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Effects of Dynamic Perturbations on Optical Spectra of Impurities in Insulators
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Detailed expressions, derived from a phenomenological Hamiltonian, are given for optical spectra of ex-
perimental and theoretical interest for a two-level impurity complex in interaction with the quantized
phonon Geld of lattice vibrations. These results can readily be extended to treat other quantized impurity-
perturbing fields which, like the electromagnetic and lattice-vibration 6elds, have classical analogs (Bose-
Einstein statistics). The formulas indicate how different properties of the spectral line are interrelated
through the system Hamiltonian and how parameters of that Hamiltonian relate to measurable ef'fects in-
duced by external static stresses. The relationship of the semiclassical Franck-Condon approach (valid for
strong phonon-impurity interactions) to the purely quantum treatment (necessary for an accurate analysis
of weak perturbations and "motional narrowing") is discussed in detail. It is shown how the results relate
to various models proposed to describe Urbach's rule and in particular how the Toyozawa-Mahr model fol-
lows from the semiclassical spectral formulas. With only minor modilcations, the mathematical expressions
can also be used to interpret spin-resonance spectra.

l. INTRODUCTION

"SING results of the type derived in detail in two
preceding mathematical papers, "we here dis-

cuss in more practical terms the effect of dynamic per-
turbations on the optical spectra of impurities in insula-
tors. We have restricted ourselves to insulators in the
sense that the mechanisms of energy transport within
the crystals we consider do not involve conduction
electrons or other I'"ermi-Dirac fields. In our discussion
we assume for definiteness that lattice vibrations con-
stitute the sole mechanism for transporting energy to
and from the impurity sites; however, the theory we

present is applicable to any transport mechanism which
can be described in terms of a complete set of normal
modes of a (Bose-Einstein) Geld which has a classical
analog. Typical fields other than the phonon field of
lattice vibrations and the photon field of electromag-
netic waves might be the fields which describe magnetic
waves or defect diffusion,

In this paper we treat only the simplest case of im-

purity transitions between a single pair of impurity
"electronic" energy states (ct,b) We postp. one the dis-
cussion of eBects particular to multilevel systems to a
later paper. We assume that within a spontaneous-
emission lifetime the probability for radiationless
transitions from the excited state b to the ground state
a is negligible, so that the dynamics of the phonon-

impurity system can be described by an effective Hamil-
tonian in which lattice vibrations shift the energies of
the two states (ct,b) but do not mix those states. A num-
ber of authors have treated similar systems. ' r (The case

' D. E. McCumber, J. Math. Phys. 5, 221 (1964).' D. E. McCumber, J. Math. Phys. 5, 508 (1964).' K. Huang and A. Rhys, Proc. Roy. Soc. (London) A204, 406
(1950); S. I. Pekar, Usp. Fiz. Nauk 50, 197 (1953).

'M. Lax, J. Chem. Phys. 20, 1752 (1952); M. Lax, in Photo
conductivity Conference, edited by R. G. Breckenridge et at. (John
Wiley tk Sons, Inc., New York, 1956), p. 111; M. Lax and E.
Burstein, Phys. Rev. 100, 592 (1955).

5 S. S. Gourary and A. A. Maradudin, Phys. Chem. Solids 13,
88 (1960);J. J. Markham, Rev. Mod. Phys. 31, 956 (1959).' J.H. Van Vleck, Phys. Rev. 74, 1168 (1948);N. Bloembergen,

A

with significant mixing and its concomitant radiation-
less transitions will be discussed elsewhere. ) SpeciGcally,
we assume that with the impurity in its states (a,b)
the lattice-impurity system is governed by the respec-
tive Hamiltonians

Ho = AMe+Qo Itcdscto cto )

Hb= ttco's+Q, A(o,ct,ta,+hI"(Q) .
(1.1a)

(1.1b)

Here the a„a,t are a complete set of phonon annihila-
tion-creation operators (Gelds) having the familiar Bose-
Einstein commutation relations

and P(Q) is an arbitrary totally symmetrized real func-
tion of a set of dimensionless Hermitian phonon co-
ordinate operators Q= (Q;}. The operators Q are
linear in the u„a,t

Q, =P,(C;,a,'+C, ,*a,) .

They measure the various lattice strains which per-
turb the impurity.

It has been shown elsewhere'- that the important
ietriesic modifications of the impurity spectra produced
by diagonal phonon interactions of the type (1.1) are
governed primarily by the difference (H&—H ) and de-
pend only indirectly upon the distribution of that
difference between II, and H~. I'or this reason and be-
cause our choice simplifies a number of results and facili-

E. M. Purcell, and R. V. Pound, ted 73, 679 (1948);. P. W.
Anderson and P. R. Weiss, Rev. Mod. Phys. 25, 269 (1953);P. W.
Anderson, J. Phys. Soc. Japan 9, 316 (1954); R. Kubo and K.
Tomita, tbtd 9, 888 (1954.); D. E. McCumber, Phys. Rev. 133,
A163 (1964).' E. O. Kane, Phys. Rev. 119, 40 (1960);W. E. Lamb, Jr. , ibid
55, 190 (1939); R. C. O' Rourke, ibM 91, 265 (1953.); E. D.
Trifonov, Dokl. Akad. Nauk (USSR) 147, 826 (1962) LEnglish
transL: Soviet Phys. —Doklady 7, 1105 (1963)j.' Symmetrization Lof the operator ordering within each term of
P(Q) j implies no loss of generality because it follows from Eqs.
(1.2) and (1.3) that any commutators LQ, ,Q&j which might arise
in the symmetrization of an arbitrary P (Q) can be absorbed in the
numerical coefficients of a new P (Q).
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tates their application to experimental spectra, we have
deliberately chosen the ground-state Hamiltonian H,
to have a simple-harmonic dependence upon the
normal-mode coordinates tt„tt,t. (The excited-state
Hamiltonian B& is arbitrary and not necessarily har-
monic. ) Except in so far as anharmonic phonon inter-
actions produce extrinsic changes in the impurity spec-
tra through temperature-dependent modifications (such
as thermal expansion) of the average lattice structure, '
we do not expect the weak anharmonic forces ordinarily
present in lattices to signi6cantly modify our results. "
The eGect on the spectra of thermal changes in lattice
structure can be estimated from the changes produced
by externally induced lattice strains.

In discussing the properties of impurities in insulating
lattices, we assume that the impurity is a more or less
distinct ionic complex imbedded in a crystal lattice
and weakly perturbed by the lattice motion. The pres-
ence of the impurity will in general aBect the lattice
dynamics in the neighborhood of the impurity, " and
such local-mode modi6cations are understood to be in-
cluded in our choice of phonon normal modes in
Eqs. (1.1).

There are two basic problems in the theoretical
analysis of dynamic perturbations to the impurity
spectra: (1) the calculation from first principles of the
structure and numerical coeKcients of the effective
phonon-impurity Hamiltonian, and (2) the calculation
from such a Hamiltonian of the observable spectra of
the phonon-coupled impurity. In this paper we consider
only the second problem. The results provide a frame-
work for the orderly interpretation and correlation of
experimental data, and they indicate which first-
principles calculations will have relevance to particular
experimental results. In many cases it is possible to esti-
mate plausible forms for the coefficients (C;,) in those
operators (13) which describe deformation-potential,
piezoelectric, or optical-mode polar coupling to the im-

purity. Using such estimates with measurements of the
dependence of the impurity spectra upon external
stresses (Sec. 3), it is possible to obtain a rather clear
understanding of the processes underlying particular
spectral properties —even without difFicult detailed
first-principles calculations.

In Sec. 2 we indicate optical spectra of experimental

significance and note their relation to the spectra we
subsequently compute. Making the so-called Condon
approximation in Sec. 3, we neglect the phonon-
coordinate dependence of the optical matrix element
3f ~ and compute the spectrum for absorption from the

96. Leibfried, Bundbuch der Physik, edited by S. FlQgge
(Springer-Verlag, Berlin, 1955), Vol. 7, p. 104; D. A. Kleinman,
Phys. Rev. 118, 118 (1960).

'e B.V. Thompson, Phys. Rev. 131, 1420 (1963);V. Ambegao-
kar, J. M. Conway, and G. Baym (to be published).

"A. A. Maradudin, E. W, Montroll, and E. H. Weiss, Theory
of Lattice Dynamics je the Harmortic Approziraatio1t (Academic
Press Inc. , New York, 1963);C. W. McCombie, J.A. D. Matthew,
and A. M. Murray, J. Appl. Phys. 33, 359 (1962).
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FIG. 1. Fluorescence spectrum (photons/sec per unit frequency
interval) for MgFs..Ni'+(1%) at 77'K (Ref. 12). The no-phonon
line at 6500 cm ' is accompanied on its low-frequency side by
vibrational structure involving the emission of a few phonons.
(The two small peaks above 6500 cm ' are weak no-phonon lines
from higher lying excited states. ) The complete spectrum clearly
cannot be accurately described in terms of its Grst few moments
nor can it be well approximated by a simple Gaussian spectrum.

ground impurity state a to the excited state b. In Sec. 4
we consider the effects of. phonon-coordinate dependence
in M ~. In both Secs. 3 and 4 we treat three distinct
cases: (A) that for which all phonon-impurity inter-
actions are weak, (8) that for which all such inter-
actions are strong, and (C) a mixed case for which some
are weak and the others strong. The spectra for the
weakly and strongly interacting situations are actually
quite different. For weak interactions quantum eBects
are important, and the spectra display detailed dy-
namic properties of the phonon-impurity system (Fig.
1).'r "As the strength of the phonon-impurity inter-
action increases and multiphonon processes become
more important (Fig. 2),"the detailed features become
smeared and less prominent until in the limit of very
strong interactions the result is a broad smooth spec-
trum adequately described by a few low-order moments. 4

In Sec. 5 we indicate how our results relate to
Urbach's rule, ' an empirical expression describing the
low-energy tails of certain absorption cross sections.
In Sec. 6 we remark about the application of some of our
results and indicate how our strong-interaction spectra
have relevance to Franck-Condon configuration-co-
ordinate analyses. '""

"L.F. Johnson (private communication).
'e R. E. Dietz, D. G. Thomas, and J. J. Hop6eld, Phys. Rev.

Letters 8, 391 (1962).
'4 F. Urbach, Phys. Rev. 92, 1324 (1953); F. Moser and F.

Urbach, ibid 102, 1519 (1.956)."F.E. Williams, J. Chem. Phys. 19, 457 (1951); J. Phys.
Chem. 57, 780 (1953); C. C. Klick, Phys. Rev. 85, 154 (1952)."D.L. Dexter, Phys. Rev. 96, 615 (1954).

2. ABSORPTION AND EMISSION SPECTRA

The optical spectra we consider in this paper derive
from impurity complexes dilutely distributed through-
out an insulating crystal. The impurity wave functions
are localized in a neighborhood of the impurity site
which is small compared to optical wavelengths and to
the distance between impurities. We neglect spatial
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Fro. 2. Fluorescence spectrum (photons/sec per unit wavelength interval) and absorption cross section (times
impurity density) of "center" in ZnTe at 20'K (Ref. 13).The no-phonon line at 1.986 eV is accompanied, as
was the line of Fig. 1, by vibrational structure associated predominantly with phonon emission. Here the
phonon-impurity interaction is stronger than in the system of Fig. 1:The no-phonon line contains a much
smaller fraction of the total intensity, and many-phonon processes are clearly visible in the vibrational struc-
ture. The broad general features of the present spectra can be described by a few low-order moments, although
such an approximation would not accurately represent the detailed phonon peaks evident in the Ggure. Moment
methods and semiclassical approximations become increasingly more appropriate as the strength of the phonon-
impurity interaction increases.

&ba =QX

~ den

dear, —fr, (k,or) b. .
p 2'

(2.1)

Let o r, (k,or).b be the cross section for a single im-

purity in the state u to be excited to the state b by the
absorption of a plane-wave (X,k,or) photon. Let o.,r, (k,or) b

be the cross section for a single impurity in the state b to
decay to the state a by the stimulated emission of a (X,k,
or) photon. Applying the thermal-equilibrium arguments

dispersion, treat local-Geld corrections'~ by means of an
effective field, and assume that the radiation-impurity
interaction is su%.ciently weak that the spatial proper-
ties of the radiation field everywhere within the crystal
can be described by a real wave vector k whose magni-
tude tt orn=r(ko, r)/, cwh, ere nr, (k,or) is the real part of the
index of refraction of the impurity-doped crystal. It
depends upon the direction of k, upon the radiation
frequency co = 2~v, and upon a polarization index X. This
index ) speci6es one of two possible plane-wave solu-
tions of Maxwell's equations for the doped crystal; for
degenerate cases it alternatively specifies plane or cir-
cular polarization.

For the two-state impurity system of Eq. (1.1) we in-
troduce a dimensionless function fr, (k,or)b such that
fr, (k,or)b, dQ&r, is the average intensity in photons/sec
per Unit frequency intertrat of X-polarized frequency-or
radiation emitted into the solid angle dQi, ), as a result of
the spontaneous radiative decay of an impurity from
the excited state b to the lower lying state a. If rb, is the
spontaneous-emission radiative lifetime for the transi-
tion, then

of Einstein" to the (X,k,or) photons, we find that, when

the initial lattice-impurity conGgurations are described

by the impurity populations and by a lattice tempera-
ture T "

o..r, (k,or). b ——o,r,(k,or) b, expLh(or —ru)/k T7 (2.2)
and

o,b(k, or) b, = fr, (k,or) b.[2rrc/orna(k, or)7', (2.3)

where Aru in Eq. (2.2) is a temperature-dependent exci-
tation potential equal to the net free energy required to
excite one impurity while maintaining the surrounding
lattice temperature T. The potential AIM, which is in-
dependent of the parameters (X,k,or), is equal to
kT1n(N, /Nb). „where (N, /Nb)„ is the ratio of im-

purity ground-state and excited-state populations in
thermal eqlilibrilm at temperature T. To derive Eqs.
(2.2) and (2.3), we used the fact that with our assump-
tions the frequency density of radiation states per unit
volume p(X,k,or) multiplied by the group velocity of
light in the crystal is Lorn&(k, or)/2rrc7'. The rate of ab-
sorption (or stimulated emission) per impurity equals
this quantity times the cross section, the Bose-Einstein
occupation factor Lexp(d'or/t'bT) —17 ' for frequency-or
radiation modes, and the number of impurities in state
a (or state b). The rate of spontaneous emission is

simply fr, (k.or) b times the state-b occupation.
To relate these observables to microscopic properties,

we let j(r,t), b be that part of the electric-current opera-
tor which couples the state a to the state b and let
p(r, t) b be the corresponding component of the charge-
density operator. If ez(k, or) is the unit polarization vec-

rr S. L. Adler, Phys, Rev, U6, 413 (1962).
rs A. Einstein, Physik Z. 18, 121 (1917).
"D.E. McCumber, Phys. Rev. 134, A299 (1964).
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tor for the ().k, to) electric 6eld, then" quadrupole operators are

—/E. tti 'ttb(k, to)- 2tr
Oa) ) ah=

F ) ei(k, to) —toke

d(t t )stat(t —t'l tP(r r )e-itt ~ ir—t'l

d(t).,= (dr)rp(r, t).b,

m(t), b= (dr)r x j(r,t),b/2c; (2.6)

x(eb(k, co) j(r,t).beb(k, to)* j(r', t'). bt), , r. (2.4) Q(t).b
—— (dr) rrp(r, t).b.

Here ( ), ,r is the normalized expectation value for an
ensemble of temperature T in which the impurity is in
its initial state u."The factors in the square brackets
take account of the ways the crystal modifies the electro-
magnetic field seen by the impurity: The factor nb(k, to)/
et, (k, to) corrects for the average refractive-index and di-
electric properties; the factor (F.,tt/F)' introduces the
additional local-field corrections which result because
the solid is not strictly a homogeneous medium. 4

Because each impurity is smal. relative to optical
wavelengths, we can usefully express the operator
J'(dr)j(r, t), b exp( —ik r) in terms of electric and mag-
netic multipoles. Assuming that the lowest nonvanish-
ing multipoles dominate, we have in the three simplest
cases of electric dipole, magnetic dipole, and electric
quadrupole, respectively,

Eog 2' GOS)t, Q7

0aX ) ah=
F Aceb(k, to)

The spectral function Sb(k,&o),b is defined such that

nx(k, to) b.

(e&,(k,to) d(t), beb(k, to)* tl(0), b ), r
Xetiot . (2 7)

(ex(k, to) d(0), beb(k, to)* d(0), bt), ,r

dM—&x(k,~).b= &

— 2K
(2.8)

In what follows we restrict ourselves to calculating a
basic spectral function which, except for normalization,
is of the type (2.7):

dte'" tF (t).b, (2.9a)

9R&,( k, t)o, b and g&,(k,to), b have similar definitions. These
functions are normalized such that, typically,

X(~ e(k,~) d(0).b~ ),TX)b(k,M)

(E.()'2 [mqtb, )j'
o.t,(k,to).b

——
i

k F. ACeb(k, to)

(2 5)

where

F(t).b
——

de
tfdttI((o)

— 2x
(2.9b)

—(&tHatltt~ & iHbtittjtrI t) —
& (2 j0)

X(Ix Xex(k,~) m(0). b~ ),T~x(k,~) b,
'

EeH 2ÃG0 sy, G0

o. (kb, )to.
——b

4Acs ex(k, to)

X(~ tc Q(0).b eb(k, to) ~'. ,6t„(k,to) b

If several multipoles are signi6cant simultaneously, the
total cross section must include interference terms.
In Eqs. (2.5), k is the unit vector k/k. The dipole and

"The correlation-function theory which underlies Eq. (2.4) ff
has been reviewed by R. Kubo, in Lecturesin Theoretica/ Physics,
edited by W. E. Brittin and L. G. Dunham (Interscience Pub-
lishers, Inc., New York, 1959), Vol. 1, p. 120."If 8 is an arbitrary operator, (8)~,r =tr L8 exp( —I1' /kT) j/
tr, Lexp( —Ho/kT) j, where "tr," indicates the trace over all
impurity-phonon states in which the impurity is in its initial
state a.

I'or spectra of the type we shall consider, which dis-
play broad-band vibrational structure extending over a
frequency range of the order of and sometimes much
greater than the lattice Debye frequency, one should not
neglect the frequency dependence of the various factors
preceding the spectral functions in Eqs. (2.2), (2.3),
and (2.5).

In Eq. (2.10) M, b is generally an operator in the
lattice coordinates. In a Born-Oppenheimer theory" it
would be the matrix element, evaluated for each par-
ticular lattice configuration, of the approximate multi-
pole operator (2.6) between the states tb and b. As an
illustration, let us assume that the "impurity" states
are the Born-Oppenheimer states of a single electron

"D. L. Dexter, in Sol~d State Physics, edited by F. Seitz and D.
Turnbull {Academic Press Inc., New York, 1958), Vol. 6, p. 353;
M. Born and K Huang, Dyttatttical Theory of Crystal Lattices
(Clarendon Press, Oxford, 1954), Appendix 8.
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(coordinates r) described for a fixed lattice (coordinates then we have proved elsewhere' that
X) by the state-rz wave function p„(r,X). If the elec-

tronic dipole operator (2.6) is the relevant, couphng G(t) 1+(,) dt (P(Q. t ).) +(
operator, we would have typically

M, b(X) = e (dr) y,*(r,X)r eb(k, b») q b(r, X), (2.11)

tI

dtz(P(Q» tz) P(Q» t2)'). , r+ (3 «)

where X is now to be replaced by the operator which
measures the displacement X.

In the present paper we use the diagonal Hamil-
tonians (1.1) and assume that M, b is a symmetrized'
function of the lattice coordinates {Q;) defined in Eq.
(1.3):M, b =M, b(Q). We write F(t),b of Eq. (2.9) as the
product

p (—) dt(P(Q't) )., +(—)'

X dt's[(P(Q; t,)'P(Q; t,) ).r

—(P(Q; t ) )..r(P(Q; t2) )..rj+ " (3 4b)

where

F(t), b
——M(t)G(t) exp[ —i(b»b —co,)tj, (2.12) When the lattice is harmonic, as it is for H of Kq.

(1.1a), it is useful to express the time-dependent P(Q)
correlation functions in Eqs. (3.4) in terms of the pair
correlation functions

and where Eq. (2.12) defines M(t). In the next section
we discuss G(t), which alone determines the spectral
properties of F(t),b in the (Condon) approximation that
3I ~ is independent of lattice coordinates. ' Because the
phonon components of B and Bb do not commute,
we cannot replace exp(iH. t/h) exp( —iHbt/h) in Eq.
(2.13) by exp[ —i(Hb —H,)t/h) except as a semiclassi-
cal approximation. M(t), a function linear in M, b and
in M, ~~, is considered in Sec. 4.

dGO—e—'"&'-'&p, b(~) [1+rz(b»)$, (3.5)
— 2~

where

dte'"&'-'~[Q, (t),Q, (t') j (3.6)

describes the density of phonon states relevant to the
relative motion of the coordinates (Q;,Qb) and where

G(t) = (e'~"' "e—'~"' b), , r exp[i(~b —b».)tj, (2.13)
(Q(t)'Q (t) ).,

3. THE CONDON APPROXIMATION zz(b») = [exp(hb»/h T)—1g ' (3.7)

When the matrix elements 3f,~ are independent of
lattice coordinates (the Condon approximation), the
spectral properties of F(t),b are contained in the function
G(t) of Eq. (2.13).If we introduce the Fourier transform

g(&o) such that p(4) —= (P(Q+ 6)).,r (3.8)

describes the occupation of phonon states in a thermal
ensemble. To do this simply, a compact notation is
essential. For this reason we introduce a numerical
function

dc'
SQl»g(~)

— 2x

it follows immediately that

of a numerical vector variable g whose components
(3.1) {$;)are in one-to-one correspondence with the phonon

operator coordinates {Q;).We also introduce an ab-
breviated differentiation notation.

Q-~-p(6-) —=2 Q (t-)'(~/~k- )p(4) (3 9)

f
d(d t l9»l—~"g(~)=l z—

I G«) lz=o
2~ & at)

(3.2)

Because G(0) =1, g(&o) is normalized as in Eq. (2.8). If
P(g; t) indicates the Heisenberg time development with
respect to the Hamiltonian H, of the phonon function

P(Q), H, —+ H, —Q; F,Q;. (3.10)

etc. It will be shown that p(g) describes the displace-
ment of the mean frequency of the spectrum g(co) as a
function of lattice strains.

To interpret the function p(() and the variable (, it is
useful to perturb the system by applying external
stresses {F;) which act through the lattice coordi-
nates {Q;):

P(Q;t) =exp(iH, t/h)P(Q) exp( —iH, t/h), (3.3) If ( ), z F indicates averages with respect to the
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thermal ensemble for the force-perturbed Hamiltonian
(3.10), it is easy to verify that

8
~jk= (Qj)c,T,F=

~~a

dc'—L~, (-)+..;(-)»~-, (3.»)„2
where, for the harmonic Hamiltonian (1.1a), the elastic
constants S;2 are independent of the forces F and of the
temperature T. The effect of the forces F on the func-
tion p(g) or on any other similar expectation-value
function of the coordinate operators Q is described by
the equation

p(~).=p(~+(Q).).=' (3»)
It follows from these results that the coordinates g can
be identified with static lattice displacements (Q) and
the g d.ependence of functions p($) can be inferred
phenomenologically from the dependence of system
properties upon crystal strain. "

For harmonic phonon systems'4 of the type H, we can
establish the following important result which describes
the temperature dependence of the functions p(()
formed from expectation values of symmetrized com-
binations of the operators (Q;}:

oo 1 4M 8 8 )
p(() = Z —Z 2

—t .2(~)n(~)
I

p(K)o'r».
=0m! o 2~ 8$; 8(o)

(3.13)

Here p(g)o I is the value of p(() at zero temperature.
For temperatures below the Debye temperature the
first few terms of the series (3.13) generally give an
adequate approximation to p(().

Using harmonic-phonon-ensemble factorization prop-
erties'4 of the same type as were used to derive Eq.
(3.13), we obtain from Eqs. (3.4) in the notation of
Eqs. (3.8) and (3.9)

G(t) = 1+(—i) dtip((i)+ ( i) ' —dti dt2 exp((QiQ2) 8i82)p((i)p($2)+ (3.14a)

= exp ip($—)t+( i)' —dti dt2Lexp((eie2)8i82) —1jp((i)p((2)

t

+(—i)' dt . dt [exp((eie2)8282+(Qieo»i82+(Q2eo)8282)
0 0

-p(-(e Q.)8 8.)- "p(-(e.e ) 8. 8.)+ 2jp(~) p(~.) +" (3.14b)

For the unstrained crystal we set all g =0; otherwise we set g = g and interpret g as in (3.12).Using the first time
derivative of (3.14a) with Eq. (3.2), we see that the function p(g) describes the dependence of the mean frequency

upon lattice strain.

dc'—g( )=p(()
21r

(3.15)

A. Weak Interactions, Low Temyeratures

%hen the phonon interactions are weak and the lattice temperature low, we may usefully approximate the ex-
ponent of the expansion (3.14b) by its first few low-order terms. For this purpose we classify the "order" of a term
by the number of g derivatives which it contains. Through terms of the fourth order —all odd-order terms vanish-
we have

8P 8P
G(t) =exp —ipt+( —i)2+

i& 8$; 8)o
dti dt2(e;(ti)eo(t2))

82p 82p t tl

+(—i)' E- «(Q (t )Q (t ))(Q (t )Q-(t ))
s» 2 8f;8&2 8&28& o o

8p 82p 8p 3 io

+( i)' g «L(Q (t)Q(t ))(Q(t)Q-(t ))
jotm 8$ 8)28)2 8/i o 0

+(Q-(t )Q (t ))(e.(t.)Q (t ))+(Q-(t )Q (t ))(Q (t )Q (t ))3+, (3 16)

.I

"The usefulness of this method is severely limited by the fact that "thermal strains" are exceedingly large and can often produce
nonlinear effects which could not be predicted from measurements with laboratory stresses (except perhaps hydrostatic pressure)
applicable without sample fracture.

~Cf. Eq. (4.3), Ref. 1.
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where here and in all that follows the ensemble averages and the operator time dependence are implicitly those
appropriate to H, of (1.1a). The result (3.16) can be written in the general form

G(t) =exp i—Pt+
d(v pg((o)

(e'"'—1—uot)
~ 2ll M

= exp —pg —i~gt ——,
' I'g

I
t

I +—yg' sgnt exp
2

(3.17a)

" Cko pg((u)e'"'
(3.17b)

„2s-((u+id)'
where &= 0+, where sgn t = t/ I

t I, where

Bp Bp IM
Pg(~) =E P»(~)~(~)+k 2 p»'(M M)'s(co —N)

~7 B(; B(a i&&~~ B(,Bgi B(kB) „2s.
BP BP Bp I'Xp i((o)e((v)+ P

~i- BP,B~, BP, BP.

" da n((u)e((o)

~ 2' CO

S Go Ã Q)

X [p,~(~)pii(~)+ p~, (a&)pii(fd)]+ [p,„(a&)pp, ((o)+p ~(tu) pi, i(e)]

rt (~—(u) m(co)

I P (~ id)'p&&(~)+P (& ~)peak(~)] +' ' ' (3 Ig)

and where

~g= p(g)+&
" d~ pg(cu)

(3.19a)

" d(v pg(~)

I'g= pg(o),

vg'=( B/~B) p(g~) I-=o.

(3.19b)

(3.19c)

(3.19d)

If the second and all higher derivatives of p(() vanish,
then the series in Eq. (3.18) terminates after its first
term '

When the phonon-impurity interaction is weak
(kg&10 is a reasonable criterion), it is practical to ex-

pand the last exponential of Eq. (3.17b) in powers of its
argument. The lowest order term of that expansion

[exp( .)=1]is the only term which does not explicitly
contain phonon frequencies. We shall call the spectral
component associated with this term the no-phonon
line. '7 The remaining terms generate what we call
"vibrational structure. " The width (3.20) of the

If, as is usually the case because of phase-space limita-
tions, p, i(a&)m(a&)=0 when co=0, then to the lowest non-

vanishing order

O'P O'P

i"i™B('Bji BfgB)~

dM

X —p, i,(~)p„i(~)n (co)[1+v(a&)]. (3.20)
p 2' Bp BP kd

P &(+)/&+ ' '
~ (3 21)

i& Bf; B(i, . p 2s.

B. Strong Interactions, High Temperatures

It is useful and instructive to consider brieQy the
case for which all phonon frequencies in Eq. (3.5) are
vanishingly small. In that case we can neglect the time
dependence of all expectation values in Eqs. (3.4) and
(3.14) to obtain

G(t) so= (expl:«&(&)])-,r. (3.22)

25 D. E. McCumber and M. D. Sturge, J. Appl. Phys. 34, 1682
(1963).

Lorentz-shaped "motionally narrowed" no-phonon line
vanishes in the limit of zero temperature. Physically,
this width can be associated with low-frequency secular
excursions of the impurity energy levels resulting from
random phonon perturbations. These excursions appear
as a finite linewidth to an experimenter making line-
shape measurements over macroscopic time intervals. '
Expression (3.20) can alternatively be interpreted in
terms of Raman scattering of lattice phonons by the
impurity. " The parameter pg governs the fraction
exp( —yg) of the total intensity of g(~) which is present
in the no-phonon line.

In the limit of zero temperature the excitation poten-
tial hp, which appears in the relation (2.2) connecting
emission and absorption cross sections, equals the fre-
quency of the no-phonon line. Comparing Eqs. (3.15)
and (3.19a), we see that this frequency differs from the
mean spectral frequency by the amount
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G(f) =exp( p (—if)"x„/rn!}.
tn=o

(3.24)

%hen the diGerences AX between the exact semi-
invariants X and the semi-invariants X of the
semiclassical approximation are small, we can legiti-
mately approximate G(f) by the semiclassical function
(3.22) and, in some cases, replace the X in Eq. (3.24)
by a knife number of the semiclassical semi-invari-
ants X 0.

The semi-invariant X& equals the meum frequency
(3.15) of the distribution g(oi). The semi-invariant xs
equals the variance (square of the standard deviation)
of g(oi). The dimensionless ratios

r =x„„/(xs)~', ns&3, (3.25)

measure the deviation of g(&o) from a normal or Gaussian
distribution, for which they all vanish. The ratios r3 and
r4 are, respectively, the coefBcients of skezvmess and of
excess 27

' An exceptional system is that of Huang and Rhys, Ref. 3, for
which with P(Q) linear in a single variable Q, the expansion
(3.14b) terminates after its second term and for which the spectral
function p, s(&u) in Eq. (3.5) is a Dirac b function at a single Ein-
stein-model optical-phonon frequency. In this case g (a&) is a series
of 5 functions at integral multiples of the optical-phonon frequency
with coeKcients appropriate to a Poisson distribution.

'7H. Crammer, Mathematical Methods of Statistics (Princeton
University Press, Princeton, New Jersey, 1946), pp. 180—187.

This result would follow directly from the definition
(2.13) of G(t) if we could write

exp(iH f/h) exp( —iHbt/fv)
= exp t

—i(H b
—H.)t/h). (3.23)

The approximation (3.23) is what Lax calls the semi-
classical approximation. ' It follows, as we have noted,
from the neglect of all time dependence in the phonon
operator function P(Q)—that is, from the neglect of all
commutators of that function with H„.

Lax has considered criteria for the validity of the
semiclassical approximation. It is useful to review those
criteria briefly in the context of Eqs. (3.14). We have
already seen how, by expanding the last exponential of
Eq. (3.17b), we can interpret the spectrum g(o~) as a
relatively sharp no-phonon line accompanied by vibra-
tional structure. That expansion technique emphasizes
the detailed quantum features of the spectrum g(oi);
however, the resulting expression for G(t) is not par-
ticularly simple mathematically, is difficult to use for
strong phonon-impurity interactions (ya&)1), and is
generally not well suited to studies of the tails of the
vibrational structure well away from the no-phonon
line."An alternative approach, which conveniently de-
scribes the general features of the spectrum, but which
does not usefully describe detailed spectral structure„
can be based jointly upon the semiclassical approxi-
mation (3.22) and a representation of G(f) in terms of
the semi-invariants x:27

From Eqs. (3.4b) and (3.14b) we infer that for the
semiclassical approximation

x,o=o, x,o=(z(Q)). ,=p(g), (3.26a)

der—~" 'po(~).
— 2x

(3.27b)

As a useful alternative to Eq. (3.27b) we may expand the
(Q;(t;)Qs(ts)) in Eq. (3.14b) as a power series in the time
difference (f;—fs) times a magnitude-ordering parameter
o. subsequently to be set equal to unity. Using this ex-
pansion in Eq. (3.14b) and then identifying the semi-
invariants X, we would obtain for nz&2

m—2

x = p n"x„", n= 1.
n=O

(3.28)

The first (n-independent) term of the series (3.28) is the
semiclassical invariant X . The term of highest order
in n in X is of order n '. It follows from this for m= 2
and from Eqs. (3.26a) and (3,27a) for m=0, 1 that the
lowest order moments of the semiclassical approximation
are equal to the corresponding moments of the exact
distribution:

XO Xl Xl X2 X2 (3.29)

consistent with the observations of I.ax.4

In estimating the validity of the semiclassical ap-
proximation, we can usefully compare the component
X ", 0(n&ns —2, of Eq. (3.28) with the semiclassical
semi-invariant X

„
through the dimensionless ratios

m x n/(x 0)m/lm —n) (3.30)

These ratios compare coefficients in Eq. (3.28) which be-
long to different semi-invariants, but which derive from
the same term in the exponent of Eq. (3.14b). If for
any fixed m) 2 we compare successive terms of the series
(3.28), we would be comparing contributions from dif-
ferent terms of Eq. (3.14b). This comparison, which
seems superficially to be the most logical, is actually not
satisfactory because the different terms of Eq. (3.14b)
can have appreciably different magnitudes without
greatly influencing the validity of the semiclassical
approximation.

To illustrate the application of our criterion, we con-
sider the simplest case for which ns=n+2 and the
relevant invariants all derive from the second term of
the exponent (3.14b). To avoid inessential mathematical
complications, we assume that p(g) is a linear function

x '= (&(Q)~(Q)).» D~(Q))»1'
Lexp((QiQ&)~ir)&) 1jp(4)p('4) i (3'26b)

etc. In these equations the operators Q; and Q& in (Q,Q&)
both occur at the same time: t, = tJ, .

For the exact spectrum we see from Eq. (3.17a) that

xs ——0, x,=p((), (3.27a)
and for m& 2
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of a single component $ of (.ss Using Eq. (3.5) in Eq.
(3.14b), we find with this assumption that for zz&0

(Bp dN

x„+,.——
I

— —~-p(~)[1+~(~)j. (3.31)
& B( 2zr

Using these expressions with Eq. (3.30), we find for
e&1 that

dco—ol "p(al) [1+hz(ol)j
— 2x

tributing to the dynamics of Q; and where ((AQ;)'), „

=((Q;—(Q;))'), the mean-square excursion of the co-
ordinate Q;. In the limit of high temperatures [compare
Eq. (3.36) below] this mean-square excursion is kT S;;,
where S;; is the elastic constant defined in Eq. (3.11).

The expression (3.22) obtains for arbitrary H, . When
B,is harmonic as in Eq. (1.1a), we can rewrite the semi-
classical approximation in the form'"

g(&u) sc= [(2zr)" detci$-'"

Vn+2" = (3.32)
Bpii do)

—(n+2) /2—p(~) [1+»(M)3
B]I „2~

X dqi . dq)rB[ai E(zl—)j

Xexp( ——P;„q;(A,—');„q„},(3.34)
In the limit of strong interactions (Bp/B) ~ +~) the
ratio (3.32) vanishes. Likewise, in the limit of high
temperatures, for which

where A. ' is the inverse of the E&(F rea1 symmetric
matrix A. having components

zz(a&) ~ kT/hei for T))TD, (3.33) (3.35a)

the ratio vanishes as T "".In the same way that the
ratios (3.25) measure the deviation of g(oi) from a
Gaussian distribution, the ratios (3.30) measure the ex-
tent to which g(ol) deviates from the semiclassical spec-
trum (3.22). We originally derived the semiclassical
approximation (3.22) by neglecting phonon frequencies;
the quantitative connection between the low-frequency,
strong-interaction, and high-temperature limits is re-
jected in the ratios (3.30).

We wish to re-emphasize that the validity of the semi-
classical approximation concerns the ratios (3.30), zzol

the ratios (3.25). The latter measure the deviation of

g(oi) from s, Gaussian distribution, not from the semi-

classical distribution. While it is often true that in
actual systems the semiclassical spectrum is Gaussian,
there are important cases for which it is not."Also, we
wish to note that while the semiclassical approximation
is always valid for sufhciently high lattice temperatures,
the semiclassical spectrum is not per sc a high-
temperature classical spectrum. The semiclassical result
is essentially a strong-interaction low-phonon-frequency
result. High temperatures have relevance only to the
extent that, when Eq. (3.33) obtains, the "effective
strength" of the phonon-impurity interaction is not
BP/Bg but rather (T/Tn)"'BP/Bg, which increases with

temperature.
Summarizing briefly but somewhat too simply, we

conclude from Eq. (3.32) that the semidassical approxi
zwatiorz is aPProPriate lo all lattice coardizzates Q; for
zhick

[(~Q;) ),j ' Bp(~)IB~,»;,
where ~; is the average frequency of the phonons con-

"With this assumption the only nonvanishing components of
(3.28) are the components x '. This example illustrates the
futility of judging the validity of the semiclassical approximation
by comparing, for example, z ' with z for m&2.

~ Cf. Sec. 5 below.

cfM
= s —

I p, s(~)+p;(~)3[1+2zz(~)1 (3.35b)
Q 2Ã

=kTS,p, (3.36b)

where S;s is the elastic constant defined in Eq. (3.11).
In the important case where P(Q) is approximately a
linear function of its arguments, b(ol) so is Gaussian.

C. Mixed Cases

In the two preceding subsections we have considered
cases in which the phonon coordinates Q=(Q;} either
all interact weakly with the impurity or all interact
strongly. In this section we consider the situation
which obtains when, some of the coordinates Q belong
to a subset Qsr which interacts weakly with the im-
purity while the remainder belong to a subset Qs which
interacts strongly.

With no significant loss of generality we assume that
the subsets Qs and Qs are uncorrelated in the sense that

([Q,(l).,Q„(l)-j).,=0. (3.37)

With this assumption, the nonvanishing correlation
functions (Q, (t;)'Qs(4)') in Eqs. (3.14) contain either
pairs of weakly coupled coordinates (Qs) or pairs of
strongly coupled coordinates (Qs). If Q, and Qi, are
both strongly coupled, we proceed as in the semiclassical
approximation of Sec. 3B above and set t;=tI, in the
correlation function. With this semiclassical treatment

"Cramer, Ref. 27, pp. 310-312.

In the high-temperature limit when (3.33) obtains, we
obtain the classical equipartition result

de
(~)jk I

classical= ~T [pj's( )ol+ppj(M) j/Aol (3 36a)
Q 2'
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of the Es strongly coupled coordinates, we obtain the following generalization of Eq. (3.34):

A 1685

G(t)otw&; acts~=L(22r) deters& '" dq, . dq&, exp( ——', g q;(vis
—

');bqb)

t tj,

XexP —iP(gw, qs)+( —i)' dtt dt2LexP((gwt&w2)~wt~w2) —1$P((wt, qs)P(Irw2, qs)+ . (3.38)

Here Lcompare Eq. (3.8)j
p((w, as) = (P(Q w+ (w, qs) ).,r (3.39)

and As is the Xs&&Xs real symmetric matrix with elements Lcompare Eqs. (3.35) and (3.36)g

(~ s);.=-;(g;g»+g-g.;)
- &&~(8~)(sa~ ~

classical

(3.40a)

(3.40b)

4. PHONON-DEPENDENT MATRIX ELEMENTS

In the preceding section we considered the situation which obtains when the matrix elements M, q are inde-
pendent of the lattice coordinates. When 3f,& is an operator function of those ocordinates so that the Heisenberg
operator

M.b(Q; t) =exp(iB'. t/tjt)M. b(Q) exp( —iH.t/h) (4.1)

is not independent of t, the spectral function G(t) must be supplemented as in Eq. (2.12) by a function M(t, .
Proceeding as in the derivation of Eqs. (3.4) and (3.14), we can verify that

M(t) =(Mab(t) Mab )a,T+( 2) dtlL(Mab(t) P(t1) Mab )a, T

—(P(t1)')„T(M,b(t) M,bt), ,rf+ (4.2)

= exp (—i) dt1 )exp((gtgt)&181+ (Qtgo) &18o) 1]p((—1)+(—i)' dt1 dt [e2px((g, g, )8,8,

+(g.g.)~ tt.+(g g.)~ il,+(Q Q )~ it,+(Q Qo)tl ojo) p((—g Q )~ il,+(g g.)il.il,+(g g.)~ it.

+ (Q2QO) 828o) —exp((gtg2) 8182)+1jp((1)p((2)+ exp((gtgo) oj tao)m((, )m*((o) . (4.3)

Here we have used Lcompare Eq. (3.8)$
m(~)=-(M. (Q+6).. (4.4)

and the symbolic notation of Eq. (3.9). It is sometimes useful to recall
C

compare Eqs. (3.4) and (3.14)j that

exp((gtgo)8, 8,)m((t) m*((o) = (M.b(Q(t) +g,)M.bt(Q(0).+ (o))

The coordinate ( and temperature dependence of the function (4.4) is as in Eqs. (3.12) and (3.13).
If the phonon operators in M, b(Q) and P(Q) are independent in the sense that

(M.b(t).P(tt)' P(t.) M'a) b, aT( M(atb) M.b ).,r(P(t1)' P(t.).),
then Eq. (4.2) simpliies Lcompare Eq. (4.5)$ to

M(t)uncorrelated (Mab(Q1t) Mab (Qj 0) )a,T.

(4.5)

(4.6)

(4.7)

This situation obtains, for example, when Mab(Q) and. P(Q) depend upon operators Q; which are uncorrelated in
the sense of Eq. (3.37):

(Lg (t),g .(t') &)=0

If p(tr) is a linear function of g, we may rigorously terminate the series in the first exponent of Fq. (4.3) after its
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first term to obtain [compare Eq. (4.5)j
D. E. McCU M BER

M(t)
„

i; „,= exp (—i) dti[(QiQi) Bi8i+ (QiQo) &oA jP((i) (M.b(Q(t) +4)M.b'(Q(0) '+ (o)).,r (4.8a)

3IIo,b 3 z df] f, ] By & M~b 0 —'L (Ay y o By ] . 4.8b
l(

l ) )

For this special case the correlations between the phonon-dependent matrix elements M, b(Q) and the energy
function P(Q) appear as time-dependent modulations of the coordinates g, and (o.

Using Eq. (2.12) on the left-hand side of Eq. (2.9b), we find upon setting t =0 that the total integrated intensity
of F(oi).b is

Ao—r(M). b
——M(0) =(IM.bI') & I(M.b) I'.

— 2x
(4.9)

Other moments can be computed as in Eq. (3.2) by evaluating time derivatives of Eq. (2.9b) at t= 0.

A. Weak Interactions, Low Temyeratures

In the case of weak. phonon-impurity interactions it is convenient to expand the first exponent of Eq. (4.3) as a
power series, ordering each term as in Sec. 3A by the number of ( derivatives of p(() or of zzz(g) which it contains.
Through terms of second order, the results of such an expansion are contained in Eqs. (4.8) which, as we have
noted, are exact when p(g) is linear in (. Alternatively,

Bp

date

8 8
M(t) = exp —p — zz(~) t;b(~) +pb, (~) +

~b ojp; „2zr oi .. Bfb' Bpb"

" do~ 8 & ( Bp " dpi zz(or)
Xexp 2 —~'"'~(~)t-i(~), „~l6'+Z pji(~)+' ' '

rim — 2zl B(i Bftn k j 8$~ 2z'l

otp
" doi zz(oi)

Xm*I („"+P — p„,.(~)+. . I. (4.10)
8/j ~ 2zi' M

Expanding the two exponentials as power series in
their arguments, we separate the lowest order (time-
independent) term

Bp " doi zz(oi)
Mo—= zzzl 6+2 — p, i(~)+ I

(4.11)
a];

from the remaining (time-dependent) terms. When used
with Eq. (2.12), the term (4.11) does not modify the
spectral properties of the function g(oo), whereas the
time-dependent terms of M(t) displace g(&o) by phonon
frequencies.

Any no-phonon component which remains in the
spectrum P(oi), b of Eq. (2.9) must derive from the no-

phonon part of G(t) and the component (4.11) of M(t):

~(oi)~b I ~&&-o&&&non= Mo exP( yG z(oig+cob oi,)t- —
—il' ItI —izvg't/ItI) (412)

The lattice dependence of the matrix element M, b does

not modify the frequency or the width of the no-phonon

line. It does however inhuence its strength.

» Eq. (4.11) the coordinates g in zzz(g) are displaced
by approximately one-half of the diBerence of the lattice
distortion in the ground-state and excited-state en-
sembles. This is not unexpected because detailed-
balance arguments indicate that in the limit of zero
temperature the strength of the no-phonon line in emis-
sion equals that in absorption, whatever the lattice
dependence of M b.

Expressions describing the vibrational structure ac-
companying the no-phonon component (4.12) can easily
be derived from Eqs. (3.17)ff. and Eq. (4.10).

B. Strong Interactions, High Temperatures

If as in Sec. 3B we replace all (Q,(t;)Qb(tb)) in Eqs.
(3.4) and (4.3) by (Q;(t;)Q&(t;)), we obtain the following
generalization of (3.22):

M(t)scG(t)sc=((IM b(Q) I'
Xexp[—itP(Q))).„),
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Here ( .),r indicates that the operator function
within the parenthesis is to be totally symmetrized with
respect to the ordering of the phonon operators Q. When
H, is harmonic as in (1.1a), we can rewrite this semi-
classical approximation in the form [compare Eq.
(3.34))

F(Q7) s= [(27r)+ detA]

Xexp{——,
' P;, q, (A-'), ,q, ) IM.,(q, "q~) l'

X5[a—(gb g.)—P(q—, p) ], (4.14)

where the S)&S symmetric matrix A. is defined in
Eqs. (3.35)—(3.36) .

The semiclassical approximations (4.13) and (4.14)
are valid for conditions which are essentially the same
as those discussed in Sec. 3. Whereas the three semi-
invariants Xs, Xr, Xs of G(1) are retained in the semiclassi-
cal approximation G(1)so of Sec. 3, only the single semi-
invariant Xo is precisely correct in the semiclassical
approximations (4.13) and (4.14) when M, s is a func-
tion of the phonon coordinates. This feature cannot be
rectified without destroying the essential simplicity of
the semiclassical expressions. Fortunately, the errors in
the mean frequency X& and in the variance X2 are
generally insignificant when the criteria of Sec. 3 are
met, because those criteria insure that the standard
deviation (Xs)'~' is much greater than the effective
Debye frequency whereas the errors in X& and (Xs)'~' in
Eq. (4.14) are of the order of that frequency.

C. Mixed. Cases

As in Sec. 3C we assume that the coordinates Q may
be separated into a weak set (Q w) and a strong set (Qs)
which are uncorrelated in the sense (3.37). Proceeding
as in Sec. 3C, we obtain for the present case

M(&)G(&) I 9&w&; sots&=[(2s) det&s] ' '

X dq& dq» exp{——,
' P,z q, (A.&

—'),&q&)

XMw(&;qr. . q~s)Gw(t) qr
. q~,), (4.15)

where Mw(f, ; ps) and Gw(t;qs) are, respectively, the
functions M(1) and G(t) appropriate to a system in
which the weak coordinates Q w are treated as quantum-
mechanical operators, and the strong coordinates Qs are
replaced by Eg numerical parameters q8. The N ~XXB
symmetric matrix A.~ which governs the q8 average in
Eq. (4.15) is defined in Eq. (3.40).

5. THE URBACH EFFECT

In studying the spectral region near the fundamental
absorption edge of direct-gap silver halides, Urbach"
observed that over a range of several decades the ab-
sorption cross section accurately follows the empirical

rule
o.(or) =Epex'p[o k(ro —(op)/k T], (5.1)

e(Are) —+ exp( —Ah(v/k T), (5.2)

an expression very suggestive of Eq. (5.1).
Equation (2.2) is a nonperturbative expression whose

physical interpretation is closely related to the mecha-
nism proposed by Hopfield. If the emission cross sec-
tion o,(or) is roughly constant over the frequency range
of interest, the factor expPi(co —p)/kT] in Eq. (2.2) will

produce an absorption tail of the Urbach type. In this
description the parameter o in Eq. (5.1) compensates
for the fact that o,(e) is not strictly constant. There are
cases for which Eq. (2.2) does indeed predict an Urbach-
like low-frequency absorption edge, especially when the
temperature is low and the exponential cutoff in
exp[A(~ —y)/kT] restricts the measurable frequency
interval to be close to the zero-temperature edge.""
However, we have not been successful in attempts to
fit broad high-temperature Urbach edges"" by this
model. The difhculty, quite simply, is that over the re-
quired large frequency interval the frequency de-
pendence of o,(~) is neither small nor capable of de-
scription in Eq. (5.1) by measured values of the
parameter 0..

Dexter" has analyzed the band-edge absorption in a

"W. Martienssen, Phys. Chem. Solids 2, 256 (1957); 8, 294
(1959); U. Haupt, Z. Physik 157, 232 (1959);H. Zinngrebe, ibid.
154, 495 (1959); S. Tutihasi, Phys. Chem. Solids 12, 344 (1960).

3' D. Dutton, Phys. Rev. 112, 785 (1958).
~ H. Mahr, Phys. Rev. 125, 1510 (1962)."D.Redfield, Phys. Rev. 130, 916 (1963)."J.J. Hop6eld, Phys. Chem. Solids 22, 63 (1961).
se D. L. Dexter, Suppl. Nuovo Cimento 7, 245 (1958).

where Eo, 0., and coo are parameters. Subsequent experi-
menters have verified this rule in other direct-gap ma-
terials, most notably the alkali halides. ""Mahr has
verified that the same rule applies to absorption by small
concentrations of KBr or KI in KCl."In most situations
for which Urbach's rule has been verified 0.

Redfield'4 has suggested that Urbach's rule derives
from electric-field perturbations generated by ran-
domly located impurities; however, the Boltzmann-like
temperature dependence in Eq. (5.1) strongly suggests
that Urbach's rule derives from the interaction of
thermally excited lattice vibrations (phonons) with the
electronic systems primarily responsible for the absorp-
tion. Hopfield35 has suggested an explanation of this
type which he based upon an admittedly incomplete
first-order calculation of phonon-exciton interactions.
Ke can qualitatively understand his model if we assume
that the absorption on the low-frequency side of the
edge results from electronic excitation by the simul-
taneous absorption of the incident photon and a lattice
phonon. This absorption will refIect the density of
phonon modes at the frequency Ace below the edge and
their average occupation e(A&a) [compare Eq. (3.2)].
%hen Ahco))kT, the average occupation
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semiclassical model of the type (3.34) with P(Q) a
linear function of a single phonon coordinate Q;. By
suitably adjusting the parameters, he was able to re-
produce the observed exponential dependence over a
limited frequency range. Outside that range the Gaus-
sian spectral shape implicit in his model destroys the
agreement with the experiment. Toyozawa" extended
Dexter's treatment by assuming E(Q) to be a quadratic
function of a coordinate Q;. For example, if

and &ob =co s oo, K.xpressions (5.6a) and (5.6c) can use-

fully be written in terms of the phonon spectral func-
tions of Kq. (3.5) or at high temperatures in terms of
elastic constants [compare Eqs. (3.35) and (3.36)]. In
the neighborhood of that frequency or, for which

P(4o), b is a maximum, n(4o, T) is large and positive. For
that case

cp(~) lt (T)&a(r)s(ra Idbe—) Ikrc [a(e,T)l-b

&(Q)= CsQs'

then it follows from Eq. (3.34) that (Cs~~0)

(5.3a)
1— +

16o.'
(5.7)

exp[—4o/2Csk TSss]
S()= ((~ ),

[2s.Csk TS
(5.3b)

ff'(4o) Jia (T)ea(T) s(o—b )lsoTe

where 4o

o (T)= —k T/2ACs(Qss),

dye "'ky n(4o, T)] 't' (5.—5

(5.6a)

n(4o, T)= [o(T)/2r(T)+A(4o —cob.)r(T)]/(kT)'", (5.6b)

r(T) = —Cs/( ( Cs
~ ACi[2(Q ')/kT]'") (5.6c)

"Y.Toyozawa, Suppl. Progr. Theoret. Phys. (Kyoto) 12, 111
(1959).

4' D. M. Eagles, Phys. Rev. 130, 1381 (1963).
44 H. Mahr, Phys. Rev. 132, 1880 (1963).~ Our o (T) is the analog of o in Eq. (5.1); it differs from that of

Mahr, Ref. 39, by the factor kT Our r(T) likewise differ. s by a
factor (kT)'is. With these definitions o (T) and r(T) both approach
constant values for T&&TD.

where 8(x) =-'s(1+x/~ x~) and where we have used the
high-temperature result (3.36b). For Cs(0, Eq. (5.3b)
reproduces the Urbach lovr-frequency tail."

In his analysis Toyozawa recognized that the modes
of vibration which dominate the quadratic interaction
(5.3a) cannot at the same time have large linear inter-
actions with the impurity. While an Urbach tail would
eventually be predicted from Eq. (3.34) even if this
did occur, the characteristic exponential behavior would
only begin much too far down the edge of a Gaussian
curve characteristic of the linear coupling, Mahr" ex-
tended Toyozawa's work by simultaneously considering
two independent phonon coordinates, one vrhich couples
linearly to the impurity and"a second which couples
quad ratically:

&(Q Q)=C Q+CQ (Q Q )=0 (54)

Sy adjusting the coupling constants C; and the prop-
erties of the phonons, Mahr was able to achieve an
excellent Rt (over a range of four decades) to his ab-
sorption data" for KI in KCl.

If we use the phonon coupling (5.4) in Eq. (4.14), we
find with the assumption that M, b is independent of Q
that

Keeping only the first term of the series, we find that

o(T)-
4A[r(T)]'

r(T) ) s- i~s

I— I—kT
0(T))

:4ob. —kT/SAo(~). (5.8)
(tr/r)2»k T»kTD

These results are essentially identical to those of Mahr,
who neglected the factor [y—n(4o, T)] '" in the integral
of Eq. (5.5) 4'

In relating the experimental and the theoretical spec-
tra, Mahr neglected the frequency dependence of factors
in Eqs. (2.5) which connect the absorption cross section
to the spectral function F(4o),b. When the exponentials in
Eq. (5.5) dominate the frequency dependence of F(4o), b

and vrhen the absorption strength is not so strong as
to significantly influence the refractive properties of the
impurity-doped crystal, this is a reasonable approxima-
tion. However, as Mahr has noted, it is not reasonable
for the treatment of the intrinsic absorption edge of the
host crystal" and is probably responsible for the devia-
tion he found when he attempted to fit such spectra to
an expression of the type (5.5).

It is important to realize that the Toyozawa-Mahr
model of Urbach's rule is not necessarily intrinsic to
band-gap spectra. It obtains whenever the phonon-
impurity coupling can be approximated in the strong-
coupling semiclassical domain by Eq. (5.4). Elicit et al. 44

have recently scrutinized the low-energy absorption
edge of Ii centers in KC1. They vrere unable to detect
any evidence of an Urbach tail which vrould accompany
a strong quadratic coupling (Cs(0) in (5.4).

Contrast the Toyozawa-Mahr model with the model
based on Eq. (2.2) which we brieRy discussed earlier. For
an impurity line Eq. (2.2) would predict that any
Urbach-like tails vrouM lie to the lovr-frequency side of
the line in absorption and to the high-frequency side in
emission. The Toyozawa-Mahr model predicts that the
Urbach tail remains on the same side of the line in both
absorption and emission. If Cs(0 in Eq. (5.4), the tail

4' Compare Eq. (5.7) with the similar equation at the top of page
1881, Ref. 39.

~ J. J. Hopfield, Phys. Rev. 112, 1555 (1958).
4 C. C. Klick, D. A. Patterson, and R. S. Knox, Phys. Rev.

133, A1717 (1964).
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lies on the lovr-frequency sid.e; if C2&0, it lies on the
high-frequency side. Because the electronic con6gura-
tion of excited states is generally less compact than that
of the impurity ground state, vre expect that in most
cases C2(0.

6. CONCLUDING REMARKS

In the preceding sections we derived expressions re-
lating to the spectra of optical transitions between a
pair of impurity levels in an insulator. %e speci6cally
discussed interactions of the impurity with lattice vibra-
tions, although vre brieRy noted in Sec. 1 that the analy-
sis pertains to all fields vrhich have classical analog and
which can be expressed in terms of a complete set of
Bose-Einstein operators having the properties (1.1)ff.

Imbusch et al.44 have studied the variation vrith tem-
perature of the wid. th of the sharp optical R lines of V'+
and of Cr'+ in MgO. Both of these ions are weakly
coupled to the lattice phonons in the sense of Sec. 3.
It has been speculated that both are also strongly
coupled (in the sense of Sec. 3) to very low-frequency
perturbations such as might be associated with the
motion of lattice dislocations. This additional "strong"
coupling is apparent at temperatures belovr about 100'K
vrhere the linewidth produced by the "vreak" phonon-
coupling mechanism (3.20) decreases rapidly ( T').
The strong coupling produces a small Gaussian width in
the no-phonon line vrhich in the temperature region
studied (T&4.2'K) is proportional to T'r'. This example
of a "mixed system" in the sense of Sec. 3C is instruc-
tive because it illustrates hovr phonon interactions can
be supplemented vrithin the above theoretical frame-
work by other dynamic interactions, such as those pro-
duced by dislocation motion. It also illustrates that, as
the term is used in Secs. 3 and 4, the "strength" of im-
purity perturbations depends critically upon the fre-
quency of those perturbations [compare Eqs. (3.30)-
(3.33)] and is only indirectly related to the absolute
strength of the coupling as measured. through the
second moment of the spectrum.

The semiclassical approximations vrhich obtain for the
strong-coupling case provide the theoretical basis for
Franck-Condon analyses of impurity spectra. Two gen-
eralizations of the usual Franck-Condon con6guration-
coordinate description are apparent in Eq. (4.15), where
we have included the coordinate dependence of the
matrix element" M q and where we have provided for
several lattice coordinates il= {q;).Generally, the num-
ber of experimentally measured. parameters in strong-
interaction cases (for which the conffguration-coordinate
or semiclassical approach obtains) is insufficient to
vrarrant complicating the single-coordinate approach.
Hovrever, there are situations for which these additional
degrees of freedom are necessary. In Sec. 5 vre indicated
that the Toyozawa-Mahr model of Urbach tails re-

4' G. F. Imbusch, %.M. Yen, A. L. Schaw1ow, D. K. McCumber,
and M. D. Sturge, Phys. Rev. 133, A1029 (1964).

quires at least tvro independent con6guration co-
ordinates. Kleinman4s has suggested a Raman measure-
ment to determine if discrepancies between the absorp-
tion and emission spectra of Ii centers is a consequence
of coordinate dependence in the matrix element M, q.

Lax4 has emphasized that con6guration coordinates
are not necessarily coordinates of normal modes of
lattice vibration. This is also apparent in our Eqs. (3.34)
and (4.15).The coordinates q in those equations derive
from phonon coordinates Qs which measure those lattice
distortions which interact strongly with the impurity.
The dynamics of the operators Qs are conspicuous by
their absence, since it vras precisely the neglect of such
dynamics which led us in Sec. 38 to the seIniclassical
approximation (3.22). Phonon dynamics has relevance
to the semiclassical approximation only in so far as it is
implicit in the elements of the matrix A.. As Lax has in-
dicated, that limited dependence can readily be re-
produced by the introduction of a fictitious temperature-
dependent normal mode. To illustrate this fact in our
own notation, we can assume with no loss of generality
that A. is diagonal:

[A nondiagonal A. can be diagonalized by a real
orthogonal transformation, which is tantamount to a
transformation of the coordinates {Q;) and {q;).] We
dePse a parameter C; and a temperature-dependent
configuration frequency or; (T) such that

(A),,= ) C;) '[1+2rs(or, (T))].

(6 2)

It follows that in a configuration-coordinate treatment
based upon Eq. (3.33) or (4.15) we can view the co-
ordinates {g;) as fictitious normal-mode coordinates
appropriate to vibrations having the impurity coupling
constants {C;) and the frequencies {or;(T)).' lf p;;(or)
in Eq. (6.1) is strongly peaked about a single frequency,
or;(T) will be only weakly temperature-dependent and
approximately equal to that frequency. In all cases
co;(T) approaches a well-deffned high-temperature limit:

~,(&)
T))Tg&

dM—
r (~)/~

p 2'
(6 3)

Because the semiclassical approximation neglects
phonon dynamics except as it indirectly affects the
elements of A., Franck-Condon con6guration analyses
treat the phonon-impurity interaction as if it were an
adiabatic, quasistatic, perturbation of the impurity.
The coordinate averages in Eqs. (3.34) and (4.15) are
equivalent to time averages over the various dynamic

4s D. A. Kleinmsn, Phys. Rev. 134, A423 (1964).
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excursions of the coordinates. The distinction between
such time averages and averages over strictly static
random distortions only appears in the temperature
dependence of the elements (6.1) of A.. In fact, we can
describe the effect on the semiclassical spectra of static,
continuously variable, random lattice strains due to im-
perfections by adding a constant component A.' to the
matrix A. 4'

Except in so far as "zero-point motion" introduces a
certain minimum (zero-temperature) width into A.,
quantum efIects are not present in either the Franck-
Condon or semiclassical analyses. They do, however,
contribute in the weak-interaction analyses of Secs. 3A
and 4A. For weak interactions the processes of phonon
annihilation and creation which accompany electro-
magnetic transitions are in a sense so infrequent that
the spectra show details which can be associated with
the emission or absorption of small discrete numbers of
lattice-vibration quanta (phonons). As the strength of
the phonon-impurity interaction increases, the greatly
increased profusion of these elementary quantum pro-
cesses smears the detailed features and leads to a semi-
classical description in which the gross spectral features
are correctly described.

Two features of the detailed weak-interaction (quan-
tum) spectrum are particularly noteworthy for the in-
formation they give about the nature of the impurity
and the phonon spectra with which it interacts. The
first of these is the so-called no-phonon line. Formulas in
Secs. 3A and 4A relate properties of that line to the
strength of the phonon-impurity coupling [as measured

by derivatives of p($)] and to certain temperature-
dependent integrals of the effective (coupled) phonon
spectra p;s(a&). By making certain plausible assumptions
about the nature of the phonon-impurity coupling, one
can anticipate the temperature dependence of the
strength, the width, and the position of the no-phonon
line, and thereby gain increased understanding of experi-
mental observations. ""The no-phonon line is also im-
portant in the study of symmetry properties of the
impurity center, because it does not reRect the often un-
known symmetry properties of lattice phonons. (When
the matrix element M, & is coordinate-dependent, unique
symmetry assignments for the vibrational structure are
particularly elusive. ) Krupa and Silsbee" have recently
demonstrated, in experiments which clearly verify the
van Doom model of R-type color centers, that, even

4' The central limit theorm (Ref. 2'7, p. 213) applies to continu-
ously variable (wersls discretely variable) random distributions,
which therefore can be described by a Gaussian distribution.

4' D. C. Krupa and R. H. Silsbee, Phys. Rev. Letters 12, 193
(1964).

when the phonon-impurity interaction is relatively
strong a wealth of symmetry information can beextracted
from a small residual no-phonon line. Because the no-
phonon line reQects the symmetry properties of the dy-
namically-unperturbed impurity, one might be tempted
to identify the position of that line with the location of
the unbroadened impurity level in a static lattice. This is
not correct. 4' Equations (3.15) and (3.19a) clearly show
that levels in static-crystal-field calculations should
be identified with the mean frequency of the spectrum
and not with the no-phonon line usually near one edge
of that spectrum. This distinction is particularly im-

portant for broad bands, where the phonon-impurity
interaction is strong and the displacement (3.21) of the
no-phonon line from the mean frequency is large.

The second important feature of the weak-interaction
spectrum is the vibrational structure in a Debye
neighborhood of the no-phonon line. As is clear from an
expansion of the last exponential in Eq. (3.17b), that
vibrational structure rejects the frequency dependence
of the combination pg(ce) of the phonon spectral func-
tions p;s(&v) of (3.5). From the experimental spectrum
one can use an electronic computer to extract the spec-
tral function pg(ee) of Eqs. (3.17)—(3.19)."If insufficient
additional information is available to separate the in-
dividual components p;s(&e) from pG(&e), it is a reasonable
first approximation to assume that only a single-spectral
function, p»(ee) say, is different from zero in Eq. (3.5)
and that p, (eo)rs(eo) =po(eo)(8p(8)t) ' in Eqs. (3.13) and
(3.20)."While this procedure is admittedly approxi-
mate, it is clearly less arbitrary than an ad hoc approxi-
mation of the p;&(co) by Debye spectra having adjustable
Debye-frequency cutoffs. 25 The Schwarz inequality will

sometimes indicate a bound on the errors involved in
the approximation. Another measure of its validity is
the degree to which it is able to reproduce the tempera-
ture dependence of the width and position of the no-
phonon line. "'4
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