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Critical Field and Specific Heat of Strong Coupling Superconductors*
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Expressions for thermal quantities such as the critical field, entropy, and specific heat are derived for strong

coupling superconductors without making a quasiparticle approximation for electron motions. The contri-
butions from the ion motions are also taken into account semiphenomenologically. Nambu's Green's-function

formalism at finite temperature is used as well as a relation, derived by Chester, between the diGerences of the
thermal averages of the total Hamiltonian and the ion kinetic energy between the normal and the super-

conducting phases. Assuming the simple isotope effect, where the transition temperature is proportional to
the inverse square root of the ionic mass, the phase transition is shown to be of the second order. The thermal

quantities are given in terms of a single function of the temperature and its derivatives, which can be ob-

tained from the energy-gap function and the renormalization factor of the electron Green's function. These
expressions lead to the BCS results in the appropriate limit. A new expression for the jump in specific heat is
also derived. For strong coupling superconductors it is likely to give better agreement with experiments than
the BCS expression. Present theory does not apply to superconductors with isotope eGect not simple as
above. A possible reason is discussed.

mediate states, resulted in even a larger ratio than the
experimentally observed value. It should be possible
to obtain the experimental ratio by a complete calcula-
tion, since the nonresonant effect, discarded in the above
calculation, had been found to decrease the ratio. ' '

The phonon-limited electronic thermal conductivity
is another problem. Tewordt' concluded that the experi-
mental temperature dependence of the ratio of the
superconducting to normal thermal conductivity for Pb
and Hg cannot be reproduced completely within the
scope of the 8CS model and the Boltzmann-equation
approach. Ambegaokar and Tewordt' have derived a
new expression for the above ratio using Kubo's formula'
for the thermal conductivity and the method of thermo-
dynamic Green's functions, taking into account retarda-
tion eQ'ects. Although full numerical results are not
available yet, their result appears to improve agreement
with experiment than the earlier results.

The temperature dependence of the critical Geld of
Pb and Hg shows a deviation from the BCS theory. It
deviates in the positive direction from a parabola given
by the Gorter-Casimir two-Quid model, while the BCS
theory gives a negative deviation. This problem has
something in common with the above-mentioned dis-
crepancies. It was shown that the positive deviation can
be obtained even within the scope of the BCS model if
the experimental value is used for the ratio of the energy
gap at zero temperature to the transition temperature. "

Therefore, it is desirable to calculate the temperature
dependence of the critical Geld within the framework
of the retarded interaction theory.

I. INTRODUCTION
'

~ XPERIMENTAL results for superconductors with
~ strong electron-phonon coupling, such as Pb and

Hg, exhibit some deviations from the predictions of the
BCS theory. ' Schrieffer, Scalapino, and Wilkins' have
shown that the experimental tunneling I-V character-
istics for such superconductors can be predicted if the
retardation of the effective electron interactions is
correctly taken into account. We expect the same eGect
to be important in explaining the thermodynamic
anomalies of the strong coupling superconductors. For
instance, the ratio of the energy gap at zero temperature
260 to ~T„where I(, is the Boltzmann constant and T, is
the transition temperature, has not been satisfactorily
explained. Swihart' 4 showed that this ratio is always
less than the observed values, 4.1 for Pb and 4.6 for

Hg, using a variety of nonretarded interactions. The
retardation eGect in interactions, especially, the accom-

panying damping of excitations is likely to explain this
discrepancy. ' Since the damping decreases the eBective
pairing interaction strength, the transition temperature
as well as the energy gap at zero temperature are re-
duced. The former is reduced much more than the
latter, because the damping rate is greater at higher
temperatures. Thereby the ratio 2t4/ttT, will increase.
Actually, tentative calculations' for Pb including the
effects of damping to the renormalization factor of the
Green's function but neglecting the nonresonant proc-
esses, which do not conserve the energy at the inter-
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Shiftman, Cochran, and Garber" have made a precise
measurement of the temperature dependence of the
specific heat of Pb and Hg near the transition tempera-
ture. The jump in the specific heat of Pb at the phase
transition was observed to be AC= 57.5+0.6 mj-mole '
deg '. This value is larger by the factor 1.6 than the
BCS result, but is in agreement with the value obtained
by Decker, Mapother, and Shaw" from an analysis of
the temperature dependence of the critical field. Vsing
the expression for hC derived by Swihart' with non-
retarded interactions, they concluded that the energy
gap function must increase with energy for small
energies.

The purpose of this paper is to derive new expressions
for the critical Geld, the specific heat, and its jump at
T„taking into account the retardation effects correctly.
These quantities can be expressed in terms of the elec-
tron and phonon Green's functions in Gorkov-Nambu
formalism. " " It is possible to calculate the electron
Green's function explicitly. However, the calculations of
the phonon Green's function have some complications.
Therefore it is desirable to derive the relations for the
above quantitiesinvolving just the electron Green's func-
tion. This can be done if we take a semiphenomenologi-
cal approach, using a relation derived by Chester. "It
provides a way of expressing the difference of the
thermal averages of the ionic kinetic energy in the
normal and the superconducting phases in terms of the
diH'erence of the total energy in the two phases and the
critical field. Chester's relation is based upon the fact
that the ratio of the critical field H, to its value at the
zero temperature Ho is given by a function of reduced
temperature t=T/T. , where T is the temperature,
which is common to all isotopes of any one supercon-
ductor. The dependences on the isotopic mass M are
assumed to be IIO~M and T,~M '. Assuming a
simple isotope e6ect, o,'=--

~, it turns out that the critical
fieM, the difference of the entropy between the two
phases, and the specific heat are all given in terms of a
single function of the temperature and its derivatives.
This function can be written in terms of the energy-gap
function and the renormalization factor of the electron
Green's function. Our expressions reduce to the BCS
results' if the energy-gap function is real and constant.
Calculating the difference of the thermal average of the
total energy between the two phases, one finds that the

"C.A. Shipman, J. F. Cochran, and M. Garber, Phys. Chem'
Solids 24, 1369 (1963)."D.L. Decker, D. K. Mapother, and R. W. Shaw, Phys. Rev.
112, 1888 (1958)."L. P. Gorkov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958)
(English transl. : Soviet Phys. —JETP 7, 505 (1958)j

'q Y. Nambn, Phys. Rev. 117, 648 (1960).
"G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 38, 966 (1960)

LEnglish transl. : Soviet Phys. —JETP ll, 696 (1960)j."L.Tewordt, Phys. Rev. 128, 12 {1962).
'~ G. V. Chester, Phys. Rev. 103, 1693 (1956). The following

procedure was used by Scalapino and Schrieffer to calculate the
condensation energy of the superconducting phase at zero tem-
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ionic kinetic-energy difference gives rise to a contribu-
tion which is equal to the total energy difference itself
at T T„ thereby making it not obvious that the phase
transition is not of the first order. The transition is
shown to be not of the first order, making use of the
defining equation for the renormalization factor of the
Green's function. By means of similar discussions, the
expression for the jump in specific heat AC is expressed
in terms of the temperature derivative of the square of
the energy-gap function. When the damping is neglected
and the electron-phonon interaction is weak, our result
reduces to that given by Swihart. ' In the general case,
it is expected to be larger than the BCS result and
shouM, therefore, be in better agreement with
experiment.

In Sec. II, the critical field, the difference of the total
energy between the two phases, the entropy difference,
and the specific heat are given in terms of a function
I(P), with P=1/qT, which can be obtained from the
electron Green's function. In Sec. III, the function I(p)
is transformed to a simple integral containing the
energy-gap function and the renormalization factor. The
phase transition is proved to be not of the first order and
AC is rewritten in a simpler form. In Sec. IV, the ex-
pressions for the thermal quantities are shown to involve
the BCS and Swihart results as special cases. The cor-
rections to the BCS AC are examined and are likely to
give a better agreement with experiments. Finally,
validity of Chester s relation is discussed in Sec. V.
Then a difficulty in applying the present theory to
superconductors with more general isotope effect, n'/ 2,
is pointed out. A possible origin of this difficulty is
discussed.

II. THERMAL QUANTITIES AND CHESTER'S
RELATIONS

In this section, we shall first write the thermal average
of the total Hamiltonian in terms of the Green's func-
tions. The phonon Green s function is eliminated from
the obtained relation, making use of Chester's relations.
It gives expressions for the free-energy difference be-
tween the two phases, the critical field, entropy differ-
ence, and the specific-heat difference.

In terms of the second quantized (bare) operators,
c„, for the electron with quasimomentum p and spin
0-, a,z for the phonon with quasimomentum q and
polarization X, the Hamiltonian of the electron-ion
system takes the form

K=H pN=Kp {Ht+H—s+—E„--
Kq=g e„te r e„+ g(rr &*—11 +~ Q „*Q „),

&g—X,X

Ht= 2 —
Qq/, +y+q rr'rs+p, —-

y qÃX QQ

Hq=-', Q V(kt, kq, ks, kq): 4s,vs+q, +qq rsvp„, : . .
Jt: Ilt:2lc3k4
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Here we have subtracted pX, so that e~ is the Bloch
energy measured relative to the chemical potential p, .
F is the total number of electrons and Ko is the Hamil-
tonian of the system without interactions, We used
Nambu's matrix notation, '4

r)Qq), /BT= $11 qy |
&II q),

='LMqx Qql+q P — 4v q K Ts@'p.
r)r vlc QQ

(2.3)

cvt
+vt= (c»*,c-»),

c „g*)

and 7-3 is the third component of the Pauli spin matrix.
The phonon 6eld operators are given by

~, ='(,./2)'"(, .*—,.),
Qq~= (2~q)) '"(~g,+~ q),*),

where ~,), is the bare phonon frequency. II~ is the elec-
tron-phonon interaction Hamiltonian, v, K, ), is the
coupling matrix element which is assumed for simplicity
to depend only on the electron-momentum transfer

q
—E and the polarization of phonon )." K is any

reciprocal lattice vector, and 0 the normalization
volume. H2 represents the Coulomb interactions among
the electrons. V(kr, ks, ks, kq) is the matrix element of the
Coulomb interaction with the Bloch functions Ps(r),

The thermodynamical Green's functions are defined by

G(p, r&,rs) = TrU—ee "o 'T(-+,(r,)%„'(rs)),
D.(q, rt, rs) = —T«""' 'T(Qq~(rt)Qq~'(rs)),

for electrons and phonons, respectively, where Tr means
the thermodynamic trace operation and

e-~"o=Tre—I'K
)

P= 1/~T.

The operator U is given by

in terms of an operator R+ which transforms a given
state in an E-particle system into the corresponding
state in the X+2-particle system" "; thus for the
ground states

z+~ op) =
~
o,@+2).

V(kt, ks, ks,k4) = Ai*(r)4'ts*(~') Was(v )O'1-4(")«« ~ and for the one-particle states
Iv —"I

which vanishes unless kt+ks —ks —k& is equal to any
reciprocal lattice vector E.The symbol: ~:means the
normal product with respect to C~ and O'. The term E~
involves the total numbers of the electrons with up spin
and down spin as well as pure constants. Since these
have nothing to do with the phase transition, we discard
this term hereafter. It is worth remarking here that the
kinetic energy of the ions

Ksr =Q (1/2&V) P,s,

can be rewritten as

Klf s 2 IIqx 11qx ~

q) (2.1)

with the similar relations for +„(r), IIqq(r) and Qq~(r).
The equations of motion take the forms

84„ &g—K,X= P&,+,)=—e. s+,—2 Q,~.s+,+x
@K' Q

V(p, kt, ks,ks): rs@kg v,,'rs%». , (2.2)
kIk2k3

"J.M. ZiInan, ElectrorIs arid Phomoes (Clarendon Press, Oxford,
1960), Chap. 5.

The operators at reciprocal temperature v. are dered
by

(r) exr@ e xr—

while

~+lk, i»= lk, ~+2),

E~o, 1V+2)= ~O,.V), etc.

00

G(p, r„rs) =— g exp[ —iE (r&—rs) jG(p, iE.), (2.4)

1 00

D~(q, r„rq) =— P exp[—iv„(r&—rq)]D), (q, iv„), (2.5)

where

E,.=(2~+1) /p,
v„=2qsqr/p,

"L.P. Kadano6' and P. C. Martin, Phys. Rev. 124, 670 (1961)
'o J. R. Schrieffer, Lecture at the University of Pennsylvania,

1962 (unpublished)."P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).

The symbol T means the ordering operator with respect
to v.

~ and ~2. Due to the Umklapp processes, the quasi-
momentum of one-electron state is not conserved. The
electron Green's function becomes a matrix with respect
to momentum suffices, too. Here we have de6ned the
diagonal components which are relevant to the following
discussions.

Because of the translational invariance and the
periodicity in 7& and v&, the Green s functions can be
expanded in the Fourier series"
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tt being any integer. The inverse relations for (2.4) and (&o)—=Tree'n' K)&o

(2.5) are

P P

G(p,iE„)= — dridrq expC iE„(ri—rq)]G(p, ri, rq),
0 0

P P

Dg(g iv )= dridrs expliv (rl —r2) jD),(g ri rq) .
0 0

The thermal average of E0 can be written in terms of
the Green's functions.

=-P tr{G(p iE ) e rt) e's"o+

+—Q {(v„'—coq), ')D),(q,iv,„)+1)-e'" '+, (2.6)
nqX

where the equation of motion for Qq)„(2.3), is used.
Here, tr is the trace operation in the sense of Nambu's
matrix notation.

Using the equation for ~P„, (2.2), one can get the equa-
tion of motion for the Green's function,

ctG(p, ri, rq) &q—K, ),
8(r, —r,) 1—evr, G—(p, r»r, )+TrUe« ~ )y' p

'

Q,„(„)„@,, K(„)
qKX gQ

+ Q V(p, ki, k„k,):r&e„(r,)e„,t(r, )r,e„(r,):,e„&(rq)
k1k2k3

which is transformed to
P P

—iE„G(p,iE„)= —1—evrqG(p, iE„)+ - dridrq expLiE„(r, —r&)jTr Uet)'"o K'

&q—K,X'

Q"(")rs+.—q+K(ri)+ 2 V(p, kl k2 k3) ~ r.+tiz(ri)+»"(ra)rq+&2(ri). %v (rq) . (2.7)
qKX gQ krak 2k'

The diagonal components of the electron Green's function with respect to the quasimomentum are known
to satisfy the Dyson equationi4, r5, &9,20, 22

(2.8)

if Z(p,iE„) is defined as the contributions of all distinct self-energy diagrams diagonal with respect to the quasi-
rnomentum p and which cannot be separated into two parts by breaking a single particle line carrying the label

p."Gq is the Green's function for a noninteracting system

Gq(p, iE„) '=iE„evrs—
Equation (2.7) gives an expression for the self-energy part,

P P

Z(p,iE )G(p,iE )= —— dridrsexpfiE„(r, rq)5T—rUee"o )-
&q-K, 'A

)(T Q Qqg(rl)rs@v q+K(ri)+ P V(P&kl&kq&kq): rs P»(ri) P» (ri)rs P»(ri): & Qv (rq)
qK) Q k1k 2k'

Transforming the expression back to the reciprocal temperature variable, one Anally gets

1
—p e'E~q+ tr(Z(p, iE )G(p,iE„))

Vq K,X=Tre "o— g g Qq)4, rq%v q+K+ P V(P,k»ksk, s):+,'ra@»+»'rs%'» ——(Hi+2Hs). . (2.9)
v qK) QQ»kq»

3y similar discussions, the equation for Dq turns out to be

P P

v„'D),(q,iv„)= 1+co—q),'D),(q,iv„) dr—id—rs exptiv„(ri —rs) j Tree&"q K&

p. Nozieres, Theory of Interoctqmr Forms Systems (W. A. Benjamin, Inc. , New York, 1964), Chap. 4.
qs J. R. Schrie8er, Lecture at Argonne National Laboratory, 1962 (unpublished).
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The self-energy part of the phonons II& is defined by

I/Dg(q, iv.) = [1/Do), (q,iv„)g —Iig(q, iv„),
where

(2.10)

Then„one finds
Do),(q, iv ) '= —(p '+~,),'). (2.11)

P P &—q—K,X

llq(q iv„)Dq(q, iv„)= —— dridro exp[iv (ri —ro)j TreS'"' 'T g +p o xt(ri)romp(ri), Q, i,*(ro)
~ »

0 0

and finally

&—q—K,X
—Z ~'"""11.(q,iv-)Di(q iv-) = —T«""' ' Z Q-o~+p—.-x' o+p= —(Hi).

nqX g) qXZ Q
(2.12)

The average of Ko, (2.6), and that of interaction energies, (2.9) and (2.12), give the thermal average of the
total Hamiltonian,

(K)= (I/tI)Z «{G(P,iE-) . +-', Z(P, iE.)G(p,iE.)}.'E-'+

+(I/2P) Q {(p '—oo,~')Di, (q,iv„)+I—rri, (q, iv„)Dg(q, iv„)}e'"oi. .

The second term on the right-hand side is twice the average ionic kinetic energy, since it can be written as

(I/2P) Q {(v '—&o,g')Di, (q,ip„)+1—Ili, (q,iv„)D),(q,ip.)}e'" '+

= (I/2p) Q 2v 'Di,(q,iv )+2+ Dx(q, iv„)—1—IIg(q, ip„)D),(q,ip„) e*'""o+

Do (q,k„)
= (I/O) 2 {v~'D~(q»iv. )+1}~'""'+=+(II,&*II,&)=2(K~)»

nqX

(8H, H;
+

o,~r(K)= (I/p)g tr{G(p,iE„)opro

where we have used the expression for Don, (2 11), the where H, is the critical field, one obtains
equation for D»„(2.10), and the expression for Ki»»,

(2.1).Thus (K) takes the form

(2.17)

+ io g(p, iE„)G(p,iE„)}e'~ "~+2(Kor) . (2.13)

Now, we will use the Chester's relation' in order to
eliminate the ionic kinetic-energy term from (2.13). He
pointed out that the quantities (H) and (Kor) can be
given in terms of the free energy I' as

(H) = —T'[~(FIT)/»lo, ~, (2 14)

(K~)= M/8F/BM jr, r».— (2.15)

If the difference in any quantity X between the normal
and superconducting states is denoted by AX,

then Eqs. (2.14) and (2.15) give

A(H) = To[a(AF/T)//aT jo—
A(KJ»r) = M[BAF/BM]z—,o.

Substituting the expression
where

A(H) = A Uoh[h —2th'g,

A(Kor) = AUoh[2nh th' j, —
(2.18)

QII, BH,
A(K,iI)= — M

4n. BM z,g,

Following Chester, we assume the experimentally
estabbshed fact that H, can be written as

H, =Hoh(t),

where Ho is the critical field at absolute zero, h(t) is a
function of t = T/T, which is identical for all the isotopes
of any one superconductor satisfying h(0) =1, h(1) =0.
We shall first assume a simple isotope eGect

Bo oc ~ and

One will find a diKculty in more general cases, n'W&,
which will be discussed in Sec. V. Under the above
approximation, Eqs. (2.17) turn out to be

dd =QH, '/8or, (2.16) AUo= ~IHo'/8»r» h'= ~h/dt.
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QII, '/8s =6Voh-'(/) = Ll/(4n —1)jlV(0)I(P),

h —2th'
A(II) = $(0)I(P)

(4n —1)a

(2.19)

where

X(0) dI P
I(~)-~

()
(2.20)

Ck

Substituting (2.18) into the equation which can be ob-
tained by taking the difference of (E), (2.13), between
the two phases and using Ay=0 (see Appendix A), one
gets the critical field and the total energy difference as

III. SECOND-ORDER PHASE TRANSITION AND
THE JUMP IN THE SPECIFIC HEAT

In order to facilitate the numerical calculations, the
function I(P), (2.21), will be rewritten in terms of the
energy-gap function and the renormalization factor of
the Green's function. By virtue of the result, the phase
transition will be shown to be not of the first order and
the jump in specific heat will be given in a simpler form.

According to Nambu" "the electron self-energy part
takes the form

Z(p, iE„)=i „(iE„)iE„+x~(iE„)rs+y„(iE„)ri, (3.1)

and E(0) is the density of Bloch states of one spin
orientation per unit energy at the Fermi surface. Equa-
tion (2.19) is a direct generalization to finite tempera-
tures of the calculation of condensation energy by w ere
Scalapino and SchrieBer. '"

From the expression for ~ in terms of I(P), (2.16),
and (2.19), the entropy difference is found to be

sZ, (s)+e„(s)rs+y, (s)7.,

s'Z„'(s) —E„'(s)
G(p, iE„)= (3 2)

Z=i Ers

Z,(iE„)=-1—f,(iE„),
e,(iE„)= e,+x„(iE„),

E„'(iE„)=e„'(iE„)+y,'(iE„).eiAF «X(0)P' BI(P)aS=—
8T a 4n —1 BP

(2.22)
Z„ is the renormalization factor of the electron Green's
function.

Substituting (3.1) and (3.2) into the expression for
I(P), (2.21), we obtain

It is now not obvious that the superconducting phase
transition is of the second order. A(II), (2.20), which is
the energy difference between the normal and the super-
conducting phases is not manifestly zero at T= T., since
it is not a priori clear that dI/di vanishes at /=1. This
comes from the fact that the difference of the ion kinetic
energy is one-half of that of the total energy at T T,.
This indicates the importance of ionic motions which
are not present in the theories with nonretarded inter-
actions. The illusory latent heat is

1 s'Z~(s)+ e,e„(s)
I~'(0)I(O) =—& 2

P .- ssz„s(s)-E,s(s)

ds s'Z„(s)+ e„e„(s)
sz0+

2s-s „+„1+eoz u s'Z '(s) —E '(s)
(3.3)

-&(0)I(&)= —(1/P)~ 2 t Ã(, L-) . where f'„, X„and P~ are even functions of the complex
variable iT,„, and the ~ s are the Pauli's spin matrices.

.E )),.s,+ ( )
From the Dyson equation, (2.8), the electron Green's
function is given by

E(0)P, dI
a(II)

4n-I dP.

which must vanish in order to give the second-order
transition.

The speci6c-heat difference is given by

where c~ and c2 are the contours illustrated in Fig. 1.
Making use of the facts that the electron Green's func-
tion does not have any singularity on the erst Rie-
mannian sheet except along the real axis, and Z~, X„,

aC(I) =d~(a) X(0)I d'I(P)

dT (4n —1)T. F2
(2.24)

FrG. 1. The con-
tours of integration
in a complex s plane
used in Kqs. (3.3)
and (3.4).

If we assume a second-order phase transition,

dI/dP, =O,

Eq. (2.24) gives the jump in specific heat,

«V(0)P,s d'I
~C= IIC(i)

g i 4n —1 dP, '
(2.25)

IE

C

C
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Z, (a+i c) =Z„'(cv i ~—), (3.5)

for real ~ due to the analytical property of the Green's
function. If we use the notations

hm Z&(M+16) =Z&((d),
&~0+

lim X„((o+ie)= X„(a)),
c~0+

lim y„((v+ie) =@„(a)),

Eq. (3.4) takes the form

and p„are even functions of s one can rewrite (3.3) as

'z.( )+""() p
Ã(O)I(P)= — ZP ds tanh —,

2~i p, s'Z„'(s) —L,'(s) 2
(3.4)

where the contour c is given in Fig. 1. Each of Z„, P~,
and X~ satisfies a relation such as

The X„e~term in the numerator of (3.6) gives a negligible
contribution as shown in Appendix B.The energy region
co&co., co. being a constant several times the Debye
energy, gives the important contribution to co integral
in (3.6), since the difference between the two phases is
small at &v)&u, . Then the main contribution to the p
integral comes from the region

I c„I&a&, where the p de-
pendence of Z„and P„are so small that we can replace
them by their average values at the Fermi surface, Z
and p, respectively. The p integral is evaluated by
changing the variable

Q =X(0) d~„

and extending the e„ integral from — to . It gives

GO

d(u Re (1+Z.(a))cv ——
g2 (~))1/2

—Z, ((e)Lcm' —a'((v))'" tanh —,(3.7)2'
X(0)I(P)= ——Im Q

p(o
tanh —. (3.6)

2 a((o) =4 ((u)/Z, (ru) . (3 g)

where Z„and Z, are the Z functions in the normal and
superconducting phase, respectively. The energy-gap
function is given by

By virtue of the equations satisfied by the three
functions, one 6nds that'the shift of X„between the
normal and superconducting phases is small enough to
neglect (Appendix 8) so that i„'s are the same for the
two phases. Moreover, the main effects of X„are the
shifts in the chemical potential and the effective mass. '4

The square root is dehned by the condition

Im(Z, (or) I
oP —6'(&v)]'/'} )0.

We shall calculate dI/dP, in order to show that the
phase transition is of the second order. dI/dP takes
the form,

which gives

Bz~ Bzg 1/ M Zs

CILIA

(~'—~')'/2 —I—
— Bp Bp k2( '—6')'~' 2( '—lP)'") Bp

GO

d&u Re (1+Z„)u)—
(~2 g2) 1/2

pcd
tanh—

2

z ( 2 g2)1/2
o)/2

(3.9)
cosh'(Pro/2)

dP,

Bz Bz, 1—Z„BA' P~
der Re —— --— +— -- -- tanh

BP, BP. 2a) BP, 2
(3.10)

Now we shall show the expression (3.10) which gives the illusory latent heat (2.23) actually vanishes. Due to
the analytical property (3.5) and the evenness of Z and 6, (3.10) can be rewritten

2M Bpp-

dI 1 " (Bz Bz) 1—Z BZF
des

I

—
Ico——

dP, 2 „ i BP, BP,)
pc&

tanh
2

(3.11)

We can close the contour of the integration with a large semicircle in the upper co plane along which the integral
will turn out to vanish. In Appendix C, 86'/cjp, is proved to be analytic in the upper half-plane as well as cIZ„/Bp.

J. R. Schrieffer, D. J. Scalapino, and J. W. WBkins (private communication).
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and BZ,/BP, . Therefore dI/dP, takes the form

BpC I Ism

dI 2~i —(BZ„BZ,) 1—Z„BA'-

dp, p, m&o (Bp, Bp, ll

(3.12)

On the other hand, the equation satisfied by Z, (oi), (85), gives the relation

fBZ~ BZg)
I~=K d~~i'(~. )p (~,)

k BP, BP,)

(BLED(~0')

Re
i

~ " (oi,oi', &v,P,) .
2~" k BP

(3.13)

The relation derived in the Appendix D,
"de (M')—Re/ /=0,

M E Bpg/
(3.14)

tells that the quantity (3.13) vanishes more rapidly than 1/oi when ~co) becomes large, thereby justifying the
transformation from (3.11) to (3.12).

Transforming the oi' integral in (3.13) to that with a closed contour as in (3.11) we find

/BZ„BZ,) "
d&o 86'(oi')

I» =Z d~~i'(~e)Ei(~. )2, =. (iE-,~',~e,P.)
m&o Bp, Bp,l I, ;g„z m&o „4oi" Bp,

where

1 86'(iE„)
J'(iE,iE„), (3.15)

2P. m& o (iE„)' BP.n)o

I('E-, 'E-)=Z d ~ '( .)E ( .) —. . — ——- +
iE +iE +i0q iE iE +oi, iE +iE +oiq iE iE +oiq

. (3.16)

On the other hand, using Eq. (85) one obtains

Combining (3.12), (3.15), and (3.17), we get

dI/dP, =O.

1—Z„BA2 1 M '(iE
=Z d~ei'(~c)E~(~a) Z

m&o 2» BPg g m& o 4(iE„)' Bp,
dM (zE M MliP )

gran

2P, m& o (iE„)' BP,'
n&o

(3.18)

1 Ba2(iE.)
— J(iE„,iE„). (3.17)

Thus the transition is shown to be not of the first order. It is important to note that the above result (3.18) has been

derived without recourse to the assumption about the isotope eGect, particularly, the choice of the parameter n'.

We will turn to the calculation of d'I/dP, ' to find the jump in specific heat hC. d'I/dP, ' can be obtained by a
direct differentiation of dI/dp, (3.9), and then setting p =p„since the gap function A(oi) vanishes linearly at small

co by the damping eGect as shown in the Appendix K. However, to get the expression which is also applicable to
the approximate gap function which may be obtained without the damping, we make a partial integration and find.

PI ~ &co

dp, ' o 4oi

8 —3+Z /86') P o~

~

/ /
tanh

8(o — Qi i BPql 2

$2Z $2Z ] QZ A+2 $ Z g2Q2-

dco Re M+
o BP.2 BPP or BP, BP, 2oi BP,'

+ do) Re
BZ~ l9Zg

BPc BPc

1—Z„BA']
(3.19)

2o~ BP, cosh'(P. oi/2)

The right-hand side of (3.19) can be regarded as a sum of the terms which do not vanish when Z =Z,= 1 and

other correction terms for which the same discussions can be applied. as for dI/dp, The discussio. ns are given in
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gg'(i Em) (.E E ) (3.20)

~ p where we obta'nAppendix

gg'(iEn)2p
tanh

(iE.)'
c+

2P.2 )0 (» )2 gp,

)86 (~)' .ReidM
2~4 m+(ca(

d„,(,y'. ( .)~&Q)I,

/)gg2((g) "
(3.21)ReRe

Bpc„) i &p

tanh +~
2

pc&0
R=

0dP 2

gQ~((c+& c)
Im

2 ~ M

+ d(c
~ )4 Bpc

~

(3 Z1) with (2.25)

2 cc (ca

ed b combiningecl c
~ 'g heat is obtaine yas shpwn iI1 ppend, 'x G. T je unlP in sP

8 HAND SWIH &R& THEORIESWITH THE
~

jf we put

y COÃ~EC&

g CS expressipns it results reduce tot the presellt

„stant,

It is interesting to

g= a rea]. constan,Z Z

R-.

res

(c i Bpc

++ Finally, the exP

dp2 0 2M

gg2/gp to caicu a
0 we (io not ha&e

that we nee& on y .
& ) vanishes at ~=

is cancelled out so
ea] a»s. Since

tp

gg~sgp'in(&19) is '

~2 gp, aiong there '

roce(iure&ea~s

e quantity ~ '
in terms pf ~~

d the well-known p o

i3 20) h- to b'""'
i«m 1/('E-)' '""

sion i
t the singularities rom

00

to worry about t e s

(

1!2-%2

i(c)=- +-. — —
)

2 1—1
3P2

2(ze'+6')
de 7

E(eel+1)
where

E—(eo+ g2) 1/u

d in this case and gives

I

asil evaluate in
and n= z.

e function..e ' I p) (3.7) is easi yFor instance, t e

(4.1)

2 d+2oo &2

cosh'(Pe/2) dP

dAPE PLV
tanh +

2F.3 2 482 cos
65=KE(0)p'

written, using the same ap-difference (2.22) can be rewritten, us'with (2.19). The entropyBCS critical held witThis gives the

2

proximations, as

1

cosh'(pE/2)

dhc P62 1

2L" cosh'(PE/2) dP0

(4.2)

can be transformed asthe arentheses can eThe last term in p

dkcop p&2

2E' cosh-'(PE/2) dP

dh2 dh2db, 'e d PE
d» ——tanh

dp E dE .

PE
de—tanh

E3 20

(4.3)

' t a
'

use of the relationu
' '

.3 into (4.2) and making use oSubstituting (4.3) into . a

- -tanh(pE/2)

283 4E' cosh'(PE/2) 2 cosh'(PE/2)dp p

tion with respect to p, one Gndsthe BCS gap equation win
'

d b differentiating theh Li an be obtaine ywhic can

27r'X(0)(o «'de
K

cosh'(PE/2)

de tc e~)

i
E+—I,Ei
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3P„4 " cjh2(cu)/BPc

[1+ee' ]-'
(4 4)

by virtue of the relation

~(,p.)»(-,p.)»(-,p.)

h((o,p,) Bp.
(4 5)

ant energy. To establish this relation,h re co is a const
we div de gy-g
take the limit p ~ p, and fin t a

0 ~' This agrees with BC gS a ain. It is
h BCS io fo DC(t)evident that we can get the

lt b ntt

'
m to Swiharts ormu

depends on the energy.er . His resu can

o eneous inearee uation obtained

f dff ti ti (B6). ,'d;„.„;....one applies t e sam
f (4 5) i fi th'g t-hand side o

wa the relation . isequation. In this way,
r — ap equation,In Swi ar sh t' discussions the energy-g

A(ca')
/

"+ ( )&"
)& tanh-,' p[a&"+62(cv') $'/2 (4.6

min this equation an p gutting
h lid h l21

for dC, (4.4), from pm the resent resu t . i
on- honon coupling. n y

d ' (321), i dtin the expression for d'I/dp, ', , s
out to be

dp 2

/862 ' 1
de)

E cjPc 2M

p.~ p.
tanh

4(v2 cosh2(P, (u/2)

" d(o ct 86' ' P.(u
~ tanh

2cc12 Bu cIPc

1 86' 1
GCO——

2 BP, cosh2(P. co/2)

p(~'+~')'"
tanh

ci ci (~2++2)1/2 20

" d(o cI 862 ' P,(o
tanh

2co2 Bce cjPc:. 2

find froin (4.5)xe right-han si e can0 'u be shown to vanish. WeThe second term on the rig

p(-'+~')'"

BP, cjP (a)2+62)'/2 2

p(~'+~')'"
tanh--

(~2+g2) 1/2P-Pc

Q(co) p(~2+ +2)1/2

tanh
(~2++2)1/2

»(a&) t ahnP, (u/2
I

PcCc1

tanh
A(co')

~ V(/cu —cu'[)
// //c pc-

»( ') ~( ) p.
tanh

~P ' 2

0 0

cjoy(a&) A(~)
GM tanh =0. (4.8)

20

»C»d d'Ildp ' (2 25), with (4.7) and (4.8), one obtainsCom Diningb' '
the relation between AC and d'

AC = —/clV(0)P, '
2 0

»2/Bp,
QGO

cosh'(P ~/2)

" dc' 8 /86' ' p,~
tanh

2Gd BM 5 Bpc 2
(4 9)

the arent eses g'vh ives Swihart's result
d ofth o dteorderofmagnitu eo

tot y
8/12/BP, at 0&co(co2 and zero e sew e
to be

p, »2 1 2r

2ar22 88 2 &o2Pc

imit a&2 )&1. There-This is sma in e wi
'

ll the weak coupling limi a2
fore, AC reduces to (4.4).

2.25 and (3.21) for hC is differ-The w p io ( .

f49 h»'/cjP, in the first te
' "thereby increasingr small energies ~

h'(P co/2) This differ-enominator cosy increasing
ence was already p

'
ointed out y

inand Garber" The second difference is

Rev. 125, 1263 (1962).%. Anderson, Phys. Rev."P.More1 and P.
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(4.9). Since this term does not have such a rapidly in-
creasing denominator as the first term, we might expect
that the main contribution comes from the sharp drop
in d (&u) at the average phonon energy &us although A(ai)
has many other structures in its cu dependence. Thus the
second term might give rise to a further increase in

~
AC~. The last difference between the present and the

BCS results is the effects of Z/1 and complex A. Un-
fortunately this is difficult to estimate without the de-
tailed solution of the gap equations.

In this way, we may conclude that the present theory
is likely to predict a larger jump in specific heat and
give a better agreement with the experimental results
for the strong coupling superconductors than the BCS
results.

Shiffman, Cochran, and Garber pointed out that
mercury remains an anomalous case."The jump in its
specific heat can be explained with a constant energy
gap. We believe this is due to the fact that the typical
phonon energy cop in Hg is large in comparison with Pb.
86'(ai)/BP, has the first maximum at a&~eis. If P,ass is
large enough, the structure in 86'(ai)/Bl3, does not give
any contribution for AC, (4.4), which is presumably the
main term. P.ass is about 7 for Pb, and 22 for Hg."
Therefore, the retarded interaction theory might be
able to account for Hg, too.

Isotopic mass dependences are assumed as

Hp~ M, T,~ M ', 0.'= ~.

(5.1)

According to the experiment, " n and n' for Pb are
observed to be

n~n' =0.478~0.014

and the deviation from the "similarity principle" for
the critical field, (5.1), is given by

1 Bh(t)
(5)&10 4 per amu.

() M
(5.2)

If this value were taken literally, the expression for

~6 Tunneling data give co0=7.8 meV for Hg. D. M. Ginsberg
(private communication).

27 R. W. Shaw, D. E. Mapother, and D. C. Hopkins, Phys. Rev.
121, 86 (196i).

V. CONCLUDlNG REMARKS

Expressions for temperature dependence of critical
6eld, entropy, specific heat, and its jump at T, are ob-
tained for strong coupling superconductors without
making a quasiparticle approximation for electron
motions. The contribution from the ion motions are
taken into account semiphenomenologically, assuming
H,/Hs is the same function h of the reduced temperature
t= T/T, for all the isotopes of any one superconductor,

i1(Esr), (2.18), would be modified to

h(Esr) = 2AU shah u'—th,
' M—(8h/BM) 7, (5.3)

and we would have a correction term whose magnitude is

M(8h/BM) (—,'()h(0),

since M 207 amu for Pb. This upper limit would give
rise to 40/~ correction to the condensation energy at
zero temperature. However, the similarity principle is
quite well satisfied experimentally at the high-tempera-
ture region, T T„where we can expect a smaller upper
limit than (5.2), presumably, by a factor of about 10.
We hope a further experimental study will give a smaller

upper limit in the lower temperature region, too.
In the former sections, the isotope effect of T, was

always assumed to be n'= —', . Otherwise, an inconsistency
occurs. Substituting the expression for h(H), (2.18) and

A(Esr), (5.3), LM(8k/rlM) term being neglected7 into
the equation obtained by taking the difference of the
thermal average of (E), (2.13), between the two phases
and using Ap, =0, one obtains

1V(0)I(P)= EUsh{ (4u —1)h —(4u' —2)th') . (5.4)

dI/dP was shown to vanish at P=P, at (3.18) irrespective
of u and u'. However, Eq. (5.4) gives

E(0)(dI/dP. )= (DUs/P, )(4u' 2)h'—(1)' (5..5)

Making use of experimental results for Pb

(AH, /BT)r r. —238.4 G/'K-—,

Llp 800 6,
one estimates the right-han. d side of (5.5),

E(0)(dI/dP. )= —0.4(h Uo/P. ),
which is too large to be accounted for by the corrections
of I(P). The corrections are supposed to be small by
the electron-ionic mass ratio (nz/M)'".

At present, the origin of this inconsistency is not clear.
We can onl.y make the following conjecture. The physical
origin of the nonsimple isotope eR'ect is the existence
of Coulomb interactions among electrons. "" The
(screened) Coulomb interactions do not decrease rapidly
for the large energy transfer as is the case for the phonon
interaction. Accordingly the energy-gap function A(ei)
is not negligibly small even at co&co,. For this reason the
&v integral in the expression for I(P), (3.6), may not be
limited to the region

~

ni
~
(ai, and the trick of. integrating

first with respect to the 3-momentum may not work. in a
straightforward way. Since we do not know a method
to get rid of this difficulty, the present paper is confined
to the superconductors with n'= ~.

The expression for the jump in specific heat, (3.21),
involves the quantity Bd '(ai)/BP, By virtue . of the rela-

ss J. C. Stvihart, Phys. Rev. 116, 45 (1959l;J.W. Garland (pri-
vate communication).
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tion between h(cd, P.) and 86(co,P.)/BP„(4.5), one finds p. (P~) —p (p.)

~~'(~) ~(~A) ' 2 zZ„+e„
e"+

PQ n~ s'Z ' E'—

Therefore, the knowledge for 86'/BP, at only one energy
value is sufhcient to know it all over the energy. This
will be discussed in a separate paper with the results of
numerical calculation.

d(uh
+2@ 2 g 2

2 00

= ——Im P
u p

CO

~1„—~„ tanh—
2

tanh —.
2

(A4)
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APPENDIX A: SHIFT IN CHEMICAL POTENTIAL
DUE TO THE PHASE TRANSITION

The purpose of this appendix is to show that the shift
in chemical potential due to the phase transition Ap is
quite small in comparison with the energy gap. Self-
consistent discussions will be used, assuming a small
change in the function X„.Thus, we assume the modified
Sloch energy ~„does not change by the phase transition.

The chemical potential is determined in terms of
average electron density p.

(1V) 2
p= = — lim P Gi, (P, ri, r2)—=p(p). (A1)

n n ~ ""+o ~

Here the same arguments are used as those which
simplified the expression for I(P) from (2.21) to (3.6) as
well as a sum rule (D1).The main contributions to (A4)
are expected from

~ c~~, co&cy, as in the case of I(P).
However, the integrand is an odd function with respect
to e~ at that region, thereby cancelling the main con-
tributions. In order to estimate the order of magnitude
of (A4), we take into account the momentum depend-
ence of the electron density of states in normal metal,
putting

p tr mt„
Q =1V(0) —de„=lV(0)

~
1+

u kg k u,'

where m, is the (bare) electron mass. Substituting this
into (A4), one obtains

2/V(0)m
p.(p.) p-(r .) = —— ~m—d4

+Oker'

6y pcs
X de d tanh —(A5)

co Z~ —E~ 2

(A6)Denoting the function p(ri) in the superconducting and
normal phases by the suKces s and n, respectively, and
putting

one obtains

p=p (p)=p ( )=p ( )+~ (d /d )+'''
~p= b.(p.) p. (r .)3I(dp./dp.—) Dy =LV/4p„.

Here, we used the fact that the integral in (A5) has the
same order of magnitude with I(P), (3.6). The magni-
tude of I(P) is LV/2, as seen from (4.1) at zero tempera-
ture. Substituting (A3) and (A6) into the expression for
hp, , (A2), one finally obtains

1

Since p„ is given by

p-(p. )= (2rri*r .)'"/3~'

The ratio between hp and the energy gap 2h turns out
to be

6/Sp„10 ',

with the effective electron mass m*, dp /dp, is roughly
e ual to One might think that the shift (A/) would be essential

for the condensation energy since it is multiplied by the
dp /dry, = (vs*/z')ki, (A3) total electron number in the relation

where k~ is the Fermi momentum. Making use of the
expression for p(p), (A1), the numerator in (A2) can
be rewritten

h(II) =A(E)+IVAp, . (AS)

However, it is not the case, since Nhp in (AS) must
cancel the corresponding term in 6(EO) which we calcu-
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lated assuming hp =0. Theref ore, it is consistent to
neglect the last term in (AS). Actually, Scalapinos' has
shown that the shift Ap does not give rise to any change
for the condensation energy in the case of the 8CS
model.

APPENDIX B: EQUATIONS FOR S„, IC„, AND P„
In order to derive the equations satisfied by Z„, X„,

and P~, s we calculate the electron self-energy part Z,
(3.1), under the following approximations. First of all,
the corrections to the electron-phonon vertex part are
down by the electron-ion mass ratio and can be
neglected. " Secondly, we might have to take into
account the contribution from such diagrams shown in
Fig. 2 where the solid lines correspond to the electron
Green's functions and the dotted lines mean the inter-
actions, that is, the phonon Green's function and the
screened Coulomb interaction. %e can discard these

~yg4%~

(p &E ) = ' = = '(p«
( p+K, i E„)

FIG. 2. One of the diagrams of the electron self-energy part Z
which are neglected in (B1). The electron momentum p+E in
the intermediate one-electron state is different from the incident
momentum p, because of the umklapp processes. The intermediate
momentum p+E is usually far from the Fermi surface when p is
on the surface.

diagrams. Since
~
p+K

~

is generally far from the Fermi
momentum k2 while p ks, the summation with respect
to I in the expression for I(P), (2.21), gives rise to a
large energy denominator for such terms in Z. For some
special p's, we might have

~ p+K( ks. However, the
measure of such p's is very small since the reciprocal
lattice vector E can have only discrete values. There-
fore, the lowest order diagram is sufEcient for Z which
gives

Z(P,iE )= —(1/PQ) P P,+/r, 2v, /r, zrsG(P q K, iE—„—iE„)rsD—&(q,iE„)

—(I/PQ)Q V,(P,qiE,„)rsG(qiE„iE )rs, —(81)

where 8 is the screened electron-phonon coupling matrix element and V, the screened Coulomb interactions.
Substituting Nambu's expressions for Z and G, (3.1) and (3.2), into (81), we obtain

iE~,(iE„)
[1—Z„(iE.)giE„=——P U(p, q, iE„iE„)—

PQ,- (iE„Z,(iE„)}' E,'(iE —)
e,(iE )

X„(iE„)=——p U(p, q, iE,—iE )
PQ 2~ (iE„Z,(iE„)}'—E,'(iE )

(82)

where

4.(iE )
y„(iE„)= QU—(p, q, iE„—iE„)

PQ 2~ (iE Z,(iE„)}'—Ess(iE )

U(p, q, iE„—iE„)=p 2/s, ,qV ~,,~Dq(p —
q K, iE„iE )+—V.(p, —q, iE iE )—

XX
(83)

U is a symmetric function with respect to the interchange of p and q as well as I and 222. The phonon Green's

function Dz(q, iv ) takes the form

D),(q,iv„)-'=—(v„s+ to,g2), (84)

in terms of the dressed phonon frequency rasz Substitu. ting (83) and (84) into (82) one can derive the equations
for the analytically continued Zs(~) and @„(to) by applying Schrieffer, Scalapino, and Wilkins s discussion""
used in the case of zero temperature. The results are given by

[1—Z, ((u) jto = do/' Re do/~)P(to ) P&(u) ) (to,co',toe,8),
[to12 As (o/') jl /2

M

(86)
2

A((o) = — do/' Re / g dM~~ (cog F&(o/, ) -,(/o, &',w„P) U tanh—
Z (~) [~12 A2(~~) jl/2 l ),

~ D. J. Scalapino (private communication).
~A. B. Migdal, Zh. EksPerim. i Teor. Fis. 34, 1438 (19S8) /English transl. :Soviet Phys. —JETP 7 996 (1958)j
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CO)GO )COg) e«—1 e &"'+1 cv'+(u+a), +ie (a' (d+—(u, i e—

ee"&—1 ee"'+1 cv'+—id+co, +i e —(o' —co+(o,—ie

~(} CO)M )COg)
e~ &—1 e ~"'+1 co'+(o+(v,+ie cv' co+—cu, i e—

1 1

ee"&—1 ee"'+1 co'—+(a+co,+i e o)'—(u+—0r, ie—

F&,(M,) is a phonon frequency distribution function and ni, (~,) is an interaction strength which are defined by

ui, '((o)Fi, (&u) =
(2~)'

~q+X,N—~-z,x
b(ao g,, (u)d'q P—

2&qx
0(2u, & (q+Z ~),

2k')q+E(

q is the Debye momentum, kp the Fermi momentum and 0 is the step function which is unity if the condition
is satisfied and vanishes otherwise. The screened Coulomb interaction is replaced by a pseudopotential U defined
to include interactions between electrons outside a band of energies

~

co
~
(co,. The same discussion is applied for

DX~, the difference of X~ between the two phases, and shows Dx~ is negligible since the integrand in (82) is essen-
tially an odd function of e„as was the case for Ap, (A4).

Making use of this fact, we can show that the x~c„ term in the expression for I(P), (3.6), does not give the
contribution. The term can be rewritten as

x~4 P~ 4 x&4
d(oh — tanh —= —- Q 6-

(o'Z' F' 2 P—i~ (iEZ)' —E' (87)

Denoting the superconducting and normal X„by X„' and X~" respectively„we can derive a relation

x„"(iE )~,(iE ) 1 ~„(iE„)
V(p, q, ir., iE„)-.- (iE„Z,„)2—E,&(iE„) Pn ~.'(iE„Z,„)2 E„'(iE„)—

4(iE ) xa (iE )4(iE )
x

(iE Z„,)'—e,'(iE ) (iE Z.,)'—e,'(iE„)

where the equation for x~, (82), is used. Since x"=x', this means the quantity (87) vanishes.

The quantity,
BA'(&o) 1 By'(o))

BP. Z.'((v) BP.

APPENDIX C: THE ANALYTICITY OF 8th'/BI},

obtained from the definition of d,(~), Eq. (3.8), is analytic in the upper half ~ plane if Z„(cu) does not have any
zeros there. Suppose I=so is such a zero, and calculate the imaginary part of the equation continued analytically
from the equation for $1—Z„(&o)7a&, (85), (6=0) at that point. The left-hand side gives Imso, while the right-hand
side is proportional to Imso, including the sign. Therefore, there are no such zeros of Z„(a&).

APPENDIX D: THE DERIVATION OF EQ. (3.14)

Writing the v; dependence of the Green s function G(p, 7,,r~) explicitly in terms of the eigenstates
~
e) and the

corresponding eigenvalues E of the Hamiltonian E,
E~e)=E.[e),

one Ands

Gii(p, co+iO)=P u
i(mlc, t In&I' I(mlc„tie)I'

+ . 7~+E„E+re co+E —E„—+ze
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where

This gives

I„—s //—&z/Q s //&—~

Ima„(p, M+io)d~=

Substituting the expression for Gii, (3.2), we obtain

o/Zz (o))

oi Zz (Ql) E& (M) 2

Taking the difference of (D1) between the two phases, integrating with respect to d p, it is found that

which gives Eq. (3.14).

d(d
[oi2 +2(oi) $1/2

=0,

APPENDIX E: THE GAP FUNCTION A(oi) AT SMALL oi

From the equation for [1—Z, (o~))&o, (B5), it is easily found that

Re[1—Z, (o&)jo~ = —ao& ln
~

o~
~
+ (1—b)&v+0(aP), Imo&Z, (o/) = I'+0(o~') .

Here u, b, and F are constants and F&0, if T&0. These relations give

Z, (oi) boy+ au) ln
~

o~ ~+il'+0(o~z)

By virtue of the equation satisfied by h(or), (36), we obtain

ReZ, (o~)A(co) =2+0(o~') ImZ, (o~)A((a) = C/d+0(oiz),

where A and C are constants. Combining (E1) and (E2), we find

cd[A+zC(v+0(oi')$ A(o
A(o&) =

zl'+ace lnlo~l+bo/+0(oi') zl'

(E1)

(E2)

(E3)

indicating the fact that A(&o) vanishes linearly with o~. The density of states of the quasiparticles may be modified
in the small ~ region. The size of this modification will depend on the magnitude of the damping rate F as seen
from (E3).

APPENDIX F: THE DERIVATION OF EQ. (3.20)

The transformations of the integration contour as in (3.12) allow us to rewrite (3.19) as

O'I

dP.z

"do~ B 1 Bh')' P,a& 2zrz—Re——
~

tanh
2oi BM I BPz) 2 — Pz

Z —1 BA' ' B'Z B'Z.) 1 BZ, Bh' 1—Z„B'6'

~) o 4. BP, BP,' BP.V s BP, BP, 2s BP.'

O'Z O'Zz ) s' 2(1—Z„) Bdk' 1 BZ Bd,' Z„—1 B'3,'

(
—2

BP.Bs BP.Bs)P, P@ BP, P. Bs BP. Pc BPzBS ziszz=-
where (3.12) and (3.18) have been used. Making use of the relations

(F1)

«.o~'(~c)~i(~.)
27ri

doi'P(oi')" (zE,( ',oi„P)= P P(zE )J(zE,iE ),

dko, ng'(o/q) F),,((o,)
B (iE„,co',cuz,P)

d(e'P(o~')

27ri 8 iE ef'"~

2 —[4'()J(E, )3.='.+2 'Z d '( .V'( .) {0(E —.)—4(E + .)}
pz zz)o Bs (sScuz 1)z
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8 (s,ld', ldc, p)
d a~'(~e)F~(~i) &~V(~')

2mi 8J(iE,s)
Z S('E.)

P N&o Bs
+2irip Q did, n)P(ld, )Fg(ld, ) (p(iE„~,) p(—iE„+ol,)),

~g (eeoc—1)i

where lit is any analytic function on the upper half-plane, we obtain

Z —1 Bh')'

m& o 4si BP,)

(BiZ„BiZ,)
m& o EBP,' BP,'1,=;s„

i . 1 Bh'(iE ))'
~
J(iE.,iE.),
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1 M, '(iE ))' vari 8 -185'(s)
~

J(iE.,iE„) P ——— J(iE...)
4p. m&0(iE )' Bp, ) p, i m&08s s Bp,n&o n&o

—z=i Eii

+xi P
iE„e~"~ MP(iE —ld,)

d ~ '( .)F ( .)
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1 BZ, 862
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Z„—1 8'6'

m) 0 2s BPc

1 Bd'(iE ) 85'(iE„)
J(iE,iE )

2P, &o (iE )'(iE„)' BP, BP,

vari 1 86'(iE ) 8
[sJ(iE,s)—j. ;s„,

P,' m&o (iE )' BP, Bs
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1 O'LV(iE„)
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2P, m&o (iE )' BP,'
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, ;z„P,' m&o (iF )' BP,n) 0

Z„—1 8262

J(iE.,iE„).
BPcBs c=,@ P,' m&oiE BP,B sg„e&o

Adding up all of the above equations, one rewrites the right-hand side of (F1) and gets (3.20).
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APPENDIX G: THE DERIVATION OF EQ. (3.21)

Suppose a function P(s) is analytic on the upper half s plane and bounded at ts~ —+~. Then the series

P~& q P(iE~)J(iE~,iE ) is calculated as follows:

2 4(iE-)J(iE-,iE-) = 2 d, "( .)F.(,) «It(s)
m&0 2x'$

1 1 j. 1
x i +4E„+a+, ~E„+f+—, 8-~'+1 iq s+, i—E„s+—,)e—&'+1

&«~~'(«.)F~(«q) ~«(II(«)+~I(—«)) .
2m' 0 iE +«+«q qE„+«+—«q

1 j. 1 y 1

I iE„«+«q— iE„—«+«—q iE„+«+«q iE„+—«+«qJ e~"+1
n~'(«, )F~(«,)—P Q d«q (g(iE «q)+P—(iE +«q)) . (Gi)

et'"~—1

The last term in the first integral, which has the factor 1/(e~"+I), is presumably small in comparison with the
first term, since the contribution to « integral from the region «) 1/P is small due to the factor I/(ez"+1) and the
contribution from «(1/P is also small because of the other factor. We can neglect the last term in (G1), too,
since P«q) 7 for the typical phonon frequency in Pb.

With another analytic function &p(s) which vanishes at
~
s

~

+qq as 1-/
(
s

~

~, y) 1, one finds

q(iE„)P(iE )J(iE„,iF )
m&0
n&0

pq Ps Ixl

d«qni, 'F), dsq (z) tanh-
Sx 2 0

~«(4 («)+It (-«) )
-s+«+«q s+«+«q

d«qn), Fi
8~' )

d«'(q («')+ q (—«') } d«(4(«)+0( «))—
0 «+«+«q ««+«q

~«(II («)+It( «)) (z («+«q)—~( « «q)) — —(62—)
0

Here small terms are neglected as done for (G1). If the function P(s) becomes small at
~
s~ +~ as p(s)-, the relation

(62) takes a simple form

y(iE )P(iE )J(iE„„iE„)=—
m&0
e&0

d«,ng'(«)Fi, («,) ,(4(«)+4(—«)}(v(«')+z (—«'))
dcodG0 (63)

«+«+«q

Applying the relations (62) and (63) to the expression for d'I/dP, ', (3.20), we easily obtain the result (3.21).


