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Direct Calculation of Electronic Properties of Metals from Neutron Scattering Data
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The cross section for the scattering of conduction electrons in a metal by the lattice oscillations is written
in terms of the observed slow-neutron inelastic-scattering cross section. This enables one to include all multi-
phonon processes, Debye-Wailer factors, and umklapp processes in the electron-lattice interaction without
having to use a phonon description of the lattice oscillations. Expressions which involve only the effective
electron-lattice matrix elements and the observed neutron-scattering data are given for the electron self
energy, phonon-induced effective mass, electrical and thermal conductivities, and viscosity.

OLID-STATE physicists have expended an enor-
mous amount of labor over the years calculating the

consequences of electron-phonon interactions in real
metals. They have labored similarly extracting informa-
tion on the one-phonon spectrum from slow neutron
scattering data. It is the purpose of this paper to show
how one can pass directly from essentially unanalyzed
neutron scattering data to a calculation of those metallic
properties that are inQuenced by the interaction of the
electrons with lattice oscillations. The method pro-
posed permits one to take into account all multiphonon
processes, Debye-Wailer factors, umklapp processes,
coupling s to transverse phonons and anharmonic
phonon effects, without ever having to go through an
intermediate description of the lattice oscillations in
terms of phonons. '

The inelastic scattering of a slow neutron from a metal
is a process really very similar to the inelastic scattering
of a conduction electron from the lattice oscillations.
Both couple, not to individual phonons, but to the ion
density; and for both a Born approximation is valid.

In the pseudopotential approximation, the scattering
cross section for a process in which the neutron loses
momentum k and energy co is, aside from trivial factors,
the number S(k,co) of available vibrational states of the
lattice with momentum k and energy co. In terms of
p(k, t), the Fourier transform of the operator p(r, t) for
the density of nuclei, S is given by

S(k,(u) = dte'"'(p(k t) pt (k 0))

where the expectation value is in the equilibrium en-
semble for the metal.

Conduction electrons in Bloch states, in a metal with
rigid ion cores, are scattered via a screened potential by
the fluctuations of ion density. As was pointed out by

L. J. Sham and J. M. Ziman in Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc. , New York,
1963), Vol. 15, review the previous work that went beyond the
simple one-phonon picture of the interaction of electrons with the
lattice. They also review the attempts that have been made to
view the electron-lattice interaction as a di6raction problem.
Attention is also called to the work of I. Mannari LProgr. Theoret.
Phys. (Kyoto) 26, 51 (1961)]on electrical conductivity, in which
he points out that the scattering cross section for conduction elec-
trons is connected with the time-dependent pair correlation func-
tion of the ions.
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The identification of S' with the experimentally ob-
served equilibrium density of states for lattice Quctua-
tions assumes that phonon equilibration rates are
much more rapid than electron-phonon scattering rates.
At temperature T(= 1/EP) the equilibrium 'S' obeys
the detailed balancing condition

S'(—k, —co)= e—~"S'(k,co) .

'A. 3. Migdal, Zh. Eksperim. i Teor. Fix. 34, 1438 (1958)
/English transl. : Soviet Phys. —JETP 34, 996 (1958)j; A. A.
Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinski, Methods of
Qgasttgra Field Theory ie Statisticat Physics (Prentice-Hall, Inc. ,
Englewood Clips, New Jersey, 1963), Chap. IV.' R. E. Prange and L. P. Kadanoff, Phys. Rev. 134, A566 (1964) .

Migdal, ' ' this scattering ie the doormat metal is correctly
described, lo lowest order in (nt/M)'t', by the Born ttP-
proxintation. The scattering probability is thus propor-
tional to the number S'(k, to) of available (fully inter-
acting) states for density fluctuations. This number is
just S with the elastic Bragg peaks subtracted out:

S'(k,oo) =S(k,co) —2srb((o) I(p(k)) I'. (2)

Consider erst the electron-lattice collision term in the
Boltzmann equation for the electronic distribution
function. In a collision an electron in Bloch state p
with energy e scatters to a state y' with energy e' by
creating a density fiuctuation with momentum k and
energy &o. (For co(0 this is effectively an absorption
process. ) Let the matrix element of the screened poten-
tial be (p'I v(k, co) Ip) for this process. Then the rate at
which the scattering occurs is given by the golden rule
as

2~&(e—"—~)f(p) (1—f(p')O'S'(k, ~) I(p'I &( ~) I p) I

'
(3)

where f(p) is the density of electrons in the Bloch state
p, 1—f(p) is the density of available final states p',
and 1V is the number of ions per unit volume. The entire
collision term is
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In the "one-phonon approximation"
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where ex' is the polarization vector of a phonon with
polarization index lt; on substituting (6) into (4) one
recovers the ordinary Boltzmann equation collision
term.

To give the reader a feeling for how the transport
coefficients depend on S', we give the results of the most
elementary variational calculations with the Boltz-
mann equation in which we linearize the collision
term, assume free electrons with an effective mass' m,
take the matrix element to depend only on k:

and use the simplest trial functions. '
The electrical conductivity is given by o,=ne r,/m

where

~
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Zco—S'(k, co)Pcott(co) . (8)
— 2x

Z is the number of conduction electrons per ion and N(co)
=(e~"—1) '. Eq. (8) is a generalization of the Griin-
eisen formula' for the conductivity in that included in
S' are multiphonon processes, Debye-Wailer factors,
umklapp processes, etc. Substituting (6) into (8) gives
the usual Griineisen formula. Eq. (8) has been derived
by Mannari' for the special case of a liquid meta1.

Only for temperatures much greater than 0&, the
Debye temperature, is r, strictly interpretable as a
relaxation time. In this limit, Peon(co) -+ 1, so that the
co integral becomes S'(k), the static structure factor
(minus the Bragg peaks at reciprocal lattice vectors).
Thus, we see that the recent use of the resultant formula
by Ziman and co-workers in the study of liquid metals'
has, in fact, included all multiphonon processes. The
temperature dependence of the high-temperature con-
ductivity is determined only by the temperature de-
pendence of S'(k).

We find for the electron viscosity st= 2nefr. /S, where

In general, r„differs from r„ the integration giving more
weight to k/Pg& (8/3)'ts than r, and less to the region

4This effective mass m should not include eGects of electron-
phonon interactions. See Ref. 3.' J. M. Ziman, E/eotrons ctnd Phonons (Oxford University
Press, New York, 1963), Chap. IX, details the elementary varia-
tional calculations of electronic transport coef5cients from the
3oltzmann equation.' Reviewed in Sham and Ziman, Ref. i.
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(8/3)its&k/P, &2. This can well lead to differences in
the temperature dependence of r, and r, .

The thermal conductivity becomes crt=Cvsr'rt/3,
where
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where s is the energy transfer in the interaction.
Following the procedure due to Migdal, ' we can write

the electron self energy in terms of S' as

dk dco 1+st(co)—fp(e) S'(kco)—c4
(2sr)s 2s z—e—co 1+st(co)

Xg I(p'I s(k) Ip) I'&(e' —er) . (12)
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Then, using (7), we fmd as the phonon contribution to
the electron effective mass at T(&OD.'
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At high temperatures m* approaches m.
To sum up, we see that the only quantity that re-

mains to be calculated theoretically is the effective
matrix element (p'Ie(k)lp), since S(k,co) is directly
obtained from neutron scattering experiments. There
do not exist, at present, sufBciently detailed maps of
S(k,co), for a simple metal like lead or aluminum at a
representative number of points in k space, to carry out
detailed evaluations of the formulas given here.

I am very grateful to Professor J. M. Ziman for
stimulating my interest in this problem, and to Pro-
fessor J. Bardeen, Professor L. P. Kadanoff, and
Professor D. Pines for helpful conversations.

For T))0~, the (Pco)' term is negligible; re ~ r„so
that the %iedemann-Franz law obtains.

The method of describing the electron-lattice inter-
action in terms of S' is not limited to the Boltzmann
equation. The entire perturbation expansion for the
electron-phonon interaction, commonly written in
terms of D(k, s), the phonon Green's function, is more
correctly written with k D(k,s) k replaced by

dco S'(k,~)
(1 —e s).
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For example, the phonon contribution to the effective
electron-electron interaction is
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