance ratio 8000), at liquid-
helium temperatures, and magnetic fields around 50 kG,
the value of u is 100 and the cyclotron radius is around
3 microns. For a "tangential wavelength" 2m/y= 1 cm
the thickness of the surface layer is about 15 microns,
thus the extreme anomalous 1imit is not yet reached.
It is in fact quite easy to make experimental samples in
which most of the loss is surface loss. '0

One may mention the following anomaly, which
directly follows from the macroscopic equations: the

~ M. Ia. Azbel' and E. A. Kaner, Zh. Eksperim. i Teor. Fiz. 32,
896 (1956) LKnglish transl. : Soviet Phys. —JETP 5, 730 (1957)g.' J. M. Goodman and C. R. Legdndy (unpublished work).

energy in the electric fields at the surface tends to
infinity as p —+0. For, as was said above, the currents
in the surface layer increase as I; thus, from (2.1) (in
which p~ 0) so does the electric field. The square of
the electric field multiplied by the thickness of the
surface layer increases linearly with u. However, in a
typical laboratory situation' the magnetic field energy
density in the surface layer dominates by about a
factor of 10" over the electric-field energy density, so
that the anomaly of electric fields is merely of academic
interest.

The narrowness of the surface layer confining the
mode bt (of order 10' in Ref. 30) and the fact that
asymptotically (bi) „=i(b&)„can be used to advantage
in reducing the number of equations necessary for
solving boundary-value problems. Instead of using the
ordinary boundary condition that all three components
of b are continuous everywhere on the boundary one
can assume that this is true everywhere except at
surfaces parallel to Bp at which only b, and b„ib, are-
continuous (x being the direction of the outward
normal), while a third quantity b„+ib, may suffer
discontinuity. For the wave vector inside only us (and
possibly rr4) is a]lowed; rr, and rrs are discarded. This
viewpoint amounts to altogether disregarding the mode
b& and retaining it on the record only to provide
explanation for the surface singularity: "There are
surface currents and therefore the tangential component
of b may be discontinuous. "

I'or the problem of Eq. (6.1) the remaining two
boundary conditions provide only two equations, but,
also, there are only two unknowns: b2 and b„. The
method is applicable to the cylinder of 5C whenever
b„&))1.The fact that the surface layer may be approxi-
rnated by an infinite plane manifests itself in the
asymptotic form of the Bessel function J„(ip) for large,
real p: J„(ip) i "(2vrp) '"e" which is essentially an
exponential function; J„(ip) and J„+i(ip) differ only
in a factor i.

'7. SUMMARY AND CONCLUDING REMARKS

By combining the equation E+RjXSs=pj with
Maxwell's equations, we arrived at the differential
equation governing helicons, found its plane-wave
solutions and dispersion relation. We pointed out that
for plane waves the differential equation can be written
in the form of a precession equation. When the medium
is a perfect conductor, the mode rotating in the sense
of the cyclotron rotation propagates freely (the other
mode is exponentially damped), and the current and
magnetic field are always either parallel or antiparallel
(in the former case the spatial configuration forms a
left-handed screw, in the latter case it forms a right-
handed screw). Despite the incompressibility of the
electron gas, the electric field has a longitudinal corn-
ponent of the same order of magnitude as the trans-
verse component; the apparent contradiction was
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resolved by simply noting that both 6eld components
were very small. The dispersion relation for helicons
reduces to the ordinary skin-e6ect formula, if the
magnetic 6eM is made to be small, or the resistivity
large, At the beginning of the calculation the equations
have to be linearized by assuming that the helicon field
is small, but, it turns out, single plane waves can
propagate even if their amplitudes are large (though
several plane waves would usually interact).

It was shown that if the 6eld outside the sample is
quasistatic, the boundary condition that all components
of the magnetic fiejd are continuous at the boundary
implies that: (i) the electric current does not cross the
boundary, and (ii) for the vacuum region it is possible
to construct an electric field whose curl is —BB/Bt and
whose tangential components join continuously with
the field inside the sample.

We formulated the problem of driven oscillations in
terms of a "driving field, " a "rejected field" and a
"transmitted field" (which is the helicon field); the
first of these is the field that would be set up by driving
coils if the sample were removed, the second and third
can be determined by means of symmetry arguments,
etc., except for multiplicative constants; these constants
are determined from the boundary conditions. We
solved the problem of driven oscillations for a few
simple cases: Infinite plates, infinite cylinders, and
semi-in6nite regions. The response of plate samples was
found to be quite sensitive to dependence of the driving
field on the tangential coordinates; the approximate
value of the fundamental resonance frequency for a
square plate whose dimensions along x, y, s compare
as 15:15:1, was found to be 5% higher than it would
be if the 6rst two dimensions were infinite. The effect
is still more drastic in plates parallel to Bp. In this case

any variation along the s direction brings about a
surface loss, which for small resistivities fails to decrease
as the resistivity is decreased, until the limit of
anomalous skin effect is reached, in which limit the loss
disappears. However, for the purest of sodium samples
presently available, at 4.2'K, and in a magnetic field
of 50 ko, the anomalous skin effect only becomes
marked for tangential wavelengths well below 1 cm,
The surface mode causing the loss involves a thin
oscillating dipole layer with a strong electric held and
strong electric current between the charge layers;
ignoring anomalous skin effect, the energy per cm' in
the electric field tends to infinity as p —+ 0. When the
dipole layer is thin enough, the surface mode may be
represented by an "equivalent boundary condition" on
magnetic fields, and thereby the number of equations
describing the boundary-value problem is reduced. The
surface mode only appears in boundaries parallel to Bp.

The present work has three obvious limitations: (i)
No attempt has been made to treat resonances in 6nite
samples exactly. (ii) We have not translated the
theoretical results into immediately useable graphs.
(iii) The treatment of anomalous skin effect with a
nonzero wave vector along the conducting surface has
been bypassed and replaced by a simple reductio ad
absurdum argument.
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