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experiment for the cross section for the electron ioniza-
tion of atomic hydrogen. To get this agreement it is
necessary to use an electron velocity distribution of the
form (vo/vr)'e """;since this distribution is very dif-
ferent from the exact velocity distribution its use cannot
be justified theoretically. However, this semiempirical
procedure could partially be justified if it gave good
results for other atomic systems. Unfortunately, this is
not the case. For example, if we compare the cross
sections obtained from Gryzinski's semiempirical
formula with the Bethe formulas" for electron ionization
of the states of hydrogen with principal quantum num-
bers n=2, 3, and 4 we find that at high energies the
semiempirical classical formula is in error by factors of
2, 3, and 4, respectively.

It is interesting to note in Table I that the two
classical cross sections obtained by replacing V by
(vrv+vvv)'" tend to agree quite closely with the experi-
mental cross section at low energies. Since the result of
this approximation is to eliminate collisions with long
interaction times it has been suggested' that since it has
the same effect as the inclusion of the atomic nucleus it

"H. Bethe, Ann. Physik 5, 325 (1930).

is a better approximation than the original classical
approximation. By comparing columns one, two, and
five of Table I we see that this suggestion is true.

CONCLUSION

At large impact energies we cannot expect the classi-
cal inelastic electron-atom scattering cross sections to
agree with experiment, for the classical theory cannot
describe an electron-atom collision correctly. However,
at incident electron energies of a few atomic units the
classical description of a collision is valid and the
classical cross sections should be as accurate as the
Born-approximation cross sections. If the incident
electron energy is close to the ionization or excitation
threshold the electron-electron interaction is not the
dominant interaction and we cannot expect either the
classical or the Born approximations to give accurate
cross sections.
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The cross section for elastic scattering of electrons from helium atoms has been computed for an energy
range from 0 to 50 eV. The formalism used here was obtained from an extension of Hartree-Pock theory
wherein the distortion induced in the atom by the scattering electron is approximated by a polarization
potential. The method is similar to the "adiabatic-exchange" treatment of electron-hydrogen scattering by
Temkin and Lamkin. The computed scattering phase shifts and cross sections are compared with various
other calculations and experimental data. A scattering length of 1.13 ao is extrapolated from the phase shifts
after correcting them for the effects of truncating the polarization interaction as required in the iteration
process. The computed total cross sections compare favorably at low energies with the data of Ramsauer
and Kollath and at very low energies with the modified effective-range theory of O' Malley, Spruch, and
Rosenberg. The differential scattering cross sections follow the effective-range theory in a high backward
asymmetry at low energies and the experimental data in a high forward asymmetry at higher energies. The
momentum-transfer cross sections agree well with recent microwave drift-velocity measurements, especially
those of Pack, Phelps, and Frost.

I. INTRODUCTION

HIS paper is concerned with the elastic scattering
of electrons from atomic helium in the energy

region from 0 to 50 eV. For this problem, as in all low-

*A preliminary account of this work was 'ven at the Pasadena
meeting of the American Physical Society Bull. Am. Phys. Soc.
8, 608 (1963)j.

f' This work was supported in part by the U. S. Bureau of Naval
Q'cap ons,

energy electron-atom scattering problems, two major
effects must be included in the formalism to give ade-

quate description of the scattering. These are the
exchange interactions between the scattering electron
and the atomic electrons arising from the exclusion
principle and the distortion induced in the atomic sys-
tem by the presence of the scattering electron.

Exchange effects in scattering have been studied by
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many authors, including Morse and Allis who treated
the cases of hydrogen and helium. ' From these investi-
gations it is clear that exchange effects must be con-
tained in any theory which treats electron-atom scat-
tering at low energies. This may be done either by ex-
plicit antisymmetrization of the total wave function for
the system or implicitly in an eigenfunction expansion
over a complete set of states for the system. In the
present study, a cnmpletely antisymmetrized wave
function is used to include exchange.

As yet no simple procedure exists for adequately
treating the more subtle distortion effects. There is in
fact a sequence of interrelated effects as the electron
moves in through the atom. These effects may be charac-
terized by the magnitude of the separation distance
between the electron and atom. For very large separa-
tions, the system consists of a point charge and neutral
atom between which there will exist a —n/r' polarization
potential due to the dipole imornent induced in the atom
(polarizabihty n) by the electric field of the point
charge. ' ' As the separation decreases, the electron is
accelerated by the attractive polarization potential and
although it may have started at infinity with a velocity
far below that of the atomic electrons, it soon attains
a velocity of similar magnitude. This leads to velocity-
dependent interactions. When the scattering electron
penetrates the atom, correlation effects between it and
the atomic electrons become important since the atomic
configuration must adjust for the close proximity of this
additional electron.

To date, only the first of these effects has been given
much consideration. In this case the usual procedure is
to assume that the velocity of the incident electron
remains substantially smaller than that of the atomic
electrons so that the entire electronic configuration of
the atom instantaneously readjusts for each position
of the incident electron. From the resulting distortion,
usually only the dipole polarization part is retained.
This method is commonly called the "adiabatic" ap-
proximation and has been applied with some success
to hydrogen by Temkin and Lamkin. 4 Their treatment
included the Pauli principle explicitly in determining
the polarization and the resulting formalism then in-
corporates some dynamic effects.

Another case in which the adiabatic approximation
has been applied with greater success, although re-
stricted to very low energies, is the modified effective-
i.ange theory of O' Malley, Spruch, and Rosenberg. ' For

' P. M. Morse and W. P. Allis, Phys. Rev. 44, 269 (1933).
'We have assumed here, as is the case for helium, that the

isolated atom possesses no intrinsic quadrupole moment. If such
should exist as in the case of oxygen, a potential proportional to
1/r' would be present which would have more important long-range
eRects than the induced dipole moment.' Atomic units are used throughout this paper in which A = 1,
e2 =2, and m = ~. The unit of length is the Bohr radius and that of
energy is the rydberg (13.6 eV).' A. Temkin and J. C. I.amkin, Phys, Rev. 121„788 {1961).

"'T. F. O' Malley, L. Spruch, and I„Rosenberg, Phys. Rev.
Letters 5, 375 (1960); J. Math. Phys. 2, 491 (1961); Phys. Rev.
u5, 1300 4,'&962~,

this, the long-range —n/r4 po1arization potential was
shown to be the major interaction determining the scat-
tering in the limit of zero energy. The usual efkctive-
range theory developed for nuclear problems was then
modified to account for this long-range potential and
an expansion in energy was derived for the cross sec-
tion. Application of this theory to low-energy scattering
from helium and other rare gases has been given by
O' Malley with good results for energies up to a few
eV. '

The demonstration by modified effective-range theory
of the importance of the adiabatic polarization inter-
action at low energies prompted us to examine this
approximation in more detail, and over a larger energy
region. In particular we have included polarization
effects in a Hartree-Fock calculation of electron scatter-
ing from helium where we have found substantial im-
provement in the cross sections for the energy region
from 0 to 50 eV as compared to those of previous cal-
culations. The derivation of the extended Hartree-Fock
equation follows the procedure of Temkin and I.amkin, 4

and is discussed in Secs. Il and II:I:.
A further comment should be made concerning the

close-range correlation effects mentioned above. These
effects are necessarily neglected in the present formal-
ism. To include them, one must use a more powerful
method such as "close-coupling" which has been applied
to hydrogen. ' However, this approach requires knowl-
edge of all the eigenfunctions of the atom being treated
in order to get just the adiabatic polarization effect and
as such holds little promise in its present form for any
atoms other than hydrogen as far as elastic scattering
is concerned. ' An extension of this method wherein
only a few of the low-lying states are kept in the eigen-
function expansion and the remaining states approxi-
mated by an "optical" potential has, however, been
considered by Pu. '

The reduction of the scattering equation to a fornax

suitable for computer solution and the methods used
to solve it are given in Sec. IV. The results obtained from
this formalism are presented and compared with other
calculations and with experiment in Sec. V.

II. DERIVATION OF THE SCATTERING EQUATION

The procedure used to obtain the equation for the
scattering wave function follows the standard Hartrec-
I'ock (H-I") method. One requires that the variation of
the integral

I= +'(H E)+dr—
' T. F. O' Malley, Phys. Rev. 130, 1020 (1963).
~ See for example the comprehensive review of electron-hydrogen

scattering by P. G. Burke and K. Smith, Rev. Mod. Phys. 34, 458
(1962).' The "close-coupling" approach has been found to be a powerful
method for treating inelastic collisions since any particular channel
of interest can be examined almost independently of the others.

R. Pu, University of California Radiation t.aboratory Rept.
UCR1.-10878, 1963 (unpublished).
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he zero, where, for helium. the total Hamiltonian is
given by

4 4 4 2 2 2
gg V 2 V22 V32— + + +

r2 r3 r]2 r$3 rg3

r"=~r—r ~V I

and the energy is

We do not use the rather complicated H-I pertur-
bation theory, but instead assume that the perturbed
function satisfy the equation"

(2)

Z= Eg+k' (3)
where

with E& the ground-state energy of the atom and k' the
energy of the scattering electron.

The Pauli principle requires that the total wave
function for the system be antisymmetric in the inter-
change of any two electrons. To include this and adia-
batic distortion e6ects, the Ansatz for the total wave
function is taken as an antisymmetric combination of
the perturbed wave functions for the atomic orbitals
and the scattering electron. Since the atomic configura-
tion forms a singlet spin state, only one orientation of
the scattering electron spin need be considered. Further-
more, since exchange is explicitly included, the per-
turbed atomic orbitals must be properly paired with
the wave function for the scattering electron. From
these considerations, the Ansatz is taken to be

4(1,2,3)= (3) 'i'Q'si(1, 2) y(3)S(1,2)e(3)+
P" (3,1)(p(2)S(3,1)n(2)+foi(2,3)y(1)S(2,3)n(1)j, (4)

where S is the singlet spin function,

S(s j)=(2') '"L (s)5(j)— (j)L3(s)l, (5)

a and g are single electron spinors with projections
m, =+sr and —s, respectively; &p is the wave function
of the scattering electron, and P'"'(i,j) denotes the space
part of the H-F wave function for the atomic orbitals,
electrons i and j, perturbed by the Geld of a separated
electron N. The functions p&"&(i,j) are assumed to be
known, and are not varied. The Ansatz is also seen to
be an eigenfunction of the total spin of the system.

The atomic wave functions are determined to Grst
order in the interaction with the "scattering electron. "
According to Temkin these will be of the form "
4'"'(& j)=4'»o(&)4'too( j)

+choo(s)X(j;~)+li too(j)X(s; ~), (6)

where /too denotes the unperturbed H-I" wave function
for the helium ground state and x(j; I) is the first-order
perturbed wave function for the state of atomic elec-
tron j acted on by the Geld of separated electron m.

For future reference, the unperturbed wave functions
satisfy the ordinary H-F equation

L
—V'rs 4/rr+ V,(rt—) ejftoo(rt) =—0, P)

where e is the H-F single electron energy eigenvalue and
V, is the self consistent electron interaction given by

2
V.(rt) =

Igloo(rs)

I' —~». (8)
r12

' A. Temkin, Phys. Rev. 107, 1004 (195'I).

(10)

is the first-order perturbation energy and 'U(r;, r„) is the
perturbation potential acting on electron i due to elec-
tron e. The terms deleted from the H-F perturbation
theory are Coulomb and exchange integrals between
the perturbed and unperturbed wave functions and
neglect of them should be justified since they are smaller
than the terms retained.

The perturbation potentials 'U are the corresponding
two-body parts of the total interaction between the
scattering electron and the atom,

4 2 2
V,„(1,2,3)= + +

1 3 r/3 f23

These may be expanded in the Legendre polynomial
series

00 fg
'U(r;, r„)=—= 2 P I'i(cos8;„),

p r i+1

where r& is the smaller and r& the larger of r; and r„.
A common assumption is to consider the atomic orbitals
perturbed only where the scattering electron is "out-
side" of the atomic electrons (r„)r,), the perturbation
vanishing otherwise. " For the case being treated here,
we have used a slightly diRerent approach wherein

some contribution from the region where the scattering
electron is inside of the atomic electrons is retained as
explained in the following.

For helium, we have not solved for the H-F perturbed
wave functions since we are considering only the direct

polarization potential effects at present. Instea, we
13have used the polarization potential given by Bethe

which he derived using the simple exp( —sr) variational
wave functions for the atomic orbitals. Bethe s con-
siderations were actually directed toward finding the
second order correction to the energy of the atom for
one electron in a highly excited state. In this, then, he

also included the region where the outer electron was

inside of the is electron since the probability of such

was not negligible. By doing this, he obtained diferent

U The complete form of the perturbed wave function equation
b Terokin in Ref. 10 is slightly in error. The proper form

is given in its entirety by J. Callaway, Phys. Rev. 1, ( ).
The truncated version given here is the same in either case.

"A. Temkin, Phys. Rev. 116, 358 (1959).
'3„H. A. Bethe, EIundbech der I'hysik (Edwards Brothers, Inc. ,

Ann Arbor, Michigan, 1943), Vol. 24, Pt. 1, pp. 339 ff.
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perturbed wave functions for the "inner" and "outer"
regions which then had to be matched at the boundary.

Since Bethe assumed that the is wave function is
simply an exponential instead of the actual H-F wave
function, a matching problem arises. This is overcome
by noting that it is mainly the asymptotic form of the
polarization potential which is important, " so that as
long as we match this to the proper —n/r4 form, reason-
able results should be obtained in the adiabatic approxi-
mation. This matching is discussed further in Sec. III.
The choice of Bethe's polarization potential over that
given by Callaway" (or Temkin~ which is the same)
was motivated by the fact that Bethe's varies like r'
at the origin while Callaway's goes like r and semi-
classical considerations indicate that a r' dependency is
appropriate.

The scattering equation is then obtained by sub-
stituting (2), (3), and (4) into (1), integrating over
spin and carrying out the variation on p*. This results
in the equation

Malo'ng these substitutions and using (7) and (9) to
reduce the resulting terms gives the adiabatic-exchange
equation for q as

4.—Vos—12V.(ro)+2V~(ro) —k' oo(rs)

(e k ) tt'100 (rs) p(r2)d7 2

2
+ %too (ro)—p(ro)drs 4'too(ro), (14)

where V„ is the polarization potential and given by

V„(ro)= /too*(rt)'U(rt, rs)X(rt, rs)drt, (15)

in general. For our case, only the dipole part of 'U was
retained t the 1= 1 term of (11)j and the corresponding
polarization potential was given by Bethe" as

P*&'& (1,2)(B—8)
X (P "&(1,2) oo(3) —f"' (3,1)(p(2) fdr tdrs ——0 (12)

2V~(r) =—9 1
1——e '*' 1+2zr+6(zr)'

(zr)' 3

for the scattering electron wave function q, where, in
obtaining this, we have used the fact that the perturbed
atomic wave functions in the exchange part are identical
as far as the integral in (12) is concerned.

Equation (12) sometimes appears in a form in which
the unperturbed atomic function appears on the left in
the integrand. This is suggested, but is by no means
required by the definition of the full scattering wave
function as the projection of total wave function on the
unperturbed target atom wave function. ' That pro-
cedure may have some justification if one can choose an
approximate wave function for the system which is
extremely close to the exact wave function, so that the
SchrOdinger equation alone,

is approximately satisfied. One may then multiply by
anything on the left and integrate out the undesired
coordinates without appreciably changing the validity
of the results. This is just the philosophy behind the
"close-coupling" approach to scattering problems.

III. REDUCTION OF THE SCATTERING EQUATION

The adiabatic-exchange approximation for the scat-
tering equation is obtained by keeping the perturbed
atomic wave functions only in the direct terms while
neglecting them completely in the exchange terms in
(12). Thus, all terms in (6) are retained for the first
integral in (12) while only the first term of (6) is retained
in the second integral. In addition, any dynamic terms
of the form V 'X(r;; r„) are neglected as are all third-
and higher order terms.

'4 A. Temkm, J. Math Phys. 2, 336 (19.61).

20 4 2
+—(sr)'+-(sr) 4 e'*'(1—+zr)', (16)

where z is chosen so that the asymptotic form of (16)
approaches

which gives

2V~(r) ~ n/r', for r ~—oe,

s= (9/n) "4

(16a)

(17)

with n the experimental polarizability.
This equation is equivalent to the adiabatic-exchange

equation solved by Temkin and Lamkin4 and hence the
convicting viewpoints discussed at the end of the pre-
vious section only give differences in the form of the
polarization exchange terms which are neglected here.

The neglect of the polarization exchange terms in
(14) corresponds to actually neglecting some first-order
terms while the second-order polarization potential is
retained. The justification for this approximation lies
in the fact that all of the exchange terms neglected will
contain factors which fall off exponentially with increas-
ing ra since they are always mlutiplied by a bound-state
wave function. The polarization potential, on the other
hand, falls off only as ra 4 and thus, although of higher
order in a formal sense than neglected terms, is of

sufficiently greater range to be of more importance than
the exponentially decaying terms. This is readily seen
to be true for hydrogen when one observes the changes
in the phase shifts as the various orders of approximation
were included in the work of Temkin and Lamkin. A
similar situation is believed to hold for helium. A more
elaborate analysis including most of the deleted terms
will be considered in subsequent work.
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IV. SOLUTION OF THE SCATTERING EQUATION

The radial equation obtained after intergrating out
the angular dependence in (14) is adapted for computer
solution by writing it in the form

l(1+1) 4——+2V, (rs)+2V„(rs) —ks Nl(rs)

2
Rr, (rs) (Bl+-'2Al(e —k2)bl, s)rs'+'

23+1
r3

+rs ' Rl (r2)sll(r2)r2 dr2

r»+1
r3

(r2)Ql(rs)r2 'drs, (20)

where A» and 8» are two constants given by

R1 (r2)ll(r2)r2 llr2

Rr (r2)2ll(r2)r2 dr2

(21)

and Rl, is the normalized (and real) radial part of the
unperturbed H-F 1s wave function for the helium atom,
related to the Ptse by Pres(r) = Rr, (r) Ye'(0).

The H-F wave functions used here were those given in
analytical form by Roothan, Sachs, and Weiss for which
the corresponding energy eigenvalue is e= —1.835912
Ry."The value used for the polarizability of helium,

e, was that given by Wikner and Das" as 1.376 up'.

Equation (20) is thus in a form suitable for iteration
from the origin out once starting values for Ap and B»
are determined. For this, the di6erential equation was
iterated by Milne's method" with the integrals done

"C.C. J. Roothan, L. M. Sachs, and A. %. Weiss, Rev. Mod.
Phys. 32, 186 (1960)."E.G. Wikner and T. P. Das, Phys. Rev. 107, 497 (1957)."W. E. Milne,

%Numerical

Calculus (Princeton University Press,
Princeton, New Jersey, 1949), p. 140.

The solution of (14) is achieved by 6rst expanding

q in the spherical harmonic series

y(r)=r—'Q l Nl(r)Fle(Q) (18)

substituting this into (14), multiplying by rsVls*(02)
and integrating over d03 to get an integrodiBerential
equation for the Nl(r). This equation is then solved for
the I» subject to the boundary conditions

2ll(r) ~ r'+', for r~0,
ul(r) -+ constXsin(kr —kr/2+2)l), for r —& ao, (19)

where g» is the resulting phase shift. The scattering
cross sections are then obtained from the phase shifts
by the standard partial-wave expansions.

sll (r) = Cjl (kr) —Dnl (kr)

from which the phase shifts were then found from

2tl(R) = tan '(D/C) (23)

mod 2r, where 21l(R) indicates the phase shift induced by
the interaction between the origin and the point r= R.
To determine the actual phase shift g», both the proper
multiple of 2r to be added to (23) and the effect of ter-
minating the iteration at some 6nite E were examined
as follows.

The proper multiple of m. was determined from

by Simpson's rule. To begin the iteration, Milne's
method necessitated knowledge of the first four points
and these were obtained by expanding I» in a power
series, substituting this into (20) snd solving for the
Grst few coeKcients. In addition, the required starting
values for Ae and Bl were found by solving (20) with
the last part set equal to zero (the no-exchange approxi-
mation). The resulting wave functions were then used
in (21) to estimate the constants As and Bl.

Having a set of starting values, the entire integro-
di6'erential equation was iterated through a self-
consistent 6eld procedure. For this, the iteration was
carried out to the point where new values of the con-
stants A» and 8» could be obtained with suKcient ac-
curacy (the exponential decay of the atomic orbitals
causes the integrands to vanish to a good approxima-
tion for r & 15).The new value of A l was then compared
with the starting value and if they disagreed to some
present accuracy, the new values of A» and 8» were used
for starters and the iteration repeated. This procedure
was repeated until an essentially self-consistent solution
was obtained wherein the constant A» changed by less
than 0.1%% from iteration to iteration. At this point, the
solution was assumed self-consistant and the iteration
carried out to r= 25. The constant 8» was not explicitly
checked in this since experience showed it to converge
more rapidly, changing by less than 0.01%%uo when the
change in Al had decreased to 0.1%%uo.

The mesh size used in this iteration was varied from
0.01 to 0.1 in the following pattern; dr=0.01 for
0&r&0.15, Dr=0.05 for 0.15&r&2.0 and Dr=0. 1 for
2.0&r&25. This was done to allow accurate starting
values for the iteration to be obtained with only the
erst few terms in the power-series expansion of I» and
at the same time get good accuracy from Milne's method
over the region where the nuclear Coulomb potential
has a very large derivative. However, varying the mesh
in this way led to difhculties in using Simpson's rule
for the integrals when passing the points where the mesh
was changed. These difhculties were surmounted by
using the trapezoidal rule for the integrals for the
first increment in the region of a changed mesh size.

Approximate phase shifts were extracted from the
iterated n» around r= R= 25 by matching these to the
spherical Bessel functions in the form
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sion for the phase shift. under a pure central potential
V(r) yields the correction formula

tanr) ~
= tanr) ~(E)

V(r)fj ~(kr) n—t(kr) tanrl~(r) j'r'dr, (24)

00 0,5 ).0
k, ao

2.0

where the appropriate potential here is the asymptotic
form of the polarization potential given in (16a). In
addition, the first-order approximation was made in
replacing g&(r) inside the integral by the constant r1&(E).
This approximation is quite good here since only small
corrections are obtained for E. as large as 25.

FK'. 1. s- and p-wave phase shifts for electrons scattered from
helium. Dashed curves are the results of Morse and Allis where
distortion effects were neglected.

Swan' s" conjecture on Levinson's theorem as discussed

by Temkin. "For this since there are no bound states
for the He ion with two electrons in the is' ground
state, only the effects of the Pauli principle act to make
the s-wave phase shift equal to m. at 4= 0 and all higher
partial-wave phase shifts approach zero.

The effects of terminating the iteration at 8=25
was to truncate the polarization interaction. This has
most serious effects upon the very low-energy phase
shifts and corrections to these were thus a necessity.

The corrections were obtained from the formalism
developed by Levy and Keller" for pure potential
scattering. (This is applicable here since only the polar-
ization potential exists in the region of interest,
25&r & ~.) From their work, integration of the expres-

TABLE I. Partial-wave phase shifts in radians.

0a
0.01
0.05
0.10
0.1917
0.25
0.2712
0.3835
0.4287
0.50
0.6063
0.75
0.8575
1.00
1.25
1.50
1.75
2.00

Energy
eV

0
0.00136
0.034
0.136
0.50
0.85
1.00
2.00
2.50
3.40
5.00
7.65

10.00
13.60
21.25
30.60
41.65
54.40

s wave

1.132
3.13016
3.0822
3.0186
2.8972
2.8189
2.7904
2.6417
2.5832
2.4934
2.3652
2.2050
2.0953
1.9632
1.7651
1.6034
1.4704
1.3601

p wave

0.000029
0.00080
0.0033
0.0129
0.0228
0.0272
0.0576
0.0730
0.1006
0.1472
0.2142
0.2623
0.3176
0.3862
0.4235
0.4405
0.4460

d wave

0.000004
0.00010
0.00044
0.0016
0.0027
0.0031
0.0063
0.0080
0.0111
0.0168
0.0267
0.0356
0.0491
0.0753
0.1017
0.1256
0.1460

& The k =0 entry is the scattering length computed from the k =0.01 and
0.05 s-wave phase shifts. The numerical accuracy of the quoted results are
to about 2 in the last decimal place.

"P.Swan, Proc. R.oy. Soc. (London) A228, 10 (1955).
' B. R. Levy and J. B. Keller, J. Math. Phys. 4, 54 (1963).

V. RESULTS AND DISCUSSION

The sca, ttering phase shifts for the s, p, and d waves
have been computed and corrected as outlined above
and the results are given in Table I. The s- and p-wave
phase shifts are also plotted in Fig. 1 for comparison
with those computed by Morse and Allis with the dis-
tortion effects neglected. The effects of applying the
correction formula (24) t:o the approximate phase shifts
found in (23) were most important for energies below
2 eU and for the p- and d-wave phase shifts. Only a very
small eGect was noted in the s-wave phase shifts and
primarily in the value of the scattering length obtained
from them. We shall first discuss this scattering length.

The scattering length given under the k=0 entry
(u) in Table I was obtained from the k= 0.01 and 0.05
s-wave phase shifts using the 6rst two terms of the
modified effective range theory expansion'

tango = —A k —(7m/3) k' (4rrA—/3) k' ln k—,(25)

where A is the scattering length. (The magnitude of
the remaining terms are assumed negligible compared to
those retained. ) This value of 1.132 ao for the scattering
length lies within the range of values from 1.19 to 1.06
ao as found by various experimenters and reviewed by
O' Malley. ' Our uncorrected phase shifts gave a scatter-
ing length of 1.178 ao.

The lower value of the corrected scattering length is
more in accord with the recent experimental data.
However, as evidenced the wide range of experimental
values, there is considerable discrepancy in the experi-
mental scattering length for helium. This is in part due
to the fact that the experimental values are obtained
from measurements of the cross sections for a teneous
gas of atoms rather than for an isolated atom. Becaus(.
of this, there is also a correction necessary in the ex-
perimental values to account for the finite separation
between atoms of the gas which leads to an effective
screening of the polarization interaction at some finite
distance. Further comparisons with experimental scat-
tering lengths will thus be deferred to a later date when
better experimental methods are devised to overcome
the proximity problem.

Comparison of the phase shifts in Fig. 1 shows the, t
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inclusion of some distortion has two major e6ects
upon the phases. These are: a change in slope near 0=0
for both the s and p waves; and, a larger over-all change
in magnitude for the p wave as compared to the s-wave
phase shift. These efI'ects are important, first, in giving
the opposite slope to the total cross section at very low
energies (Fig. 3) and, secondly, producing a high back-
ward asymmetry in the diQ'erential cross sections at low
energies (Fig. 2). These changes then result in better
correspondence with other data at low energies as dis-
cussed in the following.

The differential scattering cross sections computed
from the phase shifts in Table I for a selection of the
energies considered are shown in Fig. 2. These show a
large backward asynunetry for low energies which
reverses to a forward asymmetry as the energy increases.
The shape at low energies is not in accordance with the
experimental data of Ramsauer and Kollath20 or Bullard
and Massey. " For higher energies the shape matches
these quite closely. However, at low energies, the modi-
fied effective-range theory predicts a shape given by'

«/d&=A'+4rrAk sin(e/2)+ (8rrA'/3)k'ln k+ (26)

which reaches a maximum for 0=+. It thus appears
that a high backward asymmetry should be observed

O
CC

a

g C',

ao,

Oi 00

IO

0
IO 20

E {ev)
50 40 50

I'xo. 3. Total scattering cross sections for electrons on helium.
The adiabatic-exchange approximation is compared with the
computations of Morse and Allis (dashed curve) and experimental
data by Ramsauer and Kollath (circles) and Normand (triangles).

and further considerations will be deferred to a later
date when the data of Golden and Bandel22 becomes
available.

The total scattering cross sections have been com-
puted for all of the energies considered and are plotted
in Fig. 3. These are compared with the cross sections
computed by Morse and Allis' and those measured by
Ramsauer and Kol1ath" and by Normand. "The com-
parison with experimental data is seen to be good in
both cases and especially with the Ramsauer-Kollath
data at low energies. For the medium energy region
(10 to 30 eV), the adiabatic-exchange cross sections
exceed both experimental data and we believe that this
is due in part to the dynamic effects neglected here.

The very low-energy cross sections computed by the
adiabatic-exchange approximation are compared with
the values predicted by the modified effective-range
theory (ERT) in Table II. The effective range theory
values were computed from the expansion' '
o.=47rgl'+ (2~aA/3) k+ (8rrA'/3) k' ln k

+L (8oA'/6) In (rr/16) +A'~'„o

+ (2s-A/3) (A r —n) nr'2 —22~2as/2257ks+ ~ 7, (27)

where only the largest terms in the coefficient of the

gABLE II. Comparison of electron-helium total scattering cross
sections by the adiabatic-exchange approximation and modified
effective-range theory.

0 I I
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I'zo 2. DiBerential scattering cross sections for electrons on
helium by the adiabatic-exchange approximation.

L (eV)

0.00136
0.034
0.136
0.50
0.85
1.00
2.00

Adiabatic-exchange

16.425
17.749
18.958
20.201
20'.541
20.602
20.499

Modified ERT

16.483
17.632
18.529
19.220
19.276
19.253
18.891

~ C. Ramsauer and R. Kollath, Ann. Physik 3, 536 (1929); 12,
529 (1932).

2' F. C. Bullard and H. S. W. Massey, Proc. Roy. Soc. (London)
A133, 637 (1931).

& D. K. Golden and H. %. Bandel, Bull. Am. Phys. Soc. 9, 90
(1964).

23 C. F. Normand, Phys. Rev. 3S, 1217 (1930).
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Fro. 4. Momentum transfer cross sections for electrons on
helium. The adiabatic-exchange approximation is compared with
recent microwave drift velocity measurements.

k' term have been retained and r„o is the modified "eGec-
tive range. "The value used for r~s in (27) was obtained
here by extrapolation from the k' coeS.cient used by
O' Malley' in matching the Ramsauer-Kollath data.
This value is r„o——3.7 up and closely corresponds to the
point where the short-range potential interaction in

(14) vanishes. Our value of 1.132 as was used for the
scattering length.

The comparison with modified effective-range theory
is seen to be good in general with the main exception
being a steeper slope for our data. It is possible this
discrepancy would be reduced if the polarization-ex-
change terms neglected on the right side of (14) were

retained.
We Anally show in Fig. 4 the cross sections for mo-

mentum transfer computed from the phases of Table I

and compared with various other data. For these, more
recent measurements are available through microwave
drift velocity experiments but the results dier widely
in absolute magnitude. These results are the values
labeled Howe" Pack and Phelps, '~ Pack, Phelps, and
Frost, "and McClure'~ with the latter being the most
recent. The comparison is seen to be quite good with
earlier experimental data but exceeds the most recent
data.

The comparison of the adiabatic-exchange approxi-
mation with experimental data is seen to be superior at
Iow energies to the previous calculations which neglected
distortion eBects. However, the present calculations
are not an optimum 6t to the experimental data over
the entire 0- to 50-eV energy range. An attempt will

be made at a later date to ascertain whether inclusion
of exchange-polarization eGects improves the agreement
with experiment.
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