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Conductivity of a Hot Electron Gas
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The dissipative part of the high-frequency wave-number-dependent conductivity tensor of a hot, dilute
electron gas near equilibrium is calculated exactly to terms proportional to the plasma parameter hn'/I (the
inverse of the number of particles in a Debye sphere), in the limit of classical statistics. The calculation
includes high-frequency collective dynamic screening eBects consistently to this order. These collective
e6'ects have an important effect on the frequency dependence of the conductivity for frequencies greater
than about twice the electron-plasma frequency.

I. INTRODUCTION

HIS paper is concerned with the calculation of the
dissipative part of the high-frequency wave-

number-dependent collisional conductivity of a hot,
dilute electron gas (in a uniform positive background)
near equilibrium.

The problem has attracted considerable theoretical
interest. Several calculations have been presented' —' of
the collisional damping rate of plasma waves, which is
proportional to the dissipative part of the conductivity
near the plasma frequency. However, no two of them
agree because they make different approximations in
treating the collective behavior of the electron gas. The
present calculation includes the collective effects
consistently so that in the limit of high temperatures
(kT))rydberg) the result is exact to first order in the
weak coupling parameter kD'/rt

Our calculation shows that the detailed frequency
dependence of the conductivity is effected by high-

frequency collective effects. At twice the plasma
frequency there is very slight inRection in the conduc-
tivity curve which can be interpreted as resulting from
the excitation of two plasmons. Because there is no
actual resonance near cv 2'„, it is shown from this
calculation that frequency shifts in incoherent scattering
of radiation from a uniform plasma at the second har-
rnonic of the plasma frequency will not be observable.

The electron-electron collisional conductivity which
is proportional to k' for small wave numbers k is
generally not of much practical interest for real plasmas
since the contribution from electron-ion collisions is
independent of k in this limit and also has a k' term of

' Y. H. 1chikawa, Progr. Theoret. Phys. (Koyto) 24, 1083
(1960).' C. R. Willis, Phys. Fluids 3, 219 (1962).

C. S. Wu and E. M. Klevans, in Proceedings of the Sixth
International Conferences on Ionization Phenomena in Gases,
Paris, 1963 (to be published).

4 D. F. Du Bois, V. Gilinsky, and M. G. Kivelson; RAND Corp.
Report RM-3224-AEC, August 1962 (unpublished).' D. Gorman and D. Montgomery, Phys. Rev. 131, 7 (1963).
These authors apparently have not yet presented the numerical
solution of the complicated equations which they derive here, so
it is difBcult to make a comparison with their work.
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comparable magnitude to the electron-electron contri-
bution. However, the frequency, dependence of the
electron-electron contribution is different than the ion-
electron contribution in the frequency region near 2'„.

The high-frequency collective effect arises from the
perturbation of the screening electrons by the high-
frequency incident radiation. The same type of collec-
tive eQect was first pointed out by Dawson and
Oberman' in the calculation of the electron-ion colli-
sional conductivity where it produced a weak resonance
and inflection at co=co„. This collective effect is not
found in the low-frequency kinetic equations of the
Balescu type. "

The method to be used is formally similar to that of a
previous calculation' of the electron-ion collisional
conductivity. The various possible processes are
represented by Feynman diagrams. In Ref. 9 we
presented a convenient set of rules for translating the
diagrams into integrals. For convenience these rules are
listed in the Appendix in a form suitable for this
problem. As we have tried to emphasize before, this
method has the advantage of relating directly to
quantities of physical interest and deals with the
microscopic processes in a very intuitive and explicit
way.

The calculation in Sec. III includes exactly the
electron-electron collisional effects in a classical plasma'
to lowest order in the plasma parameter ) =kD'/st (kD
the Debye wave number, kn'= 4sre'rt/kT, rt the number
density). It is assumed that the temperature is high
enough so that collisions can be treated in Born approxi-
mation D.e., e' /h( kT/rt)t' 't((1 j which introduces a

' J. Dawson and C. Oberman, Phys. Fluids 5, 317 (1962).
7 R. Balescu, Phys. Fluids 3, 52 {1961);see also N. Rostoker

and M. N. Rosenbluth, zbtd. 3, 1 (1960);A. Lennard, Ann. Phys.
(N. Y.) 10, 390 (1960).

s H. W. Wyld, Jr. and D. Pines, Phys. Rev. 127, 1831 (1962).
~ D. F. Du Bois, V. Gilinsky, and M. G. Kivelson, Phys. Rev.

129, 2376 (1963).' The term "classical" means here that the gas obeys Boltz-
mann statistics Pi.e., h'/(rahT)'I'«s, 'j and that quantum-
mechanical interference effects can be neglected /Le. , the thermal
deBroglie wavelength is much less than the Debye length,
tt(4 e rt/m)os«kT5
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natural short-range cuto8 at the thermal deBroglie
wavelength. At lower temperatures the usual classical
approximation will be made of using the distance of
closest approach e'/kT as the short range cutoff. We will
consider incident only frequencies much higher than the
collision frequencies (of order X~~) and wave numbers
small compared to the Debye wave number. An
important feature of the calculation is the demonstra-
tion of the necessity of including the perturbation of the
screening electrons to obtain a consistent result at
high frequencies which has the correct proportionality
to k' (for small k) which is demanded by conservation
of total current.

In Sec. IV we discuss the frequency dependence of
our results. At ~=co„we compare our results with the
recent work of Wu and Klevans. '

We 6nd weak inQection in the conductivity curves at
2~„due to double plasmon production. There is no
sharp resonance at this frequency due to the dispersion
and damping of the plasmoiis. We conclude this section
by commenting on the application of these results to
the line shape of incoherently scattered radiation from a
plasma" near frequencies displaced by &2m„ from the
incident frequencies.

X(m~ J;(0)~m)(1 —e ~"")(27r)'

XP(kk —P„+P )2sb(ha) —E +E„). (2.1)

The dentisy matrix is

p
—epee—p(&n—fk&n)

e =~e—PQ —~ —P (&7—Ik&n) (2.2)

where p is the chemical potential and, of course, P, E,
and N„are the momentum, energy, and number of
particles in the state n.

Equation (1) is similar to the golden rule of time-
dependent perturbation theory, and itis shown in Ref. 9
how the result can be calculated in terms of a diagram-
matic expansion in a coupling parameter. The prime on
the summation indicates that in perturbation theory
only proper diagrams are to be considered in calculating
the local conductivity. (This is the point discussed in

"D. F. DuBois and V. Gilinsky, Phys. Rev. 133, A1308 and
A1317 (1964).

"Our definition of the conductivity is such that j;(k,~&) =
&((k,a&)E, (k,cu) so real and imaginary parts are interchanged from
the usual dennition. We shall compute only the imaginary part
of the conductivity. The real part corresponds to the polarizability
and is found from the imaginary part via a familiar dispersion
relation.

II. GENERAL BACKGROUND

The starting point for our computation of the local
conductivity" is the general expression, obtained from
Eqs. (3.5) and (4.12) of Ref. 9 and Appendix A of
Ref. 4, which relates the conductivity of matrix
elements of the Heisenberg current operator J;(1).

4rr Imo;;(k, to) = (1/2a)g' p (n
~
J,(0)

~
m)

Appendix A of Ref. 4.) We can then give a simple
prescription for directly calculating Imo;;(k, c0).

Units

We shall use the same units as in Ref. 9, P '= kT is the
natural unit of energy, cv„= (4se'I/m)'~' is the natural
unit of frequency )and so 5 will be measured in units of
(pa&„) '], pr ——(m/p)'~' is the natural unit of momentum,
and kD

——(4s.e'nP)'I' is the natural unit of wave number,
and the coupling constant which arises naturally is
X=—kn'/m.

These units ar'e especially convenient for doing
classical problems since it is easy to see the order of
diagrams, both in ) and A. In the limit of very high
temperatures we are still left with a term proportional
to ln(fs).

It follows from the considerations in Refs. 4 and 9
and Langer's proofs" on the analytic properties of
expressions of the form of Eq. (2.1) in quantum statis-
tical mechanics that 4x Imo;; can be computed in
perturbation theory in terms of unperturbed quantum
statistical states u and P.

These states are understood relative to the state of
complete thermal equilibrium which is to be considered
as sort of a vacuum state. They are described in terms
of the number of Purfrcles of given momenta (upward
lines) representing an excess of one particle in each
momentum state relative to the equilibrium population
and the number of holes (downward lines) representing
a depletion of one particle in the given state relative to
equilibrium. The formula for Imo. ;; is similar in form
to Eq. (2.1):
4s. Imo. ;;(k,a)) = (1/2(o)Q' ce J,(u,P; k, a))J,"(u,P; k,co)

ap

X (1—e-»-) (2~&)s3'(kk —P,+P.)
X2s.b(Aa) —Es+E ), (2.3)

where P (E ) is the sum of particle momenta (energies)
minus hole momenta (energies) in the unperturbed
state 0.. ~ is the statistical weighting factor for the
initial state a described below in rule 7. The current
amplitudes J; are computed in perturbation theory
according to the set of rules given in the Appendix.

The 6nal state can consist of a single pair which
corresponds to collisionless Landau damping and its
virtual corrections. ' A Anal state of two pairs can be
obtained if collisions between particles are taken into
account. The basic collision process taking into account
screening in the random-phase approximation is shown
in Fig. 1(a). The initial photon must be connected to
this Anal state in all equivalent ways. We must attach
the photon in turn to each particle line iecllding the
lines in the polarization loops. This is shown for a
prototype diagram in Fig. 1(b) where the x's represent
the possible places for attaching a photon line. For each
particular photon insertion, additional polarization parts
can be inserted to fully screen the Coulomb lines. The

"J.S. Langer, Phys. Rev. 127, 5 (1962).
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(t)
ms for the dynamically screened colli-FxG. j.. (a} Basic diagrams or e

sions. (b) Typical diagram showing posse e oca ion, '

by )('s for attachment of an external photon line.

lt is the complete set of diagrams 'n 'g.in Fi . 2. Noteresu is e c
a ain that in any diagram a closed loop can be inserted

dd't' l interaction line without c ang-
in the order in ).This is because each closed loop wi

) d (A10) which cancels the additiona
of X from the extra interaction line. I'-is p

' 'pfactor o rom e
ction ro a atoroperates in ormit '

forming the screened interac ion p p g
oo sofFi. 2.and in the diagrams with the internal loops o 'g.

Itis easy to see t a a o
' '

theh t ll other diagrams leading to the

must add more interaction lines t..an
can neglect suc con r'l h ntributions to obtain the leading
term in r.

t us make a fewBefore turning to the calculation ]e us m
comments concerning esecomm

'
th diagrams. The resonance

in e wth two screened interaction propagators in Figs. e
and 2(f). Since this resonant effec g

it would be tempting to consider these two

However, we shall see that even near co =2'„ there is an

diagrams (a), (b), (c), (d) which must be taken into
account to ge et th proper k2 proportionality of the
conductivity for small k.

th tIt follows from the symmetries yof the s stem a
~ ~

be decom osed into longi-the tensor conductivity can e p
tudinal and transverse parts

o;, (k,4o) = (k;k;/k')o 1,(k,cu)

+L5"—(k k /k')]o r (k,rv) . (2.4)

king).

{e)
k, (y

(&)

F1G. 2. Diagrams of order P contributing to
collisional conductivity.

Using these definitions we can write

2.6a r, (k o~) = e, ooe;&'&o „(k,(o) =k,k;o.„(k,(u,7 s

~r(k, ~)=s Z e. e~'~.~(k,~).
0.=1,2

(2.7)

In the following section we wil pp yl a 1 these rules to
the calcu ation o eof the collisional conductivity of

as from the diagrams of Fig. 2. In Sec. IV weelectron gas rom e
lication to awill discuss these results and their app ica

realistic two-component plasma.

III. CALCULATION

From the rules of the previous section 'g.and Fi . 2, the
following expression for t e

' 'p~ ~

e dissi ative part of the
conductivity ue o

' 't d to electron-electron collisions (4ri= )
can immediately be set down:

The functions 0-1. and tT~ can p jbe ro'ected out of 0,;
b using unit polarization vec tors e&"& where e"'=
for the longitudinal case and e p p"') are er endicular to
k and to eac o er i
A

h th in the transverse case. e well-
over transverse polarizations ta es enown sum ove

form

Q e, e, =8;;—(k,k;/k').
a=1,2

Jsp i

(24rA)'
4n.e;e, imo. ;, (k,(u) =— A'((24r)'/X')e **""e l""(1—e "")

~
J e~

'
(2m.A)' (2~A)' (24rA)'

.— —r), (3.l))& (2~A) '5'(Ak+ pi+ ps —ps —y4) 24r8 (Aro+ $&+$,—4
—4,

see rule 8) current amplitudes are given by( ) t . The analytically continued (see ru ewhere $q=$(pi~, e c. e

12— X'~'(y +-'Ak) e y'~'(ps ——',Ak) .e
J "= ~v'(y —y, 0 8)-

7"'(y +-'Ak) e X'I'(p4 —-', Ak) e
+ 7v'(y —p, b t)—

—i)e T(ys —pi, ks 4; p4 —ys, 4--4; k,4o,—7'V.+( yp g b)V. (ys —y, Ps g—e' p ——
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loo s in Fig. 2. Defining the momentum and energyfrom the triangular closed loops in Fig. 2. De ningwhere is eT '
th amplitude arising from e

transfer variables

we have

Aui=fo )i=Aqi'pi+(A /2 qi

Auo=)4 —po=Aqo'po+( / qo &
A/2= p4

—p2) Q2= 4 (3.3)

. k (p) = iV"8 ~+(qi,ui, k,co)+

aild

e T+(qi, ui ', qo,uo, ,(p

f the closed loop in Figs. 2 e anm the two directions of the c osen the right-hand side arise from
'

f the c oseh the two functions ~ on t e r
(f), respectively. These unc io ic

1

i.V('8 ~+(q o) u, ) k)~),

dent. ' "+'"")~
(t))(t.+k. ((t+Ak))(~.+q — t A„(2vrA)' ~o (to t —o o

—- (3 3)e ~'(qi, qip, k, kp) =

(2m A)' k —g(t+Ak)+$ t
0 kp) ——

,t)-q.+~(t) ~(

inte rated out by making theonserving 8 unc iononse
'

g 8 f t'on can be trivially integrated out y mE . (3.1) the momentum conse
'

g 8 'onNow going back to Eq. . e
4

su bstitutions

( )
'

e
'

d E . (3.1) becomesdelta functions an q.be introduced by inserting efoi NJ, and N2 can e in roThe definitions of Eq. &
. or

00 God pi
dui duo8 ((o—ui —uo

= +-'k q = —q+-,'k. (3.7)

1(1—e "")(2~)'
4m8, 8, Im(T;, (k,p)) =—!—

8"g

(2m)'

cf —-'(uP+s 22)e ~

1 1 lk)o]!J. !
o (3 8)-'-k) —i A (q+-,'k) ']8/up+ po q —ok) —2A q ——.X8gui —pi' q

with

to continuous v ues A(o)+ie)=i+, q
—'

/P re even integers to continuous
sons and

= $7I B ) qip i)rui
=izv, where J isane

from t e is
s. The sum is over to i~)——-p

l idotb o ti t

f(+Ak) f(+ )
(3 )

d't (t+-,'Ak) 8

t+Aq&) qxo
—

o

1 (po+-', Ak) e (po+Aq) e
i e = H'V+—(Aq+—'Ak Aui)—- Xo('V,+(—Aq+-', Ak, Au, ) (1/A)

same term wit
X

-q.~ q.) P2~ P&-
V + —Aq+-', Ak, Auo)—)).o"V+(Aq+-', Ak, Aui) V. — —', , u

X[8 ~(q+-', , u„,~ — -' u, k,~-'k k p))+8 ~(—q+-,'k, u„kp))$.

((o—k po)'

k -'(k e)+(8 q) (k q+k')
+V q+

2 i — co 'pi p)

3.10)im e ~ —, ; 8 ~+ —q+—,uo, k,p) !
—) "'lim 8 ~+ q+— ui k, (o +8 ~

A~O

0

. (3 6) after analytic continuation

t to a e
' ' —+O'Rembering thatin this limit V,, q, = ++ A Au) V, (q, u)ot k elimitA ) nItis convenientnext to a e ~0

—I 'l=l IIII ' = k II)V (tl k, ll) V, (Il, II—iJ'8=i limJ 8=X"'V„+(q+-, , ui
A—+0

8.~+! q+—,ui, k, (p = ——
2 A

d't (t+-,'Ak) .8

1
A '(o —k (t+-,Ak)

f(t) —f(tyAqy-', A

ui — —', . t -'Aq —,'Ak) uo —k (t+-', Ak)+(qui —(q+-', k) . (t+-,'Aq —, uo—
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where the energy conservation condition a& =ui+uo has been used, and where oo, ui, uo are understood to have small
positive imaginary parts.

This equation can be made more symmetrical looking by making the substitutions t~ t—oh(q+ok) in the
first term in square brackets and t+Ak —+ t—ioh(q

—iok) in the second term. The result can be written in the form

e ~(q+-,'k, ui, k,oo) =e 6(q,u&, k,co, 5)+e 8(—q, uo k M A), (3.12)
where

1
e 6(q,ui, k,~;5)=——

52 (2~5)' oi —k (t——',A (q ——,'k)) u, —(q+-'k) t

"
Lt ——,', h(q —-'k)] f(t——,'Pi(q+ —.', k)) —f(t+-,'A(q+-,'k))

(3.13)

From Eq. (3.12) it follows that

lime
I (q+-,'k, u;k, )+ (—q+-', k;u;k, )]

A-+0
(3.14)

=lime L6(q, ui,. k,o&; h)+8(—q, u&, k, o~; —5)+0(—q, uo,. k,oo; 5)+6(q,u, ; k, oi; —5)]. (3.15)
A-+0

Since the leading term in e. 8, as A —+ 0, goes as 5, this term cancels out in the limit and the remaining term is
independent of IE

ime L~(q+-,-k, u, ; k,oo)+.(—q+-, k, u, ; k,oo)]
A~O

d't -e (q ——',k) (e t)k (q —-', k)

(2ork)' oo —k t ((a—k t)'

t (q+-', k)
f(t)+ (q ~ —q, ui —+ uo) . (3.16)

ui —t (q+-', k)

I

d9 (e q) (e k) (e q)(k. t) (e t(k q) t qf(t)+
26) CO CO Ny —t q'(2orA)' oo

dot (e q)-1 t k 1t qk tf(t)- (q~ —qf(t)+-; +I (3.17)
(2ork) oi 2 ui t q 2 (ui t' q) — 4 ui ~ uo

The case k«1 (i.e., k«hid) is of greatest interest so the next step is to expand in powers of k. The right-hand side
of Eq. (3.16) becomes

Using the Eq. (2.7) we see that
(u)

1 Q,+Pq, a )=Q,+I-I=~
Eq)

and

d't t q t q
s——t2f(t) =

(2orh)'u —t q (2~)"'u —t q
(3.18)

d'i t q (t q)'
+ f(t).

(2mb)' (u —t q) (u —t.q)'
Qo'(q, u) =

8g 2g
We can, write Eq. (3.17) in the form

1 oui uo 1 (ui uo
X limL~(q+-,'k, ui, k,o~)+~(—q+-', k, uo; k,oo)]= (e q)—Qo+I ——Qo+ — —(e k)—Qo+I —+Qo+-

kq q 2~ Iq g

(3.19)

(k q)(e q) 8 /ui 8 /uo) k'q (ui uo)

,Qo'I ——,Qo'I —
I

+2(' q), , Qo'I —+ Qo' —
I +o9') (3.20)

aq' kq aq' I qi ~'q' kq qi

8 (ui 8 (uo ui 1 (k q)(8 pi) (k pi)(e q)-

,Q. I

——,Q"I — + q'+Q" — —(' k)+, +-
Bq k q clq k q — q 2M 6) oo

1 (k q)(e p&) (k. po){e q)+ q'+Qo+I —
I

—(e k) — — +Lterms in Eq. (3.20)] . (3.21)
kqi 2M CO M

To complete the expansion of (J.e) to linear terms in k, the first two terms in brackets in Eq. (3.10) must be
expanded. Carrying this out and using Eq. (3.20) the complete result is

ui) (uo ](e q) 2 (k q)—i(e J')= —X''V,+(q,u&)V,+(q,uo) Qo+ —
I

—Qo+I —
~

+—(e q)(k q)+ (e q)
qi kq GO
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(S.25)

2„,/„)D(u2)) . -
D „,) (2/~)(k &) k'~'

4 2+. (2u1/~)D 1)

(2/(o)(k'C)(k p

k be ta&en a

k. M=k(e+(' q)'L "
hedirec ofk theaverageo "' ' 'n the direction onnot depend n

ul fpr this:
fna]. result cann

'
ntities are use u

Sj.nce the
. The following iden,q„,~ng(k M) T ' '

Then

(3.26a)dg(k')(k b)=" '
4~

(3.26b)
1, .c +2(a b)(a c)).

~ htnde prop& '
3 2) A

ncel, as they sho
'

] on the closed loop
=0 in which cas

o order in p ca
ends critically o

except if =
~

teims

he terms of zero
'

nce]lation depen
t these terms,

t ]aslna, the te

Nptice that t e
'

I t p this cance
b ade withpu

two-comppnen p
b tion

prtiona . '

cannot e m
]]ation In a

~

cpgtri u 10

onductivity prop'
namjc screening c

l without cance a
sible for the lea ing

heory with
4'na;shesidentica &~'

3 20) are respo»'

consistent t o
of order 1 van1s

3 21) and
so that the term o

t terms in Eq '

n be written

p jndepen endin

;„the curren t amplitu e can

cprrespo

tipnal tP k in

V,+(q)ul) 3

the cond&ctiv'tp
d 3 21) the ter~ p

.P1+L '9&' &
- J =(H'/ )v (q'

j-+2(~ &&'~/q)~

)" M.~ / )v.+(q )v'(q'"''

—(1/~)(~'1 p'

/„)L-V,+(q, um) j

4x'

~

rm arisesf llpwing fprmxpression p„d averagingOn squaring an

(3.27))+gP12+DP2 )

g

44) t w '&L'1;ps'p P'~g~ u+P ''1
2) k

2-
NyQ2(2')

4 4(4 —(&&+" '
2

q

e "e Q e

g g4

(3.28)

~gp $3p2$~ u1 P1
t'

. k MI' —~+~(»

. t they, and p2( ) At th1s po111functions o
~ tsA, B C '" .

mulas
the coeQi.cien '
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2 g~D(u2)I j')( 23M q
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12O~2 (o4
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Changing integration variables to

u~ ——u+-', co, u2 = —u+-, &v,
1

the delta function is trivially removed and using the de6nitions of Eq. (3.24) the result is obtained:

k'
4&r Imoz, (k,cv)= 'h— dqq'e &"'" due """'e "'«'

15m' o)4

23
'q'l l'+(q, lM+u) I'I I'+(q l~—u) I'+

I
I'.+(q, —:~+u)

I
'+

I
I'+(q, —:~—u) I' (3 3o)

8

It is obvious that the last two terms in brackets make equal contributions. Letting s =u/q the result can be written

in terms of two integrals J(~) and I(or):

where

2 k'))'23
4mDn J(k, )= X—

~

—1( )+I( ))15m' co4(16

00 00 g2

J((o)=oP dqq'e-"'&4&'e-"'&'&4 dk

0 —. I q'+Qo+[s+ (~/2q) 3l'I q'+Qo+[e —(~/2q) j1'
e
—Z2

(3.31)

(3.32)

I(co) = dqq e "'&'"e ~'"&

0

ds
I
q'+Qo'[s+ (~/2q) P I

' (3.33)

Note that in the expression for J(co) we can set &&&=0 but that I(s&) diverges logarithmically in this case. This
behavior at large q will be discussed more fully below.

Transverse Conductivity

To obtain the transverse conductivity take e =eo 2& and average over polarizations in Eqs. (3.25) and (3.22) using

-', P (e~ a)(e b)=-', [a.b—(a kk b/k')]
a~1,2

and k e&"&=0. Omitting the superscript on e&' '& Eq. (3.22) gives

(3.34)

e M=k{—4(e q)(q. k) —(1/&o)(e qk. p2+k qe p2)D(u&)

+(1/co)(8 qk pg+k qe pg)D(u2)+(2e qq k/q')[(ug/a))D(ug)+(u2/(o)D(u2)j). (3.35)

On squaring this and summing over polarizations according to Eq. (3.34) a sum of terms of the form (k q)N(k p&)
&)

X (k p2)' where a+b+c=2 or 4 is obtained. The average over the directions of k is then performed using Eqs.
(3.26), resulting after some algebra in the expression

d~lk 2 I
e ™

I
++Il(pl'p2)+CpP+DP2',

a=),2

(3.36)

which is the same form as Eq. (3.27). Again using Eq. (3.28) to perform the p& and P2 integrations the result
emerges:

k'
4~ Imar(k, co) = X— dqq'e —"'&'14 dug dumb((o —ug —u2)e

— '+""' &'I V,+(q,ug) I'I V,+(q,u2) I'
1207l (d

&& [16co'q'+6
I D(ux) I

'+6
I D(um) I

'j (3.37)

which can again be expressed in terms of the integrals I(~) and J(&):

1
4n Imor(k, co) = &).

—(-',J(~)+I(~)).
1(br' a)4

(3.38)
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IV. DISCUSSION OF RESULTS AND APPLICATION TO
INCOHERENT SCATTERING

The frequency dependence of our results, Eqs. (3.31)
and (3.35), is considerably different than that of
previous workers. ' ' To make contact with the results
of classical calculations, wemust discuss the treatment of
the large-q (or short-range) cutoffs in our results.
Strictly speaking, our results are valid only if kT
&)rydberg which is the condition for validity of the
Born collision approximation in which case the thermal
de Broglie wavelength h(2224/p)'~2 is greater than the
classical distance of closest approach e2P. Thus the
exponential, expL —(I22/4)qqj, in the integrand of Eq.
(3.33) enforces a cutoff at approximately the thermal

de Broglie wave number. For lower temperatures,
kT«rydberg, one expects the cutoff at the distance of
closest approach and this is usually accomplished by
dropping the exponential and cutting the q integral
off at q . =3/eqP= (12qr/X)kD.

Again we note that J(co) is suKciently convergent at
q
—+ ~ that the cutoff introduces higher order terms in

5 or X which must be dropped for consistency in our
calculation. However, the cutoff must be kept in I(co)
since it introduces a logarithmic dependence on 5 or
) in the two cases. It is probably possible in the electron
gas model to treat the large-q cutoG exactly at lower

I I l

temperatures by summing ladder diagrams of electron-
electron collisions, but we shall not attempt this here.

The values of I(co) and J(co) for co&)1 (i.e., co)&co„)
are easy to obtain for, in this case, the screening becomes
ineffective.

8gI(~) — e 22qq—l4e rql4—22 dse—zq

g

(4.1)

and in the limit of small h this becomes

I(co)=qruq ln(4e —
e/Icco), (4.1a)

where C=0.58.
Ill To evaluate J(co) we change variables and rewrite
the integral in the form

dNNe
—"'~4

e—g2

X——

l 1+(u'/co')Q(s ——'u)
l

'
~
1+(u'/co') Q(s+'2u)

~

'
(4.2)

and in the limit co —+ , we have

J(co)= 2(qr)'12.

In the low-frequency region (co«1) the screening
complicates the integrals. If we replace the dynamic
screening function Q(y) by a static screening constant
E' (where E'= 1), then near co=0 we have

Q2

I(co) = dqqqe-"'2'~4 dy
(q2+E2)2

e "'
J(co) =co dqq

(q2+E2)4
We now obtain

(qr) "2
p

" e-~
I(co) =

i
dx —1 i,

2 k c, x

(4.3)

(44)

(4 4a)

where b= 4'O'E', and in the limit of 5~ 0 we get

I(co)=-', (qr)"'(—ln(eo-,'Ic'E') —1)
= (qr)'I'(ln(0. 67k) —2)

since E=|.The other integral yields, near or =0,

J(co)= (qr'I'/6) (co2/E').

(4.4b)

(4.4c)

(4.4d)

0 I l l I l l

0 l 2 3 4 5 6 7 8 9 l0 1)

Pro. 3. Numerical evaluation of the integrals I and J
for the value A=0.1,

Note that J(co) vanishes like co' in this limit.
In Fig. 3 the results of numerical integration for J(co)

and I(co) are plotted for the values I2= 10 '. The results
obtained using the classical high wave number cutoff
do not differ signiicantly from these for typica1. values
of X because of the weak logarithmic dependence of
I(co) on the cutoff. For co«1 we notice that the contribu-
tion of J(co) is negligible compared to I(co) but at co 2

the two terms are comparable and for co))1 J(co)
dominates. It is not difIjcult to show that the Balescu
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type~' of kinetic equation yields a result which is
equivalent to replacing the combinations I(ao)+ (23/16)
XJ(co) and I(a&)+ss J(&o) in Eqs. (3.31) and (3.38) by
simply I(0). For co) 1 we see this is a poor approxima-
tion. The integral J(&o) which contains the primary
effect of the perturbation of the screening electrons by
the incident field is the domiemt contribution for
(o& 2.

It is probably meaningful to associate the enhance-
ment of the curve in Fig. 3 due to J(co) with the produc-
tion of two plasmons in the final state as suggested by
Figs. 2(c) and 2 (d). It is clear from Eq. (3.32) that only
J(to) contains a contribution from the collective res-
onance associated with the dynamically screened
interaction in both of the outgoing lines. This enhance-
ment, however, cannot be described as a resonance.
From Fig. 3 we see that it is very broad. This is due to
the dispersion and Landau damping of the plasmons
which contribute for larger values of q in the integrand
of (3.32). Notice that small values of q, for which the
plasmon resonance is sharp, are suppressed by the
factor of q' in the integrand. Because of the 1/~' factor
of Eqs. (3.31) and (3.38) the complete conductivity be
a smoothly decreasing curve even for co&2'„and the
enhancement discussed above will be hardly discernable.

We can use our result to compare the damping of
plasma oscillations due to electron-electron collisions
with the work of other authors. We will make an explicit
comparison to the recent work of Wu and Klevans' who
make comparisons with Refs. 1 and 2. The damping
rate de6ned by Wu and Klevans is

y/&o„= 2s. Imo. r. (k,&u„)

in our notation (and therefore differs by a factor of 2
from the conventions in Ref. 9). Using Eq. (3.31) we
have the result (in plasma units)

(4 6)

The Wu and Klevans result including only electron-
electron correlations )the last terms on the right in their
Eqs. (50b) and (50c)$ is

1 ( k 'ko' kr
p/(g„=

~

— ln 0.707—+ln(1870) . (4.7)
15m'" EkD I kn

In their expression we have used the quantum cutoff
kr ——k~/Pleo„(instead of their kr, ) to make contact with
our results. For the value kz/kn=1/(PA~„)=10 for
which our result was obtained the factor in square
brackets in Eq. (4.7) is 9.49. Our result which should
be exact in the limit as kns/e-+ 0 for k((k~ and for

kT))rydberg for which the Born approximation is
valid is more than a factor of three smaller than this.
This may be accounted for by their approximate
treatment of the short-range cutoff. In the case kT
«rydberg for which the classical cutoff applies, neither
method handles the cutoff exactly and we can only say
that the results consistent to within the uncertainties in
the cutoff procedure. It is interesting to note that a very
simple calculation of this conductivity neglecting collec-
tive screening effects entirely yields the factors L3.13)
for kz/k& ——10 which is surprisingly close to the exact
result in Eq. (4.6). )This approximation corresponds to
using the high cu approximation Eq. (4.1a) for I(&u)
and neglecting J(~) entirely! j

The electron gas result which we are considering is
actually applicable near 2'~ to a two-component plasma
in the limit of infinite ion mass. The contributions to
the conductivity due to electron-ion and ion-ion
collisions are smooth near co= 2'„.This follows since the
primary change in the formulas in these cases is to
replace the exponential expL —(uP+I2s)/2q'$ in Eq.
(3.29) to exp) —(MtmP+Msls')/2q'), where Mt and
3f2 are the masses in units of m." Thus, near the
resonance where I& and Ns are near unity (i.e., &o~),

these contributions are expL —(Mt+Ms —2)/q'$ smaller
than the contribution from e].ectron-electron collisions.
However, e—i, e—e, and i —i collisions contribute to
the smooth background of thermal noise at co=2'~ and
of these the e—i contribution, which is finite at k ~ 0,
is the major contribution. It is also straightforward to
show that the effect of ion screening in electron-electron
collisions is negligible in the limit m/M ~ 0.

We can apply this result to the observation of the
frequency shifts at the second harmonic of ~„ in the
incoherent scattering of radiation from plasmas. It
follows from the results of Ref. 11 that the spectral
distribution of the scattered light is essentially propor-
tional to Ima. r, (k,u&). Near 2'„ the only contribution
from two plasmon excitation is the weak inQection of
the e—e contribution which is superimposed on the
smooth background of noise contributed by the e—i
contribution which is larger by a factor of order k '.
The inQection would be at most a one-percent effect
(say for k) 10 ') and is most likely unobservable.

For a plasma in which appreciable density gradients
exist over distances short compared to a Debye length
the production of the second harmonic will be much
stronger as can be seen from the work of Boyd," for
example. However, for the incoherent scattering of
radiation from the ionosphere where such strong density
gradients do not exist our calculation shows that a fre-
quency shift at about- &2or„ is probably unobservable.

'4 The calculation in the arbitrary mass case follows essentially
exactly that in Sec. III. The k' correction due to electron-ion
collisions has recently been computed by H. L. Berk, Phys. Fluids
7, 257 (1964). This calculation coupled with our result gives the
complete collisional conductivity to order k'.

's T. J. M. Boyd, Phys. Fluids 7, 59 (1964).
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so in this limit

limV, (Aq, kqp) = V (q, qp)
=-

q'+Qp(~qp/q)

(3) At each Coulomb vertex there is a factor

is(Z)»' (A6)

APPENDIX: RULES FOR EVALUATING DIAGRAMS

(0) Draw all topologically distinct open diagrams for
the current amplitudes J;(n,P; k, (p) leading from the
initial state of one quantum (k,(p) to a given excited
final state of the system (examples are shown in Figs. 1
and 2). The current amplitude has a contribution from
each diagram obtained by multiplying together the
following factors:

(1) To each internal particle line carrying momentum

p and energy pp there corresponds a factor of

(A1)

where („=(p'/2m) —p, where m is the particle's mass
in units of the electron mass and p is the chemical
potential for this type of particle. In natural units p,

is delved by
e~= (Ii'/a) (2s/m)'i' (A2)

—iV, (hq, hqp) =
q'+ Q(kq, fiqp)

(A3)

(2) To each Coulomb interaction line carrying
momentum kq and energy IEqo there corresponds a
factor of the dynamically screened Coulomb propagator

where s is the charge (in electron units) of the particle
line.

(4) To each single photon-particle vertex there
corresponds a factor

—i(l()'"se. (1/2m) (y+ y'), (A7)

where 8 is the (transverse) photon polarization and

y and p' are the incoming and outgoing particle
momenta.

(5) There is a factor of (—1) for each closed loop.
(6) Energy and momentum are conserved at each

vertex and internal momentum and energy variables
are summed over according to

d pip
uo (2n.A)'

or i+
pp (2m)'

where the energy variables take on the discrete values

pp, qp= is u, where v runs over odd integers for fermions
and even integers for bosons (including the screened
interaction).

(7) Add all current amplitudes with the same initial
and final states to insert into Eq. (2.3).Diagrams which
differ only the exchange of identical fermions in the
final state differ by a factor of (—1). The sum and
average over initial and final states is accomplished by
inserting weight factors L1—f(p)$ for particles and

f(p) for holes where

where Q(fiq, kqp) is the screening function (i.e., the
proper polarization part). To lowest order in X (i.e., the
RPA) Q is given by

f(P)=9""+13'.
In the limit of classical statistics

(A9)

Q(Aq, kqp)

~'P f(P—V/2)q) —f(p+ (~/2) q)
(A4)

h(d —k(y q/m)(2~h)'

limQp(q, qp)

=gp(mqp/q) =
(2~)"'

dy e &"' (AS)
x—~(qp/q)

where m is the mass of the screening particles in
electron units. In the classical (0 ~0) limit this can
be written

all final particle and hole states are summed using the
familiar (2~5) 'J'd'p. Since this counts the same final
state more than once when identical particles are
involved the result must be divided by (I!),where e is
the number of particles of a given type in the final
state. LThus, in Eq. (3.1) below there occurs a factor
of —,'.$

(8) The amplitudes must be analytically continued
to continuous values of the external energy variables
by setting qp

——I+i p and kp=(p+ip, where p is a positive
infinitesimal.


