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Quantum Statistics of Ideal Gases in Two Dimensions
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It is shown that in two dimensions the specific heat Cy (T,N) for an ideal gas of Fermi particles is identical
with that for an ideal Bose gas for all T and E. This is true despite the great difTerence in the distribution
functions of the two systems at low temperatures. To shed further light on this identity, the quantum
statistics of ideal gases are investigated treating the number of dimensions as a continuous variable: g =2
is seen to be a special case. In the extreme relativistic region, the analogous special case is g =1.

1. INTRODUCTION

'HE thermodynamic properties of a system of
noninteracting particles, obeying either Bose-

Einstein or Fermi-Dirac statistics, are well known''
in three dimensions. At high temperatures, both systems
approach the classical limit, with a specific heat given
by the equipartition theorem. At low temperatures, the
Fermi particles crowd into the lowest energy con6gura-
tion, subject to the Pauli principle: The result is that
a block of the lowest energy states is filled uniformly,
with one particle per state. There is no such restriction
for the bosons, and at temperatures below a certain
transition temperature a 6nite fraction of the total
number of bosons condenses into the ground state:
this behavior is rejected by a discontinuity in the slope
of the specific heat.

In two dimensions it is well known that the Bose
gas does rot condense, and thus there is no discontin-
uity in its specific heat. In this paper we prove that in
fact the specific heat Cv(X, T) of an ideal gas of E
bosons at temperature T is identical with that of an
ideal gas of E fermions at temperature T, for all X and
all T, in two dimensions. This is done in Sec. 2. The
theorem is surprising at first sight, because at low tem-
peratures the two distribution functions are very differ-
ent. Although the bosons do not condense, they do
crowd into the lowest few states, giving a sharply peaked
distribution; the Fermi distribution is similar to the
three-dimensional one with uniform occupation of all
states up to the Fermi energy. (This is exemplified by
comparing the behavior of a charged, two-dimensional
Bose gas with that of a Fermi gas in a magnetic field
at low temperatures: the two results are altogether
different. ')

The theorem serves as a striking example that the
specific heat can be an unreliable guide to the distri-
bution function of a system.

To shed further light on the above theorem, in Sec. 3
we consider the thermodynamic properties of ideal

quantum gases, regarding the number of dimensions

as a continuous variable e. If the usual high-tempera-

ture cluster expansion is made, ' then for m) 2 the results
are similar to those for the three-dimensional case:
Csr(X, T) has the equipartition value, with first-order
corrections which are positive for bosons and negative
for ferrnions. The Fermi Cy decreases monotonically to
zero at T=O; the Bose Cy must also reach zero at
T=O, and this it does by means of a discontinuity in
slope at a critical temperature, below which tempera-
ture the gas condenses. (For rt)4 the Bose gas has a
discontinuity in Cv..) st=2 is the unique case for which
the 6rst-order corrections to the equipartition value of
Cy vanish. It is also the value of e for which the Bose
gas just fails to condense. For e(2, the Bose Cy de-
creases monotonically to zero, while the Fermi C~
increases above the classical value but then decreases
smoothly to zero at T=O.

Finally, in Sec. 4, we investigate the quantum gases
in the extreme relativistic region, again regarding the
number of dimensions as a continuous variable. It is
shown that the behavior of the extreme relativistic gas
in n dimensions has the character of the behavior of the
nonrelativistic gas in 2e dimensions.

2. PROOF OF THEOREM O~ C, (~,T)

The grand canonical partition function, exp( —crQ),
for an ideal Bose gas (Qn) or an ideal Fermi gas (11F)
is given by

Qti= &kT Q lnL1+exp( —rt —erg„)j.
k

This formula is valid for an arbitrary number of di-
mensions: k labels the energy states; cr—=1/kT; rt—= —crtt,
where p is the chemical potential. All other thermo-
dynamic functions may be derived from 0: In particu-
lar, the number of bosons or fermions present is

E~——

& exp(rt+crEt, )%1

(For Bose statistics, negative occupation numbers are
avoided by the demand rt&0.) The relation (2) may be
used to eliminate rt in favour of E in (1).

For ideal particles in a cubical box with periodic
r A. Einstein, Ber. Berlin Akad. 261 (1924).' F. London, Phys. Rev. 54, 947 (1938).
'R. M. May, Phys. Rev. 115, 254 (1959).

4 J. Mayer and M. Mayer, StuHsticul Mechueics (John Wiley 8z
Sons, Inc., New York, 1940}'.
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boundary conditions, the energy values are

Eg= f'ik'/2 m; k= (2ir/Q v,

where v are the points in a unit cubical lattice. Provided
mkT/h')1. ' we can replace sums by two-dimensional
integrals in (1) and (2) to get

where the functions F+ and F are de6ned in general by

F~(s; m)= P (+1)'+'—
i=1 $m

We now prove a lemma, namely, the mathematical
identity

P' oo

fle=~kT — dx lnL1ae «+']
X' p

F
~

—1; 2 ~=F~(1 r, 2—)+-', (lnr)'
(1
r j (14)

that is,

V " dx
S~=—

) 2 gg+x~ f

N, =~(V/Z') ln(iae-~). (6)
F~(s;2)=W

ln(1wt)
lA. (15)

with 7&1. To do this we note that F+ and F can be
written

N= V/X02. r(N, T) =exp( —To/T). (8)

V is the two-dimensional "volume, "and X is the "ther-
mal wavelength" de6ned by

'A'= 4m-nA'/2m.

Note that the integral in (5) for Ne has no upper
bound (it diverges logarithmically as it~ 0), so that
there is no condensation phenomenon for the two-

dimensional Bose gas. However, we can see that at low

temperatures the bosons will crowd into the low-lying
states to give something like a momentum condensation

(e.g. , if charged, they give an "imperfect" Meissner
effect which is practically indistinguishable from the
perfect London one of the three-dimensional Bose gas).
On the other hand, we see that the two-dimensional
fermions at low temperatures behave just as three-
dimensional fermions.

For convenience we define quantities To(N) and

r(N, T):

' 'ln(1 —s)
P i 2 dS

0 s(1—s)

1—rds 'dr—lii(1 —s) — —}n(7), (1$)
p $ T r

which establishes the identity (14).
Making use of (14) in (11)and (12), and remembering

the definition of r$cf. Eq. (8)], we can write

Ev(N, T) =Ee(N, T)+,'NkT, . -(18)

That is, in two dimensions, the Bose and Fermi dis-
tribution functions are just such that, for a given S
and T, the total energies of the two systems di6er by
a quantity proportional to Ã and independent of T.

From the de6nition

Then, changing the variable of integration from t to
s=t/(1+t), we get

Cv(N, T) = (dE/dT)N, v, (19)

K'v(N, T)] =)Cv(N, T)] . (20)

As a corollary it follows that a mixture of E& fermions
(9) and N2 bosons has exactly the same speciiic heat curve

as a system of Ni+N2 fermions or Ni+N2 bosons.

mean interparticle separation

(T, thermal wavelength

Tp is a temperature which divides the classical regime

(T)To and r 1) from the regime of quantum statis- it follows immediately that
ties (T(To and r((1). This statement is made clearer

by rewriting the definition (8) as

The total energy of the system can be written from

(4):
xdx

E~= AT—
g ) 2 g~s~

(10)

E (N T)=Nk(T'/To)F+(1 r,2)—Expanding the denominator and integrating, and also
using Eqs. (6) and (8) to eliminate it, we get

(11)

3. IDEAL GASES IN n DIMENSIONS

In order to gain further understanding of the results
in Sec. 2, we now formulate the expression for the grand
canonical potential 0 (and hence all other thermody-
namic functions), regarding the number of dimensions
in which the particles Inove as a continuous variable n.

To replace sums by integrals in Eq. (1) after the style
of Sec. 2 Lcf. Eq. (4)], we note that the corresponding
density of states with wave numbers between k and
k+dk in e dimensions is

E (N, T)=Nk(T/To)F
~
=1i 2

~r t V/(2vr)"]8(n)k" 'dk, -
(21)
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where V is the n-dimensional "volume" and S(n) is
the surface area of the unit sphere in e dimensions

S(n) = 2tr"/r/I'(n/2) . (22)

Then, using the thermal wavelength defined by (7),
we can write

( 2tn ) "/' V
ne=~ATI

(4trn)tsi r (n/2)

Tp Tc.) For T) Tp we can expand 0 and other ther-
modynamic quantities by use of the power series ex-
pansion (13). Also, we can use (26) to eliminate tI in
favor of EI i.e., in favor of Tp(E)) to get

1 Tp) ""
IIa= —&AT 1~

2(n/2)+I

1 2 )) (Tp)"
II
—

I
+"", (30)

3(~/s)+)i i, T i
)( ~("/s) i(ig ln(1+e p ~) (23) whence

V= —AT—FgI e t; —+1 I.)'
(n l 1 (Ty

LCvjn=-&A 1+I —1
I

(24) )" 2 (2 i 2("/')+' ( T i

The F+ and F functions are defined by (13).All other
thermodynamic quantities can be derived from 0; in
particular, the number of particles is

x("~')—'dxV 1
PT~ ——

I "r(n/2), e~'W I

V ( n
=—F~I e-&;—

(25)

(26)

li/ p
——X(1—(T/Tc) ""). (28)

Thus, we already see that v=2 is a special case in the
continuum of dimensions for Bose statistics.

Next we take the usual high-temperature (classical)
limit. A temperature To is defined, in n dimensions,
analogous to that defined by Eq. (8):

X= V/Xp" XX"/V= (Tp/T)"". (29)

Then as before To divides the regime of classical be-
havior from the regime where quantum eBects come into
play. (Notice that for Bose statistics in n& 2 dimensions,

'See, for example, E. Whittaker and G. Watson, Modern
Attalyrir (Cambridge University Press, London, 1946).

Notice that for Fermi statistics, the integral for
E/ can always be made arbitrarily large (provided that
n)0) by making t/ large and negative. Thus, there is
no upper bound to the expression for Xg, and hence no
condensation phenomenon in ideal Fermi gases. On the
other hand, for Bose statistics (remembering the re-
striction t/) 0) we see that the integral in (25) has an
upper bound once e& 2: for given E~ we can then define
a critical temperature Tq,

Xe= (V/Xc")t'(n/2); (n&2}. (27}

Lf (z} is the Riemann zeta function~ of order z.j Above
Tg all particles can be accommodated above the ground.
state; below Tg the replacement of sums by integrals
in (1} is not valid, and the ground state contains a
finite fraction of the total number of Bose particles:

( 1 2 (Tp))"—(n —1)I

—
I

—
I + . (31)

i 2a 3(n/s)+1

The leading term in (31) is the classical equipartition
value for Cy, with ~Eh for each degree of freedom.
m=2 is obviously a special case in that it is the only
value such that the erst-order correction term vanishes.
The second-order term is common to both statistics.
For e&2 we have the situation familiar from three
dimensions: The Fermi specific heat falls steadily to
reach zero at T=O Las it must: Cv(T=O)=0 is de-
manded by the third law of thermodynamics j.The Bose
speci6c heat initially increases above the equipartition
value —we can see that it increases down to Tg, then
there is a discontinuity in the slope and Cy decreases to
zero. For n(2, it is the Bose-gas specific heat which
decreases monotonically to zero. The Fermi Cy must
be an analytic function of T, and we can show that it
rises above the classical value to attain a maximum
value at T To and then falls smoothly to zero at T=0.

To conclude this section, we write down the expres-
sion for Cy which holds for all T except for the Bose gas
below its critical temperature Tc I cf. (27)):

I Cvjtt
(n )) ( n )) ( n))

=I -+I
I F.I

e-;-+1
I

', nXA E-2 i k 2 i &
'

2i

(n) ( n) ( n
(32)

i2i 5 '2i )), '2

with ti given as a function of X and T by Eq. (26). The
exceptional case, the Bose gas for T(Tg, is easily seen
to give

LCv (T(Tc)ge

~nSk

=I -+1
I &I -+1

I il —
I I I, (33)

&2 i E2 i )), 2i ) Tci
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where e) 2. It is clear that LCi )i; is always regular
(for e)0) even though it is only monotonic for I)2.
More interesting is the Bose gas for e&2: We can cal-
culate the discontinuity in the specific heat at T=T~
by taking the limits as T tends to Tq from above,

(Cv)+, and from below, (Ci)

(Ci ) —(Cv)~ n n rs

—',ncVk 2 2 2
(34)

Note that t'(s) diverges for s~& 1, so there is no discon-

tinuity in Cy so long as

4& ~(»). (35)

For ~s&4 the Bose-Einstein condensation gives a
thermodynamic transition of the 6rst kind, with a
finite discontinuity in Cy.

Qp=~kT—
(4~)"i' I' (n/2)

X k" 'dk ln(1~e ~ "'"). (37)

4. EXTREME RELATIVISTIC LIMIT

In the extreme relativistic limit, the energy levels
for the ideal gas, in an e-dimensional cubic box with

periodic boundary conditions, assume the form

Ei,——Ack; lr = (2m-/I. )v, (36)

where v are the points in an ~z-dimensional unit cubic
lattice. By this we mean that we are considering a
problem in which particles with wave numbers such that
Ak(mc are to be regarded as being in the ground state.
This is the case if the rest Inass m ~ 0, or in general if
kT))mc'. (In the earlier work in Secs. 2 and 3, the rest
energy nsc' was of course absorbed into the chemical
potential p.)

Putting (36) for Ei, into Eq. (1), and replacing sums

by e-dimensional integrals after the manner of Sec. 3,
we get for the relativistic grand canonical potential

Equation (38) for 0 is just 1ike Eq. (24) of Sec. 3,
multiplied by a function of e Lnamely, A (I)j and with
e in (24) replaced by 2' S.ince n is a constant for a
given thermodynamic problem, all thermodynamic
functions in the extreme relativistic limit in e dimen-
sions will have the same form as the corresponding
nonrelativistic functions in (2e) dimensions. For ex-
ample, we can write directly from Eq. (26) that

7i/Q —(U/li'")A (N)P+ (e ~ 'I) (40)

in the relativistic lnnit.
LThe significance of the factor A(e) is, of course,

that the temperature which divides quantum from
classical behavior is no longer To but its relativistic
analog, T~ say, where

T mean interparticle separation

T~ relativistic thermal wavelength
(41)

The relativistic thermal wavelength is given by the
analog of Eq. (7): l~,.i=—ch/kT. )

With these remarks, together with the results of
Secs. 2 and 3, we arrive directly at the following con-
clusions. The specific heat Ci (X,T) of an extreme rela-
tivistic gas of Ã bosons at temperature T is identical
with that of E fermions at temperature T, for all 3l
and T, ze ore dhmensioe. If the number of dimensions
n per particle in the relativistic gas is regarded as a
continuous variable, then e= 1 is the analog of the non-
relativistic special case m=2. The relativistic Bose gas
condenses for e&I, with a critical temperature Tq'
given by

kTc )" 2P(e)
7Vri= U

~
f(n).

2n'"Aci I'(n/2)

Moreover, for n&2 this thermodynamic transition of
the relativistic Bose gas is of the first kind, with a
latent heat. (For 2&&e)1 it is of the second kind. )
In particular, the discontinuity in three dimensions
is given by putting v=6 in Eq. (34):

That is to say,

n = —kTA(~)(U/X'")P~(e-~; I+ 1), (38)

(Cv)-—(Cr)+ t (3)
=3 =2.192

3Ak f (2)
(43)

for the extreme relativistic Bose gas. (elk is the rela-
where li is the thermal wavelength as de6ned by (7),
and A (n) is defined as

2P (e) ~'I'Aq "
A(e)=

r(N/2) mc i
(39)

Notice 3 is independent of lV and T, involving only
fundamental constants and e.
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